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Abstract:



Transfer Entropy has been applied to experimental datasets to unveil causality between variables. In particular, its application to non-stationary systems has posed a great challenge due to restrictions on the sample size. Here, we have investigated the minimum sample size that produces a reliable causal inference. The methodology has been applied to two prototypical models: the linear model autoregressive-moving average and the non-linear logistic map. The relationship between the Transfer Entropy value and the sample size has been systematically examined. Additionally, we have shown the dependence of the reliable sample size and the strength of coupling between the variables. Our methodology offers a realistic lower bound for the sample size to produce a reliable outcome.
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1. Introduction


Transfer Entropy (TE) [1] is an information-theoretical functional able to detect a causal association between two variables [2,3,4,5]. TE identifies the potential driver and driven variable by statistically quantifying the flow of information from one to the other distinguishing the directionality due to its asymmetric property. Backshifting one variable at some particular lag, it returns a nonzero value indicating information flow between variables, or zero otherwise. However, in real data application, it may assume a nonzero value simply due to bias associated with the finiteness of the sample, and not because of an actual coupling [6,7].



Recently, sophisticated algorithms using transfer entropy have improved causal detection [8,9]. However, even these advanced methods require sufficient sample points to avoid false positives due to data-shortage bias. Previous studies addressed the entropy bias by estimating the probability distribution of the underlying processes [10,11,12]. However, from an inference-based approach, there is still a lack of rigorous computation regarding the appropriate minimum size of the sample for a reliable TE outcome. To overcome such an issue, a statistical hypothesis test is required to distinguish independence from a causal relation. The outcome of testing depends on the sample size. This raises concern regarding the minimum sample size required for TE to provide a reliable inference of causal relation.



To answer this, we employ TE as a statistical test and search for the lower bound of the sample size that produces a reliable true positive. For the purpose of consistency, the investigation is carried out in a stationary regime, so the sample range does not result in a different interaction behavior. To this end, paradigmatic models are used in the analysis: two coupled linear autoregressive-moving-average (ARMA) models and two coupled non-linear logistic maps. The former is used in model-driven approaches to detect Granger causality through parametric estimation [13]. The latter is a typical example of a nonlinear system that challenges causal inference due to its chaotic properties.



The results show that the minimum sample size for reliable outcome depends on the strength of the coupling. The larger the coupling, the smaller the sample size required to provide a reliable true positive. The relationship between coupling strength and sample size varies according to the model. We pinpoint the lower bound of the sample size at the limit of high coupling for each model.



The contents of this paper are organized as follows. In Section 2 and Section 3, the models and the methodology are described, in Section 4 the main findings are presented, and in Section 5, the results are discussed.




2. Models


The models are constructed to describe two coupled variables X and Y; X influences Y after a lag [image: there is no content], with coupling strength regulated by the parameter [image: there is no content]. In the following subsection, the models are defined.



2.1. Coupled ARMA[p,q]


The ARMA model is a linear regression model used as a toolkit in the Granger causality approach. Two coupled ARMA[[image: there is no content]] models X and Y are defined; X influences Y after [image: there is no content] time steps, that is,


xi=ρ∑k=1pxi−k+ϵ∑k=1qξi−kx,(1)yi=(1−η)ρ∑k=1pyi−k+ϵ∑k=1qξi−ky+ηxi−15,








where [image: there is no content] so that n is much bigger than any sample size N; [image: there is no content] is a uniformly distributed random number; [image: there is no content] and [image: there is no content] are parameters that regulate the state transition and stochasticity respectively; finally, [image: there is no content] is the coupling parameter. For [image: there is no content], the two variables are uncoupled, while if [image: there is no content], the Y variable is completely defined by X. The parameter [image: there is no content] is fixed throughout the whole analysis. In the methodology section, we investigate the role of [image: there is no content] and [image: there is no content] in detecting [image: there is no content].




2.2. Couple Logistic Maps


Inspired by the studies of both Gyllenber [14] and Hastings [15] to describe migration dynamics within two populations, we define the coupled logistic maps with delay as follows


xi=rxi−1(1−xi−1),(2)yi=(1−η)ryi−1(1−yi−1)+ηxi−15.











The dynamics of X is the standard logistic map, and the dynamics of Y has two terms. The first is a local logistic growing rate, while the other represents a migration effect, where individuals from the X migrate to Y after [image: there is no content] time steps. We assume that both populations have the same growth rate [image: there is no content]. The parameter [image: there is no content] is the coupling between X and Y and represents the migration influx controlling the growth of one population to the detriment of the other.





3. Methodology


Consider two given sets of discrete variable [image: there is no content] and [image: there is no content]. Any causal relationship between them should be restrained in the temporal order of the X and Y elements. Let us suppose that X influences Y after [image: there is no content] units of time. One can detect this relationship using the TE functional. TE evaluates the reduction in the uncertainty of the past of a possible driver [image: there is no content] due to the knowledge of the present of a possible driven Y when the past of [image: there is no content] is given. Figure 1 illustrates the idea behind the sampling for TE calculation. The TE from X to Y is evaluated as follows


[image: there is no content]



(3)






Figure 1. Diagrammatic representation of the sampled values used to calculate the Transfer Entropy (TE) between X and Y. The solid black box represents the period of interest and the other two dashed boxes represent the lagged intervals for analysis.



[image: Entropy 19 00150 g001]






Whenever X and Y are infinite independent random variables, the expression (3) is zero. However, in the case of two finite datasets, TE will be greater than zero, even if X and Y are supposed to be independent. This bias is due to a finite size effect, and it has to be addressed via a statistical inference procedure.



Let us assume a null hypothesis stating that X and Y are independent for a particular lag [image: there is no content]. At this lag, an ensemble of surrogate data is generated from the original data. A confidence interval is defined as a percentile of the surrogate’s TE distribution. If the TE calculated from the original dataset (original TE) is significantly higher than the confidence interval, then the null hypothesis is rejected and causality is detected. However, for a small dataset, the bias is considerable when compared to the original TE [16]. The small-sample issue leads to a type II error, e.g., X and Y are not independent, but the hypothesis is falsely accepted.



The minimum number of sample points [image: there is no content] that prevent such bias has been estimated. Assuming the processes as being independent and with each having equiprobable B partitions, one can find a preliminary lower bound for the proper sample size such that [image: there is no content].



Our computational approach improves this naive estimation by investigating the dependence of the TE value with the sample size N. It searches for the smallest [image: there is no content] so the original TE is significantly higher than the confidence interval. The trustworthiness of TE is tested for the models presented in Section 2, contemplating its particularities.



The methodology is described as follows. The reliability of the true positives is tested against several sample sizes. For each sample size tested, 100 runs with different initial conditions are performed. For each run, an ensemble of 2000 surrogates is obtained from the original data, and the respective TE is calculated at a fixed [image: there is no content]. A significance level of [image: there is no content] is chosen, so the 99.95 percentile of the surrogate ensemble is defined as the upper confidence bound, which for the sake of simplicity we have called the threshold [image: there is no content]. Whenever the original TE is higher than [image: there is no content], the null hypothesis is rejected. Otherwise it is accepted. This produces a comparison-wise error rate of [image: there is no content] when considering the multiple comparisons between the 100 runs of different initial conditions. In other words, a significance level of 4.9% is obtained when all the 100 TEs calculated from the original dataset are significantly higher than all the respective [image: there is no content]. In the analysis, we consider the most coarse-grained measure, i.e., a bipartition of the variable’s dynamics domain using two ordinal patterns. Appendix A presents the details of the probability estimation while Appendix B explains the upper bound of Transfer Entropy.




4. Results


In this section, the minimum sample size [image: there is no content] required to avoid type II error is pinpointed with a significance level of 4.9%. Figure 2, Figure 3, Figure 4 and Figure 5 show the boxplot regarding the 100 TE values versus the sample size N. The ends of the whiskers represent the minimum and maximum TE values. The TE calculated from the original time series is seen in black, and the threshold [image: there is no content] (family-wise error rate of 0.0005) is seen in red. The minimum reliable sample size [image: there is no content] is defined as the smallest N therefore the minimum TE value calculated from the original time series is higher than the maximum TE calculated from the threshold. All statements have been made according to a confidence level of 4.9% (comparison-wise error rate).


Figure 2. The black boxplots refer to the time series of the coupled autoregressive-moving-average (ARMA)[1,1] model, and the red boxplots refer to its surrogates. Left: Transfer Entropy of [image: there is no content] versus the sample size for the following coupling parameter (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]. Right: Transfer Entropy of [image: there is no content] versus the sample size for the following coupling parameter (d) [image: there is no content]; (e) [image: there is no content]; (f) [image: there is no content].



[image: Entropy 19 00150 g002]





Figure 3. Transfer Entropy of [image: there is no content] versus the sample size for different autoregressive window sizes (a) [image: there is no content], (b) [image: there is no content] and (c) [image: there is no content].



[image: Entropy 19 00150 g003]





Figure 4. Transfer Entropy of [image: there is no content] versus the sample size for different stochastic parameters (a) [image: there is no content] and (b) [image: there is no content].



[image: Entropy 19 00150 g004]





Figure 5. The black boxplots refer to the time series of the coupled logistic maps, and the red boxplots refer to its surrogates. Left: Transfer Entropy of [image: there is no content] versus the sample size for the following coupling parameter (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]. Right: Transfer Entropy of [image: there is no content] versus the sample size for the following coupling parameter (d) [image: there is no content]; (e) [image: there is no content]; (f) [image: there is no content].



[image: Entropy 19 00150 g005]






4.1. Coupled ARMA[p,q]


Figure 2 shows the results for the two coupled ARMA[1,1] models. The reliable minimum sample size [image: there is no content] depends on the coupling strength of the model. Figure 2a shows results for coupling strength [image: there is no content]; the TE method yields a reliable true positive if one uses [image: there is no content]. Figure 2b shows results for coupling strength [image: there is no content]; the TE method yields a reliable true positive if one uses [image: there is no content]. Finally, Figure 2c shows results for coupling strength [image: there is no content]; no minimum sample size [image: there is no content] is identified (up to [image: there is no content]). This means that there is a higher chance of obtaining false negatives. Figure 2d–f show the TE of [image: there is no content] versus the sample size. In this case, the methodology presents a negligible chance of type I error, which is the incorrect rejection of a true null hypothesis.



In the particular case of the ARMA[[image: there is no content]] model, Figure 3 shows that the reliable minimum sample size [image: there is no content] does not depend significantly on the memory of the autoregressive term. The results refer to the autoregressive window size p=1,4and8.



We also investigated the relationship between the reliable minimum sample size [image: there is no content] and the parameter [image: there is no content] that regulates the stochasticity. Figure 4a,b show the results for [image: there is no content] and [image: there is no content]. One can notice that [image: there is no content] depends on the ARMA parameter [image: there is no content]. For [image: there is no content], the minimum reliable sample size is [image: there is no content], and for [image: there is no content], the minimum reliable sample size is [image: there is no content]. So the higher the parameter [image: there is no content] is, the larger the [image: there is no content] value must be to obtain a reliable true positive.




4.2. Couple Logistic Maps


Figure 5 shows that the [image: there is no content] value here changes more abruptly according to the coupling strength in the nonlinear coupled logistic map if compared with the ARMA model. Figure 5a shows the results for coupling strength of [image: there is no content]. In this case, one requires [image: there is no content] sample points for the proper detection of the influence of X on Y. This lower bound is very close to the one identified in the ARMA model with the same coupling strength. Figure 5b shows the results for the coupling strength [image: there is no content]; in this case, the number of sample points for a reliable true positive is [image: there is no content]. For the coupling strength [image: there is no content], no minimum sample size [image: there is no content] is identified (up to [image: there is no content]). Figure 5c shows a high probability of obtaining false negatives, so no lower bound is identified. Figure 5d–f show that the TE method presents a negligible chance of type I error.



Figure 6 shows the relationship between the reliable minimum sample size [image: there is no content] and the coupling parameter [image: there is no content]. The larger the coupling parameter [image: there is no content] is, the smaller the [image: there is no content] that is required, but the way [image: there is no content] decays with [image: there is no content] is different for the two models. The relationship between [image: there is no content] and [image: there is no content] for the ARMA[1,1] model presents an exponential decay, whereas for the coupled logistic map, [image: there is no content] presents an abrupt decay when [image: there is no content] and a saturation behavior around [image: there is no content] for [image: there is no content].


Figure 6. Reliable minimum sample size [image: there is no content] versus the coupling parameter [image: there is no content], using a binary partition for probability estimation.
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The result regarding the coupled logistic map depicted in Figure 6 can be explained as follows: The saturation happens because around [image: there is no content], the driven synchronizes its dynamics with the driver. Figure 7a shows the behavior of the system for [image: there is no content], i.e., below the synchronization transition. Furthermore, Figure 7b shows the behavior when the system is very close to the synchronized state between the systems with [image: there is no content]. We stress that this result is important and unexpected because it shows that, even in an almost synchronized state, the underlying methodology can detect interactions correctly.


Figure 7. Behavior of the coupled logistic maps according to the coupling strength [image: there is no content]. (a) Shows the behavior when [image: there is no content]; and (b) shows the synchronized behavior when [image: there is no content].



[image: Entropy 19 00150 g007]






Moreover, at the high coupling limit, the minimum sample size of the ARMA[1,1] model is [image: there is no content], somewhat small if compared with the logistic maps, namely [image: there is no content]. Despite the fact that this coupling analysis considers only ideal and simplified models, this number can be thought of as the lower bound for the entropy transfer using a significance level of 5% and two ordinal patterns.




4.3. Three Ordinal Pattern


A larger amount of sample points is needed to obtain a reliable outcome using three ordinal patterns. Figure 8 shows the relationship between TE and N using three ordinal patterns and [image: there is no content]. One can see that the ARMA[1,1] model requires at least [image: there is no content] sample points, while the logistic model needs at least [image: there is no content] sample points.


Figure 8. Transfer Entropy of [image: there is no content] versus sample size N using three ordinal patterns and coupling parameters [image: there is no content]. (a) Coupled ARMA[1,1] model; (b) Couple logistic maps.



[image: Entropy 19 00150 g008]








5. Conclusions


In this paper, we have presented a quantitative analysis to find the minimum sample size [image: there is no content] that produces a reliable true positive outcome using Transfer Entropy. We have tested two paradigmatic models: the linear ARMA model, commonly used in Granger causality approaches; and the well known nonlinear logistic map. The models are constructed to describe two coupled variables X and Y; X influences Y after a lag [image: there is no content] with coupling strength regulated by the parameter [image: there is no content].



The analysis shows that the size of [image: there is no content] depends on the coupling strength [image: there is no content], [image: there is no content] being the larger and [image: there is no content] the smaller. This result is expected since the information flow increases with the coupling [5,17], therefore it is reasonable to conclude that the larger the coupling is, the smaller the sample size required to infer causality.



However, the relationship between [image: there is no content] and [image: there is no content] depends on the model. For the coupled ARMA model, [image: there is no content] decreases exponentially as [image: there is no content] increases whereas, for the coupled logistic map, [image: there is no content] decays abruptly for [image: there is no content] followed by a saturation as [image: there is no content] increases.



Furthermore, at the high coupling limit, the value of [image: there is no content] approaches [image: there is no content] sample points. This result establishes the lower bound of the reliable minimum sample size for inference-based causality testing using Transfer Entropy. For this particular case, we use a probability estimation through bipartition of the variable domain. We have shown that the higher the partitioning is, the higher the [image: there is no content] value is. This methodological procedure can be reproduced for different models, control experimental data and also probability estimation.
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Appendix A. Probability Estimation


The probability is estimated using the ordinal partitions symbolization [18,19]. The procedure transforms an experimental sample into a sequence of n-tuples called order patterns [image: there is no content] of size n. Each [image: there is no content] contains n indexes of the original sample. The indexes are arranged in such a way that their respective values follow an ascending order.



The order patterns are generated by sampling n values with delay [image: there is no content], so that the i-sample is defined as [image: there is no content]. In the context of phase-space reconstruction of dynamical systems, n is also known as the embedding dimension and [image: there is no content] as the embedding delay [20,21]. In this study, we test [image: there is no content] and [image: there is no content].



The two kinds of models considered here are discrete recurrence relation, so there is no slow response time in the dynamics, therefore no scatter sampling across the time series is necessary. Besides, an embedding delay equal to one is enough for the ordinal patterns to capture the intrinsic features of the model’s dynamics.




Appendix B. Upper Bound of Transfer Entropy


The upper bound of the TE can be obtained through the following consideration: Equations (1) and (2) are devised to make X and Y uncouple when [image: there is no content], and conversely, if [image: there is no content] then Y is entirely described by X. In the latter case, [image: there is no content] which leads us to [image: there is no content]. Assuming Y and [image: there is no content] to be independent, then [image: there is no content]. This finally leads us to the upper bound of the TE as [image: there is no content] for equiprobable B partitions in the variable’s domain.
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