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Abstract: Multiscale cross-approximate entropy (MC-ApEn) between two different physiological 
signals could evaluate cardiovascular health in diabetes. Whether MC-ApEn analysis between two 
similar signals such as photoplethysmographic (PPG) pulse amplitudes of bilateral fingertips can 
reflect diabetes status is unknown. From a middle-to-old-aged population free of prior 
cardiovascular disease, we selected the unaffected (no type 2 diabetes, n = 36), the well-controlled 
diabetes (glycated hemoglobin (HbA1c) <8%, n = 30), and the poorly- controlled diabetes (HbA1c 
≥8%, n = 26) groups. MC-ApEn indexes were calculated from simultaneous consecutive 1500 PPG 
pulse amplitudes signals of bilateral index fingertips. The average of scale factors 1–5 (MC-ApEnSS) 
and of scale factors 6–10 (MC-ApEnLS) were defined as the small- and large-scales MC-ApEn, 
respectively. The MC-ApEnLS index was highest in the unaffected, followed by the well-controlled 
diabetes, and then the poorly-controlled diabetes (0.70, 0.62, and 0.53; all paired p-values were 
<0.05); in contrast, the MC-ApEnSS index did not differ between groups. Our findings suggested 
that the bilateral fingertips large-scale MC-ApEnLS index of PPG pulse amplitudes might be able to 
evaluate the glycemic status and detect subtle vascular disease in type 2 diabetes.  

Keywords: multiscale cross-approximate entropy; photoplethysmographic wave amplitudes;  
type 2 diabetes 

 

1. Introduction 

Arterial stiffness is a major risk factor of clinical cardiovascular diseases (CVDs) [1]. In 2004, 
the difference in blood pressure acquired through the two upper arms was reported to reflect the 
risk of arteriosclerosis [2]. Another study demonstrated that inter-arm blood pressure differences 
(IABPDs) over 10 mmHg were highly associated with subclavian artery stenosis at the lower blood 
pressure site, and moreover, an IABPD over 15 mmHg may implicate peripheral vascular disease, 
CVD, and be correlated with the associated mortalities [3]. According to the latest guideline from 
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the European Society of Cardiology, a consistent difference in systolic blood pressure between two 
arms over 10 mmHg is associated with increased cardiovascular risk [4].  

Systemic conditions such as aging and diabetes mellitus are known causes of arterial stiffness 
despite their differences in disease mechanisms [5]. Aging causes medial degeneration characterized 
by collagen and calcium deposits as well as fragmentation of elastin lamellae in the medial layer as a 
result of upregulation of proteolytic enzymes and possible repetitive cyclic stress on the arterial wall 
over a life span [6]. Diabetes mellitus is a chronic disease known to enhance the production of 
advanced glycation end-products that causes collagen crosslinking in the arterial medial layer which 
has been shown to be a significant contributor to arterial stiffness [7]. 

Although the measurement of IABPD may be a good surrogate for arteriosclerosis among 
individuals with older ages or type 2 diabetes, it is sometimes limited by the requirement of 
simultaneously assessing blood pressures at both arms with automatic devices and multiple 
readings to prevent overestimation and observer bias. Therefore, several digital cardiovascular 
signals rather than blood pressure have been used to evaluate arteriosclerosis in diabetes. Pincus et 
al. proposed that cross-approximate entropy (C-ApEn) can effectively evaluate the biological 
asynchrony between two different signal series [8]. Previously, we also showed the multiscale 
cross-approximate entropy (MC-ApEn) of electrocardiographic (ECG) R-R intervals with left finger 
photoplethysmographic (PPG) transit times and pulse amplitudes, and the large-scale multiscale 
entropy (MSE) of PPG pulse amplitudes correlating well with diabetes status [9,10]. Since PPG pulse 
amplitudes are related to arterial blood volume, pressures, and resistance, we hypothesized that 
MC-ApEn between two similar physiological signals such as PPG pulse amplitudes of bilateral 
fingertips may be practical to detect the presence of arteriosclerosis among individuals with older 
age or diabetes. 

2. Methods 

2.1. Study Population 

Between July 2009 and October 2010, we prospectively recruited 102 women and men with 
middle to old ages (range: 45–80 years) from the Ministry of Health and Welfare Hualien Hospital 
for PPG examinations of bilateral index fingertips. Of this population, 10 participants were excluded 
for a history of coronary heart disease, ischemic stroke, heart failure, chronic atrial fibrillation, 
peripheral arterial disease, or permanent pacemaker implantation, leaving a sample of 92 
individuals for the MC-ApEn analysis. Diabetes mellitus was defined as fasting glucose ≥126 mg/dL 
or glycated hemoglobin (HbA1c) >6.5%, or the use of hypoglycemic medications. Of these, 36 
participants did not have type 2 diabetes (the unaffected group), 30 had HbA1c <8% (the 
well-controlled diabetes group), and 26 had HbA1c ≥8% (the poorly-controlled diabetes group). This 
study was reviewed and approved by the Institutional Review Board of Hualien Hospital and 
National Dong-Hwa University. Each patient signed an informed consent.  

2.2. Study Protocol 

All measurements and medical histories were taken in the morning (i.e., 8:30–10:30 a.m.). 
Demographic, anthropometric, and laboratory data for the analysis were obtained at the clinic visit. 
Body mass index was defined as body weight (kg)/height (m) squared. Blood pressure was 
measured once over the left arm of the supine participants by an automated oscillometric device 
(BP3AG1, Microlife, Taipei, Taiwan) with an appropriate cuff size. Concentrations of total 
cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and 
triglycerides were measured from blood samples obtained after a 12-h fast. The subjects were asked 
to refrain from caffeine-containing beverages and theophylline-containing medications for 12 h 
before each hospital visit. In addition, to minimize potential erroneous readings from the infrared 
sensors arising from involuntary vibrations of the examinees and a low environmental temperature 
possibly resulting in constriction of the peripheral vessels, all subjects underwent blood sampling 
before data acquisition and were allowed to relax in a supine position for 10 min in a quiet room 
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with temperature control at 26 ± 1 °C. Six-channel ECG-based pulse wave velocity (PWV) was 
obtained through simultaneous acquisition of ECG and PPG pulse signals from bilateral index 
fingertips for 30 min, and was averaged for the analysis [11,12].  

2.3. Calculation of PPG Pulse Amplitudes Series from Bilateral Fingertips 

The PPG infrared sensors were simultaneously applied to bilateral index fingertips of the 
subjects for the acquisition of data. After being processed through an analog-to-digital converter 
(USB-6009 DAQ, National Instruments, Austin, TX, USA) at a sampling frequency of 500 Hz, the 
digitized signals were stored on a computer and analyzed by Matlab 7.7 software (MathWorks, 
Natick, MA, USA) [9]. The potential difference between the peak and the valley—which was post to 
the peak—was defined as the pulse amplitude of PPG signals (Figure 1). We simultaneously 
retrieved 1500 consecutive PPG pulse amplitudes of the left fingertip, shown as PPGAL = {PPGAL(1), 
PPGAL(2), PPGAL(3), . . . , PPGAL(n)} and those of right fingertip as PPGAR = {PPGAR(1), PPGAR(2), 
PPGAR(3), . . . , PPGAR(n)}, where n = 1500 from each participant. 

 
Figure 1. Photoplethysmograph pulse amplitude (PPGA) of left index finger (PPGAL) and right 
index finger (PPGAR) were simultaneously acquired from PPGA (1) to PPGA (1500). 

Due to a trend within physiological signals [13], nonzero means may be included; therefore, 
we used empirical mode decomposition (EMD) [14] to deconstruct the {PPGAL(i)} and {PPGAR(j)} 
series, thereby eliminating the trend from the original series. We then normalized the {PPGAL(i)} 
and {PPGAR(j)} series, as shown in (1). In these equations, ܵܦ୔୔ୋ୅ై	and ܵܦ୔୔ୋ୅౎  represent the 
standard deviations of series {PPGAL(i)} and {PPGAR(j)}, respectively. ܲܲܣܩ௅  and ܲܲܣܩோ 
represent the mean of series {PPGAL(i)} and {PPGAR(j)}, respectively. Irregularity analysis was 
performed on the normalized results, nPPGAL(i) and nPPGAR(j). 

nPPGAL(i)= PPGAL(i)-PPGALതതതതതതതതതത
SDPPGAL

 
(1) 

nPPGAR(j)=PPGAR(j)-PPGARതതതതതതതതതത
SDPPGAR
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2.4. C-ApEn of Bilateral Fingertips PPG Pulse Amplitudes 

Previous studies have used C-ApEn—an improved analysis method of approximate entropy 
[15,16]—to analyze two different synchronous physiological time series, define their relationship, 
and calculate the irregularity within that relationship [8,17]. This method utilizes the dynamic 
changes between the two series to evaluate the physiological system. Similarities between changes 
in the two series can be used to observe the regulatory mechanisms in the physiological system. To 
obtain a deeper understanding of the irregularity of the physiological system, we utilized nPPGAL 
and nPPGAR series to calculate the C-ApEn, using (6). The details of the whole algorithm are as 
follows [18]. 
Step 1. For a given ݉, for two sets of ݉-vectors, 

x(݅) ≡ [nPPGAL (݅) nPPGAL (݅ + 1) ⋅⋅⋅ nPPGAL (݅ + m − 1)], 1 ≤ ݅ ≤ N − m + 1, i ∈ N 
(2) 

y(݆) ≡ [nPPGAR (݆) nPPGAR (݆ + 1) ⋅⋅⋅nPPGAR (݆ + m − 1)], 1 ≤ ݆ ≤ N − m + 1, ݆ ∈ N. 
Step 2. Define the distance between the vectors x(݅) and y(݆) as the maximum absolute difference 
between their corresponding elements as follows: ݀ [x(݅), y(݆)] = max [|nPPGA୐ (݅ + ݇ − 1) − nPPGAୖ (݅ + ݇ − 1)|] (3) 
Step 3. With the given matrix x(݅) which refers to nPPGAL (where ݅ = 1 to	N − m + 1), find the value of ݀[x(݅), y(݆)] (where ݆ = 1 to N − m + 1) that is smaller than or equal to ݎ and the ratio of this number to 
the total number of ݉-vectors (ܰ	 − ݉ + 1). That is, let ௡ܰ௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ (݅) equal the number of y(݆) 
satisfying the requirement ݀[x(݅), y(݆)] ≦ ݎ; then ܥ௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ (݅) = ே೙ುುಸಲಽ೙ುುಸಲೃ೘ (௜)ேି௠ାଵ ௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ܥ (4)   (݅)	 measures the frequency of the ݉-point nPPGAR pattern being similar (within a 
tolerance of ±ݎ) to the ݉-point nPPGAL pattern formed by x(݅). 
Step 4. Average the logarithm of ܥ௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ (݅)	over ݅ to obtain ∅௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠   :as follows (ݎ)

∅௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ (ݎ) = 1ܰ −݉ + 1 ෍ ݈݊ ௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ܥ (݅)ேି௠ାଵ
௜ୀଵ  (5) 

Step 5. Increase ݉ by 1 and repeat Steps 1–4 to obtain ܥ௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ାଵ (݅)	 and ∅௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ାଵ  .(ݎ)
Step 6. Finally, take C − ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(݉, (ݎ = limே→ஶ[∅௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ (ݎ) − ∅௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ାଵ  For .[(ݎ)
N-point data, the estimate is C − ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(ܰ,݉, ௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠∅] = (ݎ (ݎ) − ∅௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ௠ାଵ  (6)  [(ݎ)

where ݉ represents the chosen vector dimension, ݎ represents a tolerance range, and ܰ is the data 
length. From Pincus’s publication, in order to effectively distinguish two data series by 
cross-approximate entropy, it would be better to set ܰ ≥ 1000, ݉ ≥ 2, and [17] 0.1 ≤ ݎ. To ensure 
efficiency and accuracy of calculation, the parameters of this study were set at ܰ = 1500, ݉ = 2, and ݎ 
= 0.15 multiplied by the standard deviation of the time series of nPPGAL. 

2.5. Multiple Temporal Scale Analysis Used in MC-ApEn 

Multiple analysis involves the use of a scale factor ߬ (߬ = 1, 2, 3, ..., ݊), which is selected 
according to a 1-D series of consecutive cycles. This factor enables the application of a 
coarse-graining process capable of deriving a new series prior to the calculation of entropy in each 
new individual series [14]. Using this approach, we performed coarse-graining on the normalized 
1-D consecutive cycles of the nPPGAL(݅) and nPPGAR(݆) series based on scale factor ߬, thereby 
obtaining the series nPPGAL(݅) and nPPGAR(݆) as shown in (7). We then calculated as follows: nPPGA୐(ݑ)(ఛ) = 1߬ ෍ nPPGA୐(݅)௨ఛ

௜ୀ(௨ିଵ)ఛାଵ , 1 ≤ ݑ ≤ 1500߬ , ݑ ∈ ܰ (7) 
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nPPGAୖ(ݑ)(ఛ) = 1߬ ෍ nPPGAୖ(݆)௨ఛ
௝ୀ(௨ିଵ)ఛାଵ , 1 ≤ ݑ ≤ 1500߬ , ݑ ∈ ܰ 

Repeat Steps 1–7 to calculate the MC-ApEn index in scales 1–10. The values of C–ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(߬) were obtained from a range of scale factors between 1 and 10 using the 
MC-pEn data analysis method. The summation values of C–ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(߬) between scale 
factors 1 and 5 were defined as small scales [19]. The sum of C-ApEn between scale factors 1 and 5 
was defined as MC-ApEnSS in (8).  MC–ApEnୗୗ 	= ෍C–ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(τ)ହ

ఛୀଵ  (8) 

The summation values of C − ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(߬) between scale factors 6 and 10 were defined 
as large scales [19]. The sum of C-ApEn between scale factors 6 and 10 was defined as MC-ApEnLS in (9).  MC–ApEn୐ୗ 	= ෍C–ApEn௡௉௉ீ஺ಽ௡௉௉ீ஺ೃ(τ)ଵ଴

ఛୀ଺  (9) 

The sum of C-ApEn from scale factors 1 to 10 was defined as MC-ApEnAVERAGE. 

2.6. MSE of Unilateral Fingertip PPGA Pulse Amplitude 

To assess the complexity of unilateral fingertip PPGA series, sample entropy was used for 
multiscale analysis [16]. Since our previous study showed similar MSE levels of 1500 PPG pulse 
amplitudes between right and left fingertip in both unaffected individuals and those with diabetes 
[20], the left fingertip MSE was to be the representative for the analysis. The results of sample 
entropy between scale factors 1 and 5 were defined as small scales, and those between scale factors 6 
and 10 were defined as large scales. The sum of MSE in small scales of PPGAL series was defined as 
MSESS, and the sum of MSE in large scales of PPGAL series was defined as MSELS. 

2.7. Statistical Analysis  

Average values were expressed as mean ± standard deviation. Significant differences in 
anthropometric, hemodynamic, and computational parameters (i.e., MC-ApEnLS and MC-ApEnSS) 
between different groups were determined using an independent sample ݐ-test when the analysis 
data were normally distributed, and if the analysis data were not normally distributed, we used the 
nonparametric Mann-Whitney ܷ test. Pearson’s correlation test was performed to study the 
correlations of ECG-PWV, hemodynamic parameters, and serum biochemical data with MC-ApEn. 
A subcohort consisting of three age-matched groups (the unaffected, n = 19; the well-controlled 
diabetes, n = 28; and the poorly-controlled diabetes, n = 23) was used for a sensitivity test. Statistical 
package for social sciences software (SPSS, version 14.0 for Windows) was used for all statistical 
analysis. A p-value less than 0.05 was considered statistically significant. 

3. Results 

The baseline characteristics of each group are shown in Table 1. Compared with the unaffected 
group, the diabetes group had relatively older ages and greater waist sizes, lower serum 
high-density lipoprotein cholesterol, HbA1c levels, and greater ECG-PWV. As compared with the 
well-controlled diabetes, the poorly-controlled diabetes had higher serum triglycerides, low-density 
lipoprotein cholesterol, and HbA1c levels. The MSEss did not differ between groups, nor did the 
MC-ApEnSS differ. The MSELS in the poorly-controlled diabetes was lower than that in the unaffected, 
but similar to that in the well-controlled diabetes. In contrast, the MC-ApEnLS index was highest in 
the unaffected, followed by the well-controlled diabetes, and then the poorly-controlled diabetes 
(0.70, 0.62, and 0.53; all paired p-values were <0.05).  
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Table 1. Baseline characteristics of non-diabetic participants (Unaffected), those with well-controlled 
diabetes (glycated hemoglobin (HbA1c) < 8%), and those with poorly-controlled diabetes (HbA1c ≥8%). 

 
Unaffected Diabetes, HbA1c <8% Diabetes, HbA1c ≥8% 

n = 36 n = 30 n = 26 
Men (%) 15 (41.7%) 18 (60%) 15 (57.7%) 
Age, y 55.08± 8.47 67.93± 7.75 ++ 60.73	±	7.28 *,a 

Height, cm 161.44± 8.06 161.86± 8.68 161.35	±	6.99 
Weight, kg 63.99± 11.87 70.32± 13.76 73.27	±	11.52 * 

Waist circumference, cm 83.73 ± 10.72 93.52± 10.29 ++ 95.6	±	11.03 ** 

BMI, kg/m2 24.43± 3.47 26.17± 6.04 28.18	±	4.397 * 

SBP, mmHg 120.77± 15.51 122.28± 15.59 121.89	±	30.67 
DBP, mmHg 75.77± 10.40 72.52± 10.71 72.96	±	18.13 

Pulse pressure, mmHg 43.75± 13.75 49.76± 11.31 48.92	±	17.07 
Total Cholesterol, mg/dL 193.67± 35.09 167.42± 27.18 198.6	±	47.21 a 

Triglycerides mg/dL 111.44± 86.86 123.08± 43.89 169.54	±	91.98 *,a 

HDL-Cholesterol, mg/dL 49.94± 16.63 40.65± 10.84 + 40.25	±	9.21 * 

LDL-Cholesterol, mg/dL 116.14± 30.15 95.04± 23.59 + 122.61	±	31.93 a 

Cholesterol/HDL ratio 4.24	± 1.403 4.64±2.89 + 5.09	±1.44 * 

FPG, mg/dL 104.94± 21.996 124.92± 22.98 + 176.17	±	60.595 **,aa 

HbA1c, % 5.94± 0.41 7.16± 0.38 ++ 9.54	±	1.73 **,aa 

ECG-PWV, cm/s 5.31±0.33 5.71±0.21 + 5.75	±	0.49 * 

MSEss 1.23± 0.36 1.12± 0.36 1.14	±	0.41 
MSELS 1.56± 0.44 1.39± 0.39 1.32	±	0.38 * 

MC-ApEnSS 0.48± 0.08 0.47± 0.13 0.45	±	0.12 

MC-ApEnLS 0.70± 0.08 0.62± 0.14 + 0.53	±	0.16 **,a 

Continuous variables are expressed as mean	±	standard deviations, and categorical variables as 
number (percentage). Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; 
ECG-PWV, electrocardiographic pulse wave velocity; FPG, fasting plasma glucose; HbA1c, 
hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; LS, large scales; MC-ApEn, multiscale cross-approximate entropy; MSE, multiscale 
entropy; SBP, systolic blood pressure; SS, small scales. Unaffected vs. Diabetes, HbA1c <8% + p < 0.05; 
++ p < 0.001. Unaffected vs. Diabetes, HbA1c ≥8% * p < 0.05; ** p < 0.001. Diabetes, HbA1c <8% vs. 
Diabetes, HbA1c ≥8% a p < 0.05; aa p < 0.001. 

Table 2 shows the correlations of MC-ApEn with hemodynamic parameters, serum glycemic 
index, lipid profiles, and ECG-PWV. MC-ApEnAVERAGE was inversely correlated with body weight, 
waist circumference, body mass index, and HbA1c, and borderline inversely correlated with fasting 
plasma glucose and ECG-PWV. Of these variables, HbA1c was the strongest one associated with 
MC-ApEnAVERAGE (r = −0.316). Similarly, MC-ApEnLS was inversely correlated with body weight, 
waist circumference, body mass index, HbA1c, fasting plasma glucose, and ECG-PWV. ECG-PWV 
and HbA1c were moderately correlated with MC-ApEnLS (r = −0.423 and −0.397, respectively).  
In contrast, MC-ApEnSS was not correlated with any of these variables except body mass index  
(r = −0.232). 

Table 2. Correlations of ECG-PWV, hemodynamic, and serum biochemical data with MC-ApEn. 

 
MC-ApEnAVERAGE MC-ApEnSS MC-ApEnLS 

r p r p r p 
Age, year −0.051 0.626 0.058 0.580 −0.126 0.233 

Height, cm −0.020 0.851 0.024 0.825 −0.049 0.645 
Weight, kg −0.246 0.019 −0.148 0.162 −0.268 0.010 

Waist circumstance, cm −0.262 0.013 −0.144 0.178 −0.296 0.005 
BMI, kg/m2 −0.282 0.007 −0.232 0.027 −0.259 0.013 
SBP, mmHg 0.046 0.665 0.136 0.203 −0.032 0.761 
DBP, mmHg 0.092 0.387 0.045 0.673 0.108 0.309 

Pulse pressure, mmHg −0.029 0.788 0.149 0.160 −0.159 0.133 
HbA1c, % −0.316 0.002 −0.124 0.238 −0.397 <0.001 
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Total cholesterol, mg/dL 0.050 0.649 0.055 0.619 0.036 0.743 
Triglycerides, mg/dL −0.189 0.085 −0.072 0.516 −0.237 0.030 

HDL-Cholesterol, mg/dL 0.129 0.244 0.058 0.601 0.157 0.157 
LDL-Cholesterol, mg/dL 0.046 0.682 0.001 0.991 0.071 0.528 

FPG, mg/dL −0.210 0.058 −0.049 0.665 −0.291 0.008 
Cholesterol/HDL-C −0.018 0.871 0.039 0.728 −0.058 0.603 

ECG-PWV, cm/s −0.309 0.056 −0.071 0.669 −0.423 0.007 
Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; ECG-PWV, 
electrocardiographic pulse wave velocity; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; 
HDL, high-density lipoprotein; LDL, low-density lipoprotein; LS, large scales; MC-ApEn, multiscale 
cross-approximate entropy; SBP, systolic blood pressure; SS, small scales. 

Figure 2 shows the MC-ApEn index at each scale factor of the three groups. Generally, the 
unaffected group had the highest MC-ApEn and the poorly-controlled diabetes group had the 
lowest MC-ApEn across scale factors 6–10 (large scales). However, the unaffected group had the 
lowest MC-ApEn compared with the two diabetes groups at scale factor 1, but the average of 
MC-ApEn across scales 1–5 (small scales) did not differ between groups. 

 

Figure 2. The MC-ApEn of bilateral index fingers with the standard error (vertical bar) of the 
unaffected (solid blue line), the well-controlled diabetes (solid red line), and the poorly-controlled 
diabetes (solid green line) at each scale factor. 

MC-ApEn in the Three Age-Matched Groups for a Sensitivity Test 

The baseline characteristics of the three age-matched groups in the subcohort are shown in the 
Table S1. The results for MSE and MC-ApEn of PPG pulse signals in the subcohort were in line with 
those in the original cohort. The diabetes and the unaffected groups could be differentiated by both 
MSELS and MC-ApEnLS, whereas the glycemic control status in the diabetes group could only be 
differentiated by MC-ApEnLS. The MC-ApEn of the three age-matched groups at scale factors 1–10 
are shown in the Figure S1, and the trend was similar to those from the original cohort in Figure 2. 
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4. Discussion 

Our principal findings are that bilateral fingertips PPG pulse amplitudes could be used for 
MC-ApEn analysis to evaluate arteriosclerosis and type 2 diabetes status in middle-to-old-aged 
individuals. In addition, the large-scale MC-ApEnLS index had a moderate inverse association with 
hyperglycemia and ECG-PWV—a marker of arteriosclerosis—in type 2 diabetes. Moreover, the 
large-scale MC-ApEnLS index was superior to the large-scale MSELS of unilateral left finger PPG pulse 
signals to differentiate the glycemic status in those with type 2 diabetes. 

The correlation between blood pressure and digital volume pulse was first studied in 1955 [21]. 
The parameters of waveform contour analysis such as reflection index, crest time, and stiffness index 
were adopted in the arterial stiffness study [22]. Moreover, digital volume pulse has been further 
found to reflect cardiovascular and metabolic risks [17]. The feasibility and sensitivity of using 
digital volume pulse in the assessment of cardio-metabolic risks according to its complexity between 
both sides of the body, however, have not been reported. On the other hand, it has been previously 
shown to be related to peripheral pressure pulse by a transfer function independent of the effects of 
hypertension or anti-hypertensive agents [23]. Therefore, the present study not only tested the 
hypothesis that computation on the bilateral fingertips PPG pulse amplitudes complexity could 
stratify the status of glycemic control in type 2 diabetes, but also examined the sensitivity of 
MC-ApEn to detect demographic, hemodynamic, and biochemical parameters contributing to 
arteriosclerosis in middle-to-old-aged individuals [12,21]. 

The concept of MC-ApEn between two similar signals of bilateral fingertips PPG pulse 
amplitudes was like the beats-by-beats asynchrony of IABPD and peripheral arterial resistance of 
bilateral upper extremities. Theoretically, the MC-ApEn index at scale factor 1 in each group should 
be close to the average of IABPD measured for 1500 consecutive times and the mean ECG-PWV 
from bilateral fingertips. Our study revealed that the MC-ApEn index at scale factor 1 was 
correlated with ECG-PWV in each group (the unaffected vs. the poorly-controlled diabetes, p = 
0.055). When compared with the means of simultaneous blood pressure measurement using 
sphygmomanometer cuffs on upper arms, PPG has the advantages of being more comfortable, 
economical, and also allows continuous measurement without the need for repeated pressure cuff 
inflations. 

Previously, we used MSE analysis of PPG pulse amplitudes of left index fingertip in 
middle-to-old-aged individuals and revealed that the large-scale MSE index (scale factors: 4–6) was 
higher in the healthy controls than that in patients with type 2 diabetes. In contrast, the small-scale 
MSE index (scale factors: 1–3) between the healthy individuals and diabetic patients did not differ. In 
addition, the MC-ApEn analysis between left fingertip PPG pulse amplitudes with other different 
physiological signals of ECG R-R intervals demonstrated similar results. Costa et al. and 
Trunkvalterova et al. have demonstrated that the small-scale MSE of heart rate 
variability—reflecting autonomic function—was decreased in diabetes, and similarly, the large-scale 
MSE of pulse transit times—a surrogate of peripheral arteriosclerosis—was also lower in diabetes 
[24,25]. The MSE index of unilateral finger PPG pulse amplitudes may reflect peripheral vascular 
health of the tested upper extremity side. Obviously in the present study, the MC-ApEn index was 
more sensitive than the MSE index in detecting the severity of systemic arterial stiffness if either side 
of the upper extremities artery or thoracic aorta was affected by diabetic complications which were 
related to the glycemic control status.  

The strengths of our study include the availability of large numbers of serial PPG pulse 
amplitude signals of bilateral fingertips and the availability of a wide range of vascular risk 
parameters. In addition, the issue that the MC-ApEn may be influenced by the age difference 
between groups in the original cohort could be much convinced because the sensitivity test using 
three age-matched groups from the subcohort shows consistent results. In contrast, there were some 
limitations in using PPG sensors for detecting PPG signals. Firstly, readings from infrared sensors 
may be affected by skin pigmentation, tissue characteristics, and blood flow in the measured area 
[26]. Second, the signals may also be disturbed by involuntary vibrations of the subjects being 
examined. Finally, the measurement may also be affected by a decreased environmental 
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temperature that tends to result in peripheral vessel constriction. The influence of this condition can 
be minimized by maintaining a room temperature at 26 ± 1 °C at the time of measurement. 

In conclusion, our findings suggest that the large-scale MC-ApEn index of bilateral fingertips 
PPG pulse amplitudes was better than the MSE index of unilateral fingertip PPG pulse amplitudes 
for the evaluation of glycemic control status and detecting early arteriosclerosis in 
middle-to-old-aged individuals with or without diabetes.  

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/4/145/s1, Table 
S1: Baseline Characteristics of the Three Age-Matched Groups (Unaffected, Diabetes, HbA1c <8% and Diabetes, 
HbA1c ≥8%) from the Subcohort, Figure S1: The MC-ApEn of bilateral index fingers with the standard error 
(vertical bar) of the age-matched unaffected (solid blue line), the well-controlled diabetes (solid red line), and 
the poorly-controlled diabetes (solid green line) at each scale factor, respectively. 
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