
 

Entropy 2017, 19, 139; doi:10.3390/e19040139 www.mdpi.com/journal/entropy 

Article 

Tensor Singular Spectrum Decomposition Algorithm 
Based on Permutation Entropy for Rolling Bearing 
Fault Diagnosis 
Cancan Yi 1,2, Yong Lv 1,2,*, Mao Ge 1,2, Han Xiao 1,2 and Xun Yu 1,2,3 

1 Key Laboratory of Metallurgical Equipment and Control Technology (Wuhan University of Science and 
Technology), Ministry of Education, Wuhan 430081, China; meyicancan@wust.edu.cn (C.Y.); 
ge1656372625@gmail.com (M.G.); xiaohan@wust.edu.cn (H.X.); xyu13@nyit.edu (X.Y.) 

2 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering (Wuhan University of 
Science and Technology), Wuhan 430081, China 

3 Department of Mechanical Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA 
* Correspondence: lvyong@wust.edu.cn; Tel.: +86-27-6886-2857; Fax: +86-27-6886-2212 

Academic Editors: Jose C. Principe and Badong Chen 
Received: 13 March 2017; Accepted: 21 March 2017; Published: 23 March 2017 

Abstract: Mechanical vibration signal mapped into a high-dimensional space tends to exhibit a 
special distribution and movement characteristics, which can further reveal the dynamic behavior 
of the original time series. As the most natural representation of high-dimensional data, tensor can 
preserve the intrinsic structure of the data to the maximum extent. Thus, the tensor decomposition 
algorithm has broad application prospects in signal processing. High-dimensional tensor can be 
obtained from a one-dimensional vibration signal by using phase space reconstruction, which is 
called the tensorization of data. As a new signal decomposition method, tensor-based singular 
spectrum algorithm (TSSA) fully combines the advantages of phase space reconstruction and 
tensor decomposition. However, TSSA has some problems, mainly in estimating the rank of tensor 
and selecting the optimal reconstruction tensor. In this paper, the improved TSSA algorithm based 
on convex-optimization and permutation entropy (PE) is proposed. Firstly, aiming to accurately 
estimate the rank of tensor decomposition, this paper presents a convex optimization algorithm 
using non-convex penalty functions based on singular value decomposition (SVD). Then, PE is 
employed to evaluate the desired tensor and improve the denoising performance. In order to verify 
the effectiveness of proposed algorithm, both numerical simulation and experimental bearing 
failure data are analyzed. 

Keywords: tensor-based singular spectrum analysis; convex optimization; permutation entropy; 
fault diagnosis 

 

1. Introduction 

Rolling bearing is one of the most widely used and easily damaged rotating machine elements, 
the operation status of which is directly related to the operation of machinery and production 
efficiency. Thus, it has a very high practical value to achieve accurate diagnosis and recognition of 
rolling bearing fault. To maintain smooth operation, the diagnostic object should be changed from 
the traditional super-fault to early weak fault. The diagnostic methods should also be changed from 
linear analysis methods to non-traditional analysis methods. Many scholars have proposed different 
methods to accurately identify and extract the fault characteristics in frequency domain. For 
instance, Short-time Fourier transform (STFT) [1] is proposed to make up the shortcomings of 
Fourier transform so that it can be used to analyze non-stationary signal, but the time window width 
of STFT is fixed and cannot be adapted to the changes in the signal. Other non-stationary signal 
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processing techniques also have a variety of shortcomings. For instance, Empirical Mode 
Decomposition (EMD) is utilized in the analysis of non-stationary and nonlinear signal [2,3], which 
easily causes the phenomenon of modal aliasing [4] and edge effect [5]. The selection of 
decomposition level and wavelet basis function has a great impact on analytical results for Wavelet 
Transform (WT) [6–8], which lacks in adaption to signal processing. Hilbert–Huang transform 
(HHT) operator [9] owns windowing effects and the demodulated results will be non-transient, so 
maybe not accurate. Wigner–Ville distribution [10] for multi-component signal will produce 
crosstalk and spurious frequency components. In addition, there are some time–frequency analysis 
methods applied to speed signals in rotating systems [11–17]. In conclusion, these methods have 
some limitations in non-stationary, non-periodic, non-linear signal processing. 

High-dimensional signal contains a lot of information, which is hard to be identified and may 
not be displayed in one-dimensional space. Therefore, aiming to decompose original signal to 
extract useful components, high-dimensional signal processing technology may be a breakthrough 
with great practical engineering significance. Traditional data representational models, such as 
vectors and matrices, are one-dimensional time series. It is clear that there is some structure in the 
observed signal allowing one to model it much more compactly. Commonly, the observed signals 
can be compressible and be expressed as parsimonious models. A higher-order model such as 
tensor is served as one way to achieve it, which is the most natural representation of 
high-dimensional data and maintains the intrinsic structural properties of the data. Theoretically, 
tensors can be seen as higher-order generalizations of vectors and matrices. Tensorization of the 
observed signal using segmentation and decomposition of the generated tensor are two main 
aspects of our approach. Tensor decomposition can dig out the potential high-dimensional data 
structure in the form of low-dimensional subspace, thus be able to reflect the essential 
characteristics. Generally, the concept of tensor was first proposed by Hitchcock [18]. In 1970, to the 
psychometrics community, the tensor is developed to the form of CANDECOMP (canonical 
decomposition) by Carroll [19] and PARAFAC (parallel factors) by Harshman [20]. Then, the research 
of tensor has gradually been extended to other areas such as signal processing, computer vision, 
numerical analysis and data mining. CANDECOMP/PARAFAC tensor decomposition, namely CP 
decomposition model, is a commonly used method. The CP decomposition factorizes a tensor into a 
sum of R-component rank-one tensors [21]. By the proposed model, three factor matrixes representing 
the combination of the vectors can be obtained from the rank-one components. Recently, tensor-based 
singular spectrum algorithm (TSSA) was proposed by Saeid [22] and has been applied to the field of 
EEG signal processing, which provides an effective way for solving the above problem. The main idea 
is the one-dimensional times series can be segmented as a matrix using a non-overlapping window. 
Then each row of matrix can be expressed as a reconstructed attractor matrix through phase space 
reconstruction [23]. The reconstructed attractor matrix forms the corresponding slice of the tensor, thus 
we have a 3D tensor to be decomposed. After that, the above-mentioned CP tensor decomposition 
method is used here. The key step is performed by the alternating least squares method (ALS) [24] to 
obtain the three factor matrices. TSSA method combines the advantages of phase space reconstruction, 
singular spectrum analysis [25] as well as tensor decomposition. However, the rank of tensor is 
difficult to estimate and the optimal selection among the decomposed tensor for reconstruction has a 
great influence on the final result. 

In this paper, an improved TSSA decomposition method is proposed by applying the convex 
optimization for the rank estimation and permutation entropy (PE) for desired tensor selection. The 
rank of tensor in TSSA is usually identified by the number of non-zero singular value, while the 
singular value decomposition (SVD) algorithm is easily affected by the noise interference [26,27]. 
Consequently, a novel SVD algorithm using convex optimization framework is introduced in this 
paper. A parameterized non-convex penalty function is put forward to the singular value 
decomposition and the number of non-zero singular values is used to determine the rank of tensor 
[28–31]. Bandt [32] proposed the concept of average entropy parameter in the application of 
measuring the complexity of one-dimensional time series, namely PE. It is an algorithm study about 
describing irregular and nonlinear systems [33], which cannot or hard to be quantitatively described, 
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in a relatively simple way. The PE has the advantages of simple calculation, strong anti-noise ability, 
and high sensitivity to signal change. It can also be applied to the detection of the weak signal [34], 
and the dynamic mutation of complex system. When an abnormal failure or different kinds of faults 
occur in gear and bearing parts during operation process, the influence of the nonlinear factors and 
signal complexity are different. Hence, the vibration signals obtained from the mechanical system 
will also change, resulting in different values of PE. Thus, PE is employed as novel approach to select 
the desired tensor for reconstruction in this paper. In order to verify the validity of the proposed 
method, bearing fault vibration signal and fault simulation test bed are used for analysis. The 
proposed method is also compared with the traditional singular spectrum analysis (SSA) and EMD. 

The structure of this paper is arranged as follows: In Section 2, tensor singular spectrum 
decomposition algorithm based on PE is briefly described. Then, the performance of abnormal signal 
detection using PE is focused on. The analysis results of numerical simulation signal and bearing 
fault signal are, respectively, described in the Sections 3 and 4. Section 5 introduces the conclusions. 

2. Theory Description 

2.1. Tensor Singular Spectrum Analysis 

The proposed TSSA method in this paper mainly contains two stages. The first stage includes 
an embedding operation and the second stage is to decompose a 3D tensor. In the stage of 
embedding progress, a one-dimensional time series ( ),  1,2,...,x i i = n  with length n is mapped into a 
3D tensor X . 

There are two steps in the embedding stage. Firstly, ( )x i  is segmented by a non-overlapping 
window with the size L . A [ / ]n L L×  matrix T  is obtained from ( )x i  (where =I n L ):  
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Then, the tensor X  is obtained by matrix T  as demonstrated in Figure 1. Each slice of the 
tensor can be regarded as a reconstructed attractor matrix by a windowed version of matrix T . The 
segmentation is executed in one direction during this procedure. 

( ,1) ( , 2) ( , )

( , 1) ( , 2) ( , )

( , ( 1) 1) ( , ( 1) 2) ( , ( 1) )

i i i J
i i i J

i K i K i K J

τ τ τ

τ τ τ

 
 + + + =
 
 − × + − × + − × + 




   


i

T T T

T T T
X

T T T

::

1X ::
2X :: iX :: IX ::

1X ::

iX ::

IX ::

X

 
Figure 1. The construction process of the slices of tensor X . 
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The slice ::iX  of tensor X  in Figure 1 is formed from the i-th row of matrix T  using phase 
space reconstruction, where J  is the length of reconstructed window, K  is reconstructed 
embedding dimension, τ  is the delay time. Consequently, the relationship of ( 1)L K Jτ= − × +  can 
be obtained. Our way of converting a matrix to tensor can be described as follows: 

 ( ,( ( 1) ))   1,2, , ; 1,2, , ; 1,2, ,ijk i j k i I j J k Kτ= + − × = = =   X T  (2) 

Thus, we can obtain a 3D tensor of size I J K× × . In the second stage, the CP tensor 
decomposition method for a 3D tensor is performed, which factorizes a tensor into a sum of component 
rank-one tensors. Naturally, the generalized bilinear principal component analysis is similar with 
the tensor decomposition [35]. Generally, the detailed CP model can be expressed as [36,37]: 

1

R

r r r
r =

= +  X a b c e  (3) 

where R  is corresponding to the rank of tensor X . 1IR×∈ra , 1JR×∈rb  and 1KR ×∈rc  are the 

vector elements of factor matrix I R×∈RA , J R×∈RB  and K R×∈ RC . The tensor of I J K× ×∈ Re  is the 

residual term. Hence, the CP model can be approximately explained by factor matrix ,  ,    A B C : 

1
,  ,   = 

R

r r r
r =

≈ +    X A B C a b c e  (4) 

The above mentioned decomposition model is shown in Figure 2. 

X

 
Figure 2. The illustration of CP model for a 3D tensor. 

Since TSSA algorithm uses the iterative least squares method to seek factor matrix; we can 
define an error function as follows: 

2 2

1 1 1 1

1 1( , , ) ( [[ , , ]]) = ( )
2 2

JI K R

ijk ir jr kr
i j k r

f a b c
= = = =

= − − A B C X A B C X  (5) 

First, the random factor matrix is set as an initial matrix to A , B , C . Then, B  and C  
are fixed to solve for A . Similarly, A  and C  are fixed to solve for B , and next A  and B  are 
fixed to solve for C  in an alternating algorithm until reaching the convergence condition. 

2.2. The Rank Estimation of Tensor Based on Convex Optimization 

Similar to the matrix rank, the problem of rank determination has an important significance for 
tensor decomposition. This paper firstly proposed an algorithm based on SVD using convex 
optimization to estimate the rank of tensor. SVD is a classic subspace decomposition algorithm that 
constructs trajectory matrix based on the observed time series. The singular value is obtained by the 
trajectory matrix, which represents the different dynamic characteristics about each component in 
the original time series. For the one-dimensional time series ( )x i , based on the theory of phase space 
reconstruction by selecting the appropriate embedding dimension m  and the delay time τ , the 
neighborhood matrix or trajectory matrix can be expressed as: 
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(1) (1 ) (1 ( 1) )
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where 1,2,...,j K= , ( 1)K n m τ= − − . Generally, the trajectory matrix Y  consists of the useful 

signal and noise component. Then, SVD is applied to Y  by the form of T=UΣVY , where 
0

0 0
S 

Σ =  
 

 is a diagonal matrix, 1 2diag( , ,..., )rσ σ σ=S , U  and V  represent the left and right 

feature vector. The singular value of 1 2, ,..., rσ σ σ  can be used to identify the useful signals and 
noise, respectively. If the singular value is arranged in accordance with the descending order, the 
larger singular values mainly reflect the useful signal and the smaller singular values mainly reflects 
the noise. The rank is estimated by the eigenvalues of the neighborhood matrix calculated by SVD in 
the conventional TSSA method. It is common fact that the result provided by SVD is susceptible to 
noise especially under the strong noise environment. Without loss of generality, it can be considered 
the problem of estimating a low-rank matrix X  from its noisy observation Y . 

= +Y X G , m nR ×∈, ,X Y G  (7) 

where Y  represents a noisy neighborhood matrix, X  is the expected low rank matrix, and G  is 
the zero-mean additive white Gaussian noise matrix. Note that for unitary matrices U  and V , 

( ) ( )Φ = ΦX UXV . Using the unitary invariant property of the Frobenius norm, we can define a 
typical low-rank matrix approximation (LRMA) issue as follows: 

T T
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 (8) 

where 
1

( ) ( ( ); )
k

i
i

aφ σ
=

Φ =X X , ( )iσ X  is the singular value of matrix X , min( , )k m n= , 0 1a λ≤ < , 

φ  is a sparsity promotion function. When it meets ( )x xφ = , LRMA issue becomes a typical nuclear 

norm minimization problem (NNM). Note that 21( ; , ) arg min ( )
2 F

aλ λ Θ = − + Φ 
 X

Σ Σ X X . 

Therefore, the Equation (8) can be converted to: 

T( ; , )aλ
∧

= ⋅Θ ⋅X U Σ V  (9) 

It is proved that parametric non-convex penalty function can be more accurate in estimating 
non-zero singular value than the nuclear norm under strong noise background [29]. Therefore, we 
use the non-convex penalty function defined by Equation (10) to achieve the optimized estimation of 
singular value. 

( ){ }{ }( ; , ) min ,max (1 ),0 sign( )a aλ λ λΘ = − −Σ Σ Σ Σ  (10) 

In this paper, the number of non-zero singular values obtained by the convex optimization 
framework is equivalent to the rank R . 
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2.3. The Desired Tensor Selection Based on PE 

After the above tensor decomposition and selecting the proper rank of the desired source 
signal, it is necessary to return it to single channel data, which is likely to be our desired signal 
components. The desired single channel data from the tensor is obtained by the same hankelisation 
procedure. Firstly, it is done by hankelizing matrices across the first slab or block hankelizing the 
tensor. Then, the obtained tensor is hankelized again. Finally, the one-dimensional signal is 
reconstructed by one-to-one correspondence. It is worth pointing out that the desired components 
are not a simple superposition of these reconstruction signal. Thus, an effective way to accurately 
evaluate the useful components should be taken into consideration. Permutation Entropy (PE) is one 
of the most effective ways to measure the randomness and dynamic mutation of time sequence. 
Similar to the above operations defined in Section 2.2, the trajectory matrix corresponding to the 
reconstruction signal is obtained by phase space reconstruction. The matrix in each row is rearranged 
in ascending order and 1 2, ,..., mj j j  indicates the index of each element in the column of reconstruction 
components. A set of symbols sequence can be obtained from each row in the matrix. 

{ }1 2( ) , ,..., mS l j j j=  (11) 

where l = 1, 2,…, k, and k ≤ m. The probability of each symbol sequence was calculated and named as 
P1, P2,…, Pk. The value of PE corresponding to different symbol sequences in reconstruction signal is 
defined as the form of information entropy as follows: 

1
( ) ln( )

k

p j j
j

H d P P
=

=  (12) 

It is also noted that the value of ( )pH d  represents the degree of randomness of time series, 

namely, the larger value of ( )pH d  declares the more randomness of time series, and vice versa [32]. 

Commonly, the permutation entropy of harmonic signal and the modulation signal is small, while 
the permutation entropy for random noise is large. Hence, PE can be used to select the desired tensor 
for signal reconstruction. Ultimately, the flowchart of the proposed method is shown in Figure 3. 

 
Figure 3. A flow chart of the method presents in this paper. 
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3. Test with Numerical Simulation Signal 

3.1. The Performance of Abnormal Signal Detection Using PE 

In the process of permutation entropy calculation, there are two parameter values that need to 
be determined: the embedding dimension m  and delay time τ . Under the condition of the above 
parameters, the following representative signal is considered: 

1 1 2[1 0.7 sin(2 )]sin(2 )x f t f tπ π= +  (13) 

2 30.8 sin(2 )x f tπ=  (14) 

where 1 5f = , 2 10f = , 3 15f = . 3x  is the standard Gaussian white noise. Theoretically, the 
embedding dimension and delay time are chosen as 6m =  and 1τ =  according to the False Nearest 
Neighbor algorithm (FNN) [38]. According to the definition of PE, the normalized PE values of three 
simulated signals are calculated as 0.2909, 0.4451 and 0.9644, respectively. The result demonstrated 
that the PE value corresponding to noisy signal is obviously lager than normal modulating signal and 
harmonic signal. It is proved that PE is sensitive to noisy signal and can be used to detect the abnormal 
signal. For the proposed method, the value of PE corresponding to the undesired tensor by 
hankelisation procedure is greater than the threshold value, which is defined as 0.6. 

3.2. The Feature Extraction Result Provided by Proposed Method 

Rolling bearings are mainly used to support the rotating part in the mechanical equipment and 
its vibration signal always contains a lot of information such as fault characteristic and noise 
component. The key step in fault diagnosis is to extract vibration signal feature in frequency domain. 
There are many kinds of the simulation signal model about bearing fault and the most typical one is 
proposed by Randall [39,40]. Without loss of generality, the numerical simulation signal is expressed 
as follows: 

( )
0

0
( ) [ cos(2 ) ] cos[2 ( ) ] ( )i

M
B t iT

m A A n i w
i

x t A f t C e f t iT n tτπ φ π τ φ− − −

=

= ⋅ + + ⋅ ⋅ − − + +  (15) 

where 0A  is the amplitude of resonance; mf  is the modulation frequency; Aφ , wφ , and AC  are 
selected as arbitrary constants; B  is the attenuation coefficient; T is defined as the average time 

between two impacts with =1 pT f ; pf  is fault character frequency; iτ  is regarded as the time lag 

from its mean period due to the presence of slip; nf  is the resonance frequencies of the bearing 
system; and ( )n t  is the additive white Gaussian noise. The three common types of faults on outer 
race, inner race and rolling elements can be modeled as 0mf = , m rf f= , mf f= re , respectively. It 
should also be noted that rf  and fre  are denoted as rotational frequency and retainer frequency. 
The fault character frequencies of three common types as fi, fo, fro are described in Table 1. Firstly, the 
outer race fault feature extraction under noise environment is researched and the parameter selection is 
listed as Table 2. Moreover, ( )n t  is Gaussian white noise with variance 0.5 in the section of simulation 
signal analysis. 

Table 1. The fault character frequency of three common types. 

Inner Race fi (Hz) Outer Race fo (Hz) Rolling Element fro (Hz) 
156 103.9 59.7 

Table 2. The parameter selection of outer race fault simulation signal. 

0A  rf  (Hz) mf  (Hz) 
iτ  nf  (Hz) AC  Aφ  wφ  B  

0.0003 17 0 0.01 2000 1 0 0 800 
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The sampling frequency and the sampling points are set as 10,000 Hz and 2000, respectively. 
Original signal without noise and noisy synthesis simulation signal in time-domain are shown in 
Figure 4a,b, respectively. The frequency spectrum about ( )x t  is conducted in Figure 5. 

(a) (b)

Figure 4. The original signal and the noisy signal in time domain: (a) the original signal without 
noise; and (b) the noisy signal. 

 
Figure 5. The simulation signal with noise in frequency domain. 

In all the simulations and experiments, the value of L  and J  is set to 200 and 50, respectively. 
Commonly, the delay time τ  is selected as 1 in order to keep the computational complexity low. 
Then, the parameter of I  and K  can be obtained by the relation of I n L= , ( 1)L K Jτ= − × + . In 
addition, the rank of tensor is determined by the convex optimization framework introduced in 
Section 2.2, and the desired tensor selection is performed by the index of PE in Section 3.1. According 
to Figure 4b, it is acceptable that the outer fault characteristics of the original simulation signal in the 
time domain cannot be clearly indicated in the strong background noise. For the frequency analysis 
in Figure 5, the outer race fault characteristics frequency is still concealed by noisy components. 

In the simulation signal analysis section, in order to accurately evaluate the proposed method in 
signal reconstruction under noisy conditions, the proposed method, the conventional TSSA method 
and wavelet transform (WT) are used to the comparative analysis. Figure 6 is the result provided by 
conventional TSSA model and only the third harmonic ( 3 of ) can be inspected. It is important to note 
that the “wden” function is chosen as the automatic 1-D denoising function and the wavelet basis 
function is set as “sym3” for wavelet denoising in the rest of this paper. Figure 7 is a diagram of 
wavelet denoising in time domain and frequency domain. It is obvious that both the conventional 
TSSA and WT cannot completely identify the outer race fault characteristic frequency. Figure 8 is the 
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result provided by the proposed method based on PE in frequency domain, which indicates the 
outer race feature frequency of  and its frequency multiplication such as 2 of , 3 of , 4 of  can be 
identified. Then, the proposed method is applied to characteristic frequency extraction for inner race 
fault and rolling elements fault. The result provided by the proposed method is drawn in Figure 9 
and the modulation phenomenon is in keeping with the inner ring and rolling elements fault 
characteristics. Thus, we can make a conclusion that the proposed method has better performance in 
denoising and characteristic frequency extraction. 

 
Figure 6. The result provided by conventional TSSA model in frequency-domain. 

 
(a) (b)

Figure 7. The result provided by wavelet transform in time and frequency domain: (a) wavelet 
denoising in time domain; and (b) wavelet denoising in frequency domain. 

 
Figure 8. The analysis result provided by the proposed method for outer race fault. 
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(a) (b) 

Figure 9. The analysis result provided by the proposed method for inner race and rolling elements: 
(a) inner race fault; and (b) rolling elements fault. 

It can be seen from the above analysis result provided by different methods that conventional 
TSSA and WT cannot completely separate the noisy component from the original signal. However, 
the proposed tensor singular spectrum algorithm based on PE is more effective in removing noise 
component, better in reflecting the fault characteristics of the original signal. Through multiple 
simulations, the improved TSSA method has higher convergence and better reconstruction precision 
than TSSA. 

For a more detailed description of the degree of noise reduction, the paper selects 
signal-to-noise ratio (SNR) as an index for evaluation, which is critical for assessing the degrees of 
noise contamination. The SNR of the noisy signal about outer race fault simulation was varied 
between 2.17 dB and 0.32 dB, while the corresponding reconstruction SNR of the simulation signal 
was then calculated and the result is plotted in the following Figure 10. The smaller values always 
indicate the poor reconstruction accuracy. As can be seen in Figure 10, the results also indicate that 
the proposed method performs well in denoising and signal reconstruction. 

 
Figure 10. Reconstruction error (in SNR) using the proposed method, conventional TSSA and 
wavelet denoising algorithms. 

4. Applications to Rolling Bearing Fault Feature Extraction 

In industrial practice, the measured vibration signal is more complicated than the simulated 
signal. In order to verify the effectiveness of this approach in the real environment, the experimental 
device analog failure signal was measured to be analyzed. Simulation apparatus is shown in Figure 
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11, where bench consists of a 550 W (220 V/50 Hz) AC motor driven drive shaft through the coupling 
operation. The electric spark machining method was used to carry out pitting treatment on the outer 
ring of replaceable bearing to simulate the outer faults and the depth of pitting corrosion pit is close 
to 1.0 mm. The acceleration signal of the experiment was collected in the vertical direction of the 
bearing on the right side of the experimental platform using a CSI2130 data analyzer (Emerson, Sao 
Luis, Brazil) and vibration acceleration sensor PCB-352C33 (PCB, New York, NY, USA). The bearing 
type is deep groove ball bearing with model number of 6207. The medium diameter of removable 
bearing is D = 53.5 mm, the number of rolling elements is Z = 9, and the roller diameter is d = 11.1 
mm. The detailed parameters of the experiment are shown in Table 3. 

 

(a) (b)

Figure 11. Fault simulation experimental table of roll bearing: (a) the physical map of test rig;  
and (b) the structure diagram of test rig: 1—electric motor, 2—coupler, 3—replaceable rolling 
bearing with 6207, 4—belt pulley, 5—gearbox, 6—transmission shaft, 7—fault gear sets. 

Table 3. The experimental parameters and fault frequency. 

Rotating 
Speed r/min 

Rotating 
Frequency/Hz 

Sampling 
Frequency/Hz 

Sampling 
Time/s 

Outer Fault 
Frequency/Hz 

1450 24.17 16384 1 87.01 

It is worth pointing out that the frequency of outer ring fault signal of rolling bearing is 
87.01of =  Hz by calculating, and the rotation frequency is 24.17rf =  Hz. The original signal in 

time domain and frequency domain is shown in Figure 12a,b, respectively. 

(a) (b)

Figure 12. The original vibration signal in time domain and frequency domain: (a) the measured 
signal in time-domain; and (b) the measured signal in frequency-domain. 

3

5
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47 6

Oil 
pump

Tensioner
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From time-domain waveform in Figure 12a,b, it cannot be determined where the failure 
occurred. Meanwhile, in order to illustrate the effectiveness the proposed method, the conventional 
noise reduction method such as wavelet denoising algorithm is applied and the results are shown in 
Figure 13. 

 
Figure 13. The result provided by wavelet denoising. 

After the wavelet denoising, only the three multiple of outer fault feature frequency 3 of  can 
be inspected, while the other useful components are still difficult to be accurately identified. 

Based on the False Nearest Neighbor algorithm (FNN) [38], the embedding dimension and 
delay time is determined as 12m =  and 1τ =  in the experimental case studies. Finally, the 
proposed method based on PE is utilized to signal denoising and feature extraction, and the result is 
shown in Figure 14. 

 
Figure 14. The result provided by the proposed method. 

Through the tensor decomposition using PE, the unwanted signal components have been 
deducted and the feature information can be enhanced. It is obvious that the outer ring fault 
frequency of  and its harmonics ( 2 of , 3 of ) all can be identified in Figure 14. Hence, we can make a 
conclusion that the outer ring of the rolling bearing has occurred failure, which is consistent with the 
actual situation. 
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5. Conclusions 

This paper improves the tensor singular spectrum analysis (TSSA) algorithm to address its 
problems of inestimable tensor rank and lacking in criterion to achieve the desired tensor selection. 
The main work of this paper was reflected in the following aspects: (1) the accurate estimation of the 
rank of tensor was solved by SVD using convex optimization and non-convex penalty function; (2) 
the desired tensor selection using PE was conducted to improve the denoising performance of the 
proposed method; and (3) in the processing of measured rolling bearing fault signal, the proposed 
improved TSSA method based on PE outperformed other methods in extracting weak fault 
characteristics, which demonstrated that the proposed method was feasible in the future real 
applications. 
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