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Abstract: The stochastic model of the Feynman–Smoluchowski ratchet is proposed and solved
using generalization of the Fick–Jacobs theory. The theory fully captures nonlinear response of the
ratchet to the difference of heat bath temperatures. The ratchet performance is discussed using
the mean velocity, the average heat flow between the two heat reservoirs and the figure of merit,
which quantifies energetic cost for attaining a certain mean velocity. Limits of the theory are tested
comparing its predictions to numerics. We also demonstrate connection between the ratchet effect
emerging in the model and rotations of the probability current and explain direction of the mean
velocity using simple discrete analogue of the model.
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1. Introduction

Diffusion in narrow channels of varying cross-sections, e.g., through micropores of zeolites or
channels in cell membranes, is essentially a three-dimensional (3D) problem with rather complex
boundary conditions. An elegant method of how to reduce dimensionality of the underlying diffusion
equation was proposed by Jacobs [1]. The main idea is to separate longitudinal and transversal
dynamics in the narrow channel. After the separation, the narrow segments of the channel act
effectively as entropic free-energy barriers hindering the 1D longitudinal diffusional dynamics.

The elegant Fick–Jacobs theory regained significant attention after the influential works [2,3] were
published. In these, and in the subsequent works, the originally phenomenological approach was
generalized and put on solid mathematical grounds [4–36]. In particular, various many-dimensional
Brownian ratchets have been studied with the aid of the Fick–Jacobs approximation including
flashing and rocking ratchets [37–39], ratchets driven by a temperature gradient [39], and hydrodynamic
ratchets [22,40]. Possible application to separation of particles according to their size can be found in [41–44].

In the present paper, we exploit a generalization of the Fick–Jacobs theory proposed in our recent
work [45] to describe dynamics, energetics and performance of a stochastic Feynman–Smoluchowski
ratchet [46,47]. The ratchet, used by Feynman as a pedagogical gedankenexperiment, provides insight
into possible working principles of molecular machines [48,49] and serves as one of the basic models
of non-equilibrium stochastic energetics [50,51]. As such, its several analogues have been intensively
studied in recent years [48,50–65], yet analytically solvable qualitative models are rather rare [64,66–69].
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The advantage of the present approach over previous works is that it provides both analytical
quantitative description (not restricted to linear-response regime) and a clear qualitative insight into
fundamental working principles of the 2D thermal ratchet. The proposed model shares all essential
features of the famous ratchet from Feynman’s lectures (cf. Figure 2.1. in [48] and Figure 1 below):
randomly rotating asymmetric wheels and a pawl which should rectify the rotatory Brownian motion
of the wheels; the both parts are coupled to reservoirs at different temperatures. Besides deriving
analytical formulas, we also emphasize connection between the ratchet effect emerging in the model
and rotations of the probability current.

The article is organized as follows: the model is defined in Section 2 and Section 3 is comprised
of the solution of the Fokker–Planck equation. In Section 4, we discuss the mean velocity of rotating
wheels, the mean heat flow between the reservoirs and the figure of merit of the ratchet. In Section 5,
we present an explanation of the ratchet effect based on the circulation of probability current. Direction
of the circulation is justified using rough discrete analogue of the model.
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Figure 1. Upper left: schematic of the mechanical ratchet. Upper right: equipotentials of the parabolic
potential (1) representing interaction between wheels and the pawl. The spring stiffness k(x) captures
asymmetry of ratchet teeth, and it is given in Equation (2); Lower panels: few trajectories obtained
by the numerical integration of the Langevin Equation (3) using the Euler–Maruyama method [70].
We have used Tx = 10, Ty = 1 in the left panel and Tx = 1, Ty = 10 in the right panel (ε2 = 0.01).

2. Model

Our thought ratchet-and-pawl mechanism, which is nothing but an analogue of a famous
Feynman–Smoluchowski ratchet, is illustrated in Figure 1. We assume that ratchet wheels are
synchronized (represented by a “stick” connecting the wheels) and immersed in a fluid at the
temperature Tx. The wheels rotate randomly due to collisions with molecules of the surrounding fluid.
Furthermore, a small pawl (the T-shaped part) is placed in between the wheels. In our model, it is
not connected to a spring and it jiggles randomly between the wheels in the horizontal direction only.
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The random motion is caused by molecules of a fluid from the second reservoir (small rectangle) at the
temperature Ty.

We model stochastic dynamics of the mechanical device by an overdamped diffusion (of course,
one can use a more fundamental and less tractable underdamped description, which, however,
is expected to yield qualitatively similar results in the long-time limit [50,71,72]) of two coupled
degrees of freedom denoted as x(t) and y(t). The first, x(t), is the angle of rotation of the wheels
(in units of 2π, thus x ∈ [0, 1) within one period). The second, y(t), represents position of the pawl
between the teeth. The motion of the pawl is restricted to a narrow region between ratchet teeth.
We describe the mutual repulsive interaction between teeth and pawl by the potential

U(x, y) =
k(x)
2ε2 y2, k(x) = k(x + 1). (1)

For y = 0, the pawl is exactly in the middle of the wheels, the interaction potential is zero and
wheels can rotate freely. When y > 0, the pawl is closer to the right wheel and interacts with it
repulsively (similarly for y < 0). The width of the region where the pawl can diffuse is controlled by
the 1-periodic “spring constant” k(x), the fraction ε/

√
k(x) is associated with the distance between

the teeth for a given x.
The actual shape of the ratchet teeth is reflected in the functional form of k(x). In principle, three

qualitatively different cases may occur. First, when k(x) is an asymmetric function of x, such as the
frequently used function [48]

k(x) = 2− sin(2πx)
2

− sin(4πx)
12

. (2)

This case corresponds to asymmetric teeth as those illustrated in Figure 1. We will show below that,
for Tx 6= Ty, both the mean heat flow Q̇ through the system and the mean velocity v are nonzero in
this case. Second, k(x) can be a symmetric function, like k(x) = 2− sin(2πx)/2, which corresponds to
symmetric teeth. In this second case, the device is not able to work as a heat engine: the mean velocity
v vanishes and only heat flow can be nonzero. The third case occurs if k(x) is a constant. The latter
situation corresponds to the wheels with no teeth. There, the pawl decouples from the wheels and each
degree of freedom equilibrates in its own heat bath. In the following, we stick to the most interesting
first case, where the device can act as a ratchet. For a further insight into a particular choice of the
potential, we refer to the last paragraph of Section 6.

Summing up the above description, we arrive at the Langevin equations for coordinates x(t), y(t),

dx
dt

= − k′(x)
2ε2 y2 +

√
2Tx ξx(t),

dy
dt

= − k(x)
ε2 y +

√
2Ty ξy(t), (3)

where ξi(t) stands for the delta-correlated Gaussian white noise with
〈
ξi(t)ξ j(t′)

〉
= δijδ(t − t′),

and 〈ξi(t)〉 = 0, i, j = x, y. Throughout the paper, we assume that the Boltzmann’s constant and the
friction coefficients are equal to one. Numerical integration of these equations reveals the desired
intriguing functionality of our device. When Tx 6= Ty, the wheels indeed rotate on average in
one direction. A few generated trajectories of x(t) are plotted in Figure 1.

Equivalently, the Langevin Equation (3) describes two-dimensional motion of a single Brownian
particle confined to a periodic channel. Potential within one period of the channel is plotted in the
upper right panel of Figure 1. The channel central line runs along the x-direction at y = 0. Thus,
in the following, we refer to the motion along x as to longitudinal motion. In the transversal direction
y, the potential increases without bounds and thus restricts the particle to diffuse along x. Note that,
in contrast to entropic transport, our channel is “soft” since its walls are represented by the potential.
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3. Solution of the Fokker–Planck Equation

Let us now summarize the main ideas behind the perturbative small-width solution of the
two-dimensional Fokker–Planck equation corresponding to Langevin Equation (3). Detailed exposition,
including all steps of derivations, have been published in our recent mathematical work, [45]. In the
next sections, we exploit this solution to investigate dynamics and energetics of the model.

For narrow channels (ε � 1), the transversal dynamics are much faster than the longitudinal
one because the ratio of the relaxation time for the transversal dynamics to the relaxation time for
the longitudinal dynamics is of the order of ε2/k(x), and it decreases with decreasing channel width
(ε→ 0). The rescaling

ζ =
y
ε

(4)

of the coordinate y helps to separate the fast transversal and the slow longitudinal dynamics in narrow
channels. The Fokker–Planck equation corresponding to Equation (3) then reads

ε2
(

∂p
∂t

+
∂jx
∂x

)
+

∂jζ
∂ζ

= 0, (5)

with the longitudinal and transversal components of the probability current given by

jx(x, ζ, t) = −
[

Tx
∂

∂x
+

k′(x)
2

ζ2
]

p(x, ζ, t),
1
ε2 jζ(x, ζ, t) = − 1

ε2

[
Ty

∂

∂ζ
+ k(x)ζ

]
p(x, ζ, t), (6)

respectively. In the long-time limit (steady-state), it is convenient to work with so called reduced
probability density and current defined as

P(x, ζ, t) =
+∞

∑
m=−∞

p(x + m, ζ, t), J(x, ζ, t) =
+∞

∑
m=−∞

j(x + m, ζ, t). (7)

The reduced current J has components Jx and Jζ given in Equation (6) but with the PDF p replaced by
the reduced PDF P. Note that Jζ is actually the transversal reduced probability current multiplied by
ε2. In contrast to p, the reduced PDF is periodic with the period of the potential, and it is normalized
to unity in the potential unit cell,

P(x + 1, ζ) = P(x, ζ),
∫ 1

0
dx
∫ +∞

−∞
dζ P(x, ζ) = 1. (8)

See the review [48] for more details.
In the long-time limit, the reduced PDF approaches its stationary form, which solves the stationary

Fokker–Planck equation, i.e., Equation (5) with ∂P/∂t = 0, subject to the normalization and periodicity
conditions (8). For a narrow channel, the stationary PDF and current can be represented by series in ε2,

P = P(0) + ε2P(1) + . . . , J = J(0) + ε2J(1) + . . . , (9)

where individual components of the current J(n) are defined as in Equation (6) with corresponding P(n)

insteady of p. Inserting these expansions into the stationary (∂P/∂t = 0) Fokker–Planck equation yields

∂J(0)ζ

∂ζ
= 0,

∂J(n)x
∂x

+
∂J(n+1)

ζ

∂ζ
= 0, n = 0, 1, 2, . . . (10)

Equation (10) gives us differential equation for any P(n) in terms of P(n−1), and thus they can,
in principle, be solved recursively for any n [45].
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The principal part of P determining its global shape is given by P(0). It follows from Equation (10) that

P(0)(x, ζ) = N
(

2πTy

k(x)

) Ty−Tx
2Tx

exp
(
−k(x)

2Ty
ζ2
)

, (11)

where we choose N such that P(0) is normalized to one in the unit cell. Similarity of P(0) with the
Gibbs canonical distribution is not accidental. In the narrow channel, the Gibbs equilibrium with
the transversal heat bath holds locally for any x, which is a consequence of the separation of fast
transversal and slow longitudinal degrees of freedom embodied in hierarchy (10). The local width
of the channel enters both the exponent and the x-dependent pre-exponential factor. Note that any
PDF in the form A(x) exp

(
−k(x)ζ2/2Ty

)
satisfies the first of Equation (10). The pre-exponential factor

A(x) is obtained from a second-order ordinary differential equation, which follows from the second
of Equation (10) for n = 0 after integration with respect to ζ [45]. These two steps (first guessing the
ζ-dependence, then deriving x-dependent terms) should be repeated when solving the hierarchy (10)
also for higher n.

The hard task solved in [45] was to get P(1). This small correction is crucial for capturing the
ratchet effect, absent in P(0), because the local-equilibrium form of P(0) cannot support any global
current through the system. Fortunately, it is possible to exploit the symmetry of the parabolic potential
to get the exact expression for P(1) as the sum of three terms,

P(1)(x, ζ) =
2

∑
n=0

Cn(x)ζ2ne
− k(x)

2Ty ζ2
, (12)

with coefficients given by

C1(x) = −
Tx

2Ty

(
∂2P(0)

∂x2

)
ζ=0

, C2(x) =
Tx

8T2
y

dk
dx

(
∂P(0)

∂x

)
ζ=0

, (13)

C0(x) = [M0(x)]
Ty−Tx

Tx

[
M+

1
Tx

∫ x

0
dx′

R(x′)− v1

[M0(x′)]
Ty/Tx

]
, (14)

where the last one, is expressed using auxiliary periodic functions

R(x) = Ty

[
C1(x)

dM1

dx
+ C2(x)

dM2

dx

]
− Tx

d
dx

[C1(x)M1(x) + C2(x)M2(x)] , (15)

Mn(x) =
∫ +∞

−∞
dζ ζ2n e

− k(x)
2Ty ζ2

, n = 0, 1, 2. (16)

The two coefficients C1, C2 are simple functions of x and temperatures. The coefficient C0,
however, looks quite elaborate. Luckily for us, it does not appear in any expression that follows.
The only important part of C0 is the integration constant v1, which determines the mean velocity
of the particle (23). It follows from the requirement of periodicity: C0(x) = C0(x + m) for any
integer m. (The second integration constant,M, should be chosen in accordance with the normalization
condition (8) such that

∫ 1
0 dx

∫ +∞
−∞ dζP(1)(x, ζ) = 0).

The expansion P ≈ P(0) + ε2P(1) is rather convenient. It yields a simple closed analytical solution
for any non-linear function k(x) and, more importantly, it is not restricted to the small temperature difference
allowing us to explore inherently far-from-equilibrium phenomena. There are, however, two practical
limits of validity that we now emphasize. First, the expansion (10) holds uniformly in the channel
provided the inequality ε2/k(x)� 1, is fulfilled for all x. Otherwise, the expansion could fail locally
in extremely wide regions, where k(x) ≈ ε or k(x) ≈ ε2. The function k(x) in Equation (2), chosen
for graphical illustrations, satisfies the above inequality. Second, high longitudinal temperature Tx
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ruins precision of the approximation, which we also demonstrate in the following. From Equations (5)
and (6), we observe that, for large Tx, the product ε2Tx appearing in the ε2 jx term is no longer small
and a different approximation scheme should be used. These two limitations are specific for the case
of a narrow channel with soft walls. They do not arise for hard-wall channels, where the expansion,
similar in spirit to the present one, was used for the first time [73].

4. Mean Velocity and Heat Current

Basic quantities that characterize ratchet performance are the mean rotation velocity of the wheels
v(Tx, Ty), and the heat flow between reservoirs Q̇(Tx, Ty). They are defined as long-time (steady-state)
averages given by

v(Tx, Ty) = lim
t→∞

〈x(t)〉
t

, Q̇(Tx, Ty) = lim
t→∞

Qy(t)
t

, (17)

where 〈x(t)〉 is average particle position (mean angle of rotation of the wheels) and Qy(t) denotes
total amount of heat accepted on average by the transversal heat bath during the time interval (0, t).
We adopt this definition of heat flow (Q̇ positive when heat flows from x to y reservoir) because it has
the same sign as the mean velocity. Indeed, for Tx < Ty (heat flow from transversal to longitudinal),
the mean velocity is negative, as one can infer already from Figure 1.

The both quantities follow directly from results of the preceding section, namely, from calculated
components of the stationary reduced probability current (Jx, Jζ). The mean velocity is just
integral of Jx over the unit cell of the potential, 〈dx/dt〉 =

∫
dx
∫

dy 〈dx/dtδ(x− x(t))δ(y− y(t))〉 =∫
dx
∫

dζ Jx(x, ζ, t), which, in the long-time limit, yields

v(Tx, Ty) =
∫ 1

0
dx
∫ +∞

−∞
dζ Jx(x, ζ), (18)

and the average heat flow can be obtained from Jζ ,

Q̇(Tx, Ty) = −
1
ε2

∫ 1

0
dx
∫ +∞

−∞
dζ k(x)ζ Jζ(x, ζ). (19)

In the last equation, we have used definition of heat standard in stochastic thermodynamics [50,51,55].
According to the first law of thermodynamics and Equation (5), the internal energy of the system,
E =

∫ 1
0 dx

∫ ∞
−∞ dyU(x, y)P(x, y), changes over the course of time as

Ė = −(Q̇x + Q̇y) =
∫ 1

0
dx
∫ ∞

−∞
dζ

∂U(x, εζ)

∂x
Jx(x, ζ) +

1
ε2

∫ 1

0
dx
∫ ∞

−∞
dζ

∂U(x, εζ)

∂ζ
Jζ(x, ζ), (20)

where Q̇x is the mean heat flow into the x reservoir. According to definition (17), in the steady state,
we have Q̇y = Q̇ and the expression (19) follows directly from the last term on the right-hand side of
Equation (20).

Our convention used in the definition of heat is that heat is positive when it flows from the system
to a heat bath. Thus, Q̇x (Q̇y) denotes the average heat flow accepted by the longitudinal (transversal)
bath. According to the conservation of energy (20), the following relation between energy flows holds:
Ė = −(Q̇x + Q̇y). In the steady state, the mean energy of the system is constant, hence we have Ė = 0
and Q̇x = −Q̇y. On the other hand, in the transient regime (before the steady state is established),
the system energy may change and in general Ė 6= 0. The expression of the steady-state heat flow
into the transversal bath (19), Q̇ = lim

t→∞
Q̇y in terms of the integrated probability current can be also

justified as follows. The heat flow Q̇y is identified from the first law of thermodynamics [50,51,55],
Ė = 〈dU(x(t), y(t))/dt〉 = 〈ẋ(∂U/∂x)〉+ 〈ẏ(∂U/∂y)〉, as the second term, which corresponds to the
change of potential energy, when the transversal coordinate is changed, Q̇y = −〈ẏ(∂U/∂y)〉. Using
formal manipulation described above Equation (18), we arrive directly at Equation (19).
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Expansion in the channel width, developed in the last section, yields the stationary probability
current in the form J ≈ J(0) + ε2J(1). Hence, Equations (18) and (19) become

v(Tx, Ty) ≈ v0(Tx, Ty) + ε2v1(Tx, Ty), Q̇(Tx, Ty) ≈ Q̇0(Tx, Ty) + ε2Q̇1(Tx, Ty), (21)

respectively. The individual summands follow from the corresponding parts of the current, e.g.,
vn(Tx, Ty) =

∫ 1
0 dx

∫ +∞
−∞ dζ J(n)x (x, ζ), n = 0, 1, and, similarly, for Q̇n(Tx, Ty).

Frequently, all important physical effects are (at least qualitatively) contained in the lowest order
of the Fick–Jacobs theory, described by the simple PDF P(0), Equation (11). In our case, however,
the fundamental assumption of the Fick–Jacobs approximation renders the lowest order useless for
explanation of the ratchet effect. The local equilibrium with the transversal heat bath implies that
there is no net heat transfer into the transversal heat bath; therefore, the heat flow to the longitudinal
bath is also on average zero. Furthermore, when there is no heat flow, the system cannot act as the
heat engine. In Equation (21), we therefore have v0(Tx, Ty) = 0 and Q̇0(Tx, Ty) = 0, for any Tx, Ty.
The ratchet effect is covered by the correction P(1), Equation (12), which disrupts the local equilibrium,
and hence we have

v(Tx, Ty) ≈ ε2v1(Tx, Ty), Q̇(Tx, Ty) ≈ ε2Q̇1(Tx, Ty). (22)

The both quantities can be given by simple expressions. The mean velocity follows from the
requirement that the coefficient C0(x), Equation (14), is a 1-periodic function of x. We get

v1(Tx, Ty) =

∫ 1
0 dx R(x) [M0(x)]

−Ty/Tx∫ 1
0 dx [M0(x)]

−Ty/Tx
. (23)

The mean heat flow can be evaluated directly from its definition (19) inserting J(1)ζ there as
computed using (12). In the course of the derivation, one finds that the zeroth term of the sum (12)
representing P(1) makes no contribution to the current J(1)ζ . Simplification of the remaining terms
gives us

Q̇1(Tx, Ty) =
TxTy

ε2

∫ 1

0
dx M0(x)

k′(x)
k(x)

(
∂P(0)

∂x

)
ζ=0

. (24)

The both main results of the present section, Equations (23) and (24), can be further recast
into simple scaling forms, which reveals their temperature dependence. Note that temperatures Tx,
Ty occur in all auxiliary functions used in Equations (23) and (24). A closer look reveals that Tx enters
all expressions only in the combination Tx/Ty and, at the same time, almost all powers of Ty cancel.
Eventually, we end up with expressions

v(Tx, Ty) ≈ ε2T2
y V(Tx/Ty), Q̇(Tx, Ty) ≈ T2

y Q(Tx/Ty), (25)

where the master functions V(Tx/Ty) = v1(Tx, Ty)/T2
y and Q(Tx/Ty) = ε2Q̇1(Tx, Ty)/T2

y depend
on the combination Tx/Ty only. Hence, they characterize the ratchet performance in a universal
manner depending only on the ratio of Tx and Ty and not on individual values of temperatures.
More importantly, the master functions yield a figure of merit of the ratchet, η,

η(Tx/Ty) =
v
Q̇
≈ ε2 V(Tx/Ty)

Q(Tx/Ty)
, (26)

which, in the leading order in ε, depends only on the ratio of temperatures Tx/Ty. The figure of merit
η quantifies how much heat must flow through the system in order to maintain the rotation velocity v.
It is large when small heat current (small dissipation) is accompanied by large velocity and vice versa.
The figure of merit η is different from the standard efficiency (output power/input heat flow) used to
characterize steady-state heat engines [50,51,74,75]. This standard “energetic” efficiency is bounded by
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the Carnot efficiency ηC, ηC = 1− Tcold/Thot, and reflects effectiveness of energy transformation from
accepted heat to a useful work output. The figure of merit η describes rather a “kinetic performance”
of the model, and it is, in principle, not bounded from above. In order to define the standard efficiency
in our model, one should introduce an external load, against which the ratchet would perform work.
This extension of the model is currently under investigation.

Equations (25) and (26) supplemented by exact expressions (23) and (24) reveal somewhat
unintuitive behavior of the velocity, the heat current and the ratchet figure of merit with respect
to the channel width. While both the velocity and the figure of merit are proportional to ε2, the heat
flow becomes nonzero and independent of ε as ε → 0. This means that Q̇ 6= 0 for arbitrarily
narrow channel whenever Tx 6= Ty and ε is arbitrarily small but nonzero. On the other hand,
for ε = 0, the transversal and longitudinal degrees of freedom decouple and thus Q̇ = 0. The heat
flow thus experiences a discontinuity when ε changes from arbitrarily small positive value to zero.
This behavior demonstrates what we knew from the very beginning: the system with small, but positive
ε qualitatively differs from the system with ε = 0. While the former case represents diffusion in
a two-dimensional energy landscape, the latter stands just for a Brownian motion on a line. Similar
reasoning explains also another difference between the velocity and the heat flow: the velocity vanishes
for symmetric potentials, i.e., for potentials with symmetric k(x) corresponding to symmetric ratchet
teeth, while the heat flow is non-zero whenever k(x) varies with x and Tx 6= Ty. The nonzero velocity
is achievable only in cases where the ratchet teeth are asymmetrical, but the heat flows between the
reservoirs whenever they are coupled by a nontrivial interaction between wheels and the pawl.

The master functions V(Tx/Ty) andQ(Tx/Ty) are plotted in the left panels and the figures of merit
η in the right panels of Figures 2 and 3 together with the corresponding quantities obtained numerically
by discretizing the underlying Fokker–Planck equation and numerically finding the steady state of
the discrete model (see the Appendix in [45] for detailed description of the numerics). In Figure 2,
the transversal temperature Ty is fixed and the longitudinal temperature Tx varies from 0 to Ty. We see
that the agreement between approximate analytical curves and the numerical data is very good for
the data obtained for Ty = 1 (circles), while the agreement is only qualitative for the data calculated
using Ty = 100 (stars). This is because, in the first case, Tx is always small and the assumptions used
in the analytical derivation are valid, while, in the latter case, Tx is relatively large and ε2Tx is not
small enough (see the last paragraph of Section 3). For Tx < Ty, the particle moves on average to the
left (v < 0) and the heat flows from the transversal (hot) to the longitudinal (cold) reservoir (Q̇ < 0).
Both of these quantities vanish for Tx/Ty = 1 and for Tx = 0. For Tx = Ty, the ratchet attains thermal
equilibrium where all flows are zero; for Tx = 0, the longitudinal thermal noise is switched off and the
particle feels, in the x-direction, just the deterministic force with no global bias. The fact that, between
these two points, v < 0 and Q̇ < 0 immediately implies that both functions attain a global minimum
for some Tx ∈ (0, Ty).

The ratchet figure of merit η in the right panel of Figure 2 vanishes for Tx → 0 (for Tx → 0,
v converges to zero faster than Q̇), reaches a constant value for Tx → Ty (v and Q̇ converges to zero
at the same rate with Tx → Ty) and attains a maximum value in between. This complicated behavior
of η clearly shows that the quantities v and Q̇ are not simply proportional to each other. Notice that,
in this regime, the ratchet effect is readily visible on the level of individual trajectories shown in
Figure 1, in contrast to the case Tx > Ty discussed next.

Figure 3 illustrates the ratchet performance in the regime Tx > Ty. In the numerics, we have
fixed the longitudinal temperature Tx and varied the transversal temperature Ty from 0 to Tx. Again,
analytical curves agree with the numerical data much better for a moderate longitudinal temperature
than for large Tx, although the qualitative agreement is in both cases excellent (see, in particular,
the right panel). In this regime, which was rather noisy on the level of individual trajectories (lower
left panel in Figure 1), the particle moves on average to the right (v > 0) and the heat flows to the
transversal bath (Q̇ > 0). In this case, v and Q̇ also exhibit an extreme because v = Q̇ = 0 for Tx = Ty,
and both quantities also vanish when Ty → 0. In the latter limit, the bath does not contain enough
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energy to push the particle away from the channel central at y = 0, where U = 0. The limit corresponds
to the cold pawl standing still just in between the wheels. The fact that in between Ty = 0 and Ty = Tx

we have v > 0 and Q̇ > 0 then implies that both variables exhibit a maximum for some Ty ∈ (0, Tx).
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Figure 2. The mean velocity v, the heat flow Q̇ (left, v blue, Q̇ red) and the figure of merit η (right)
as the functions of reservoir temperatures for Tx < Ty. Approximate analytical curves (solid lines)
are plotted using Equations (23) and (24). In the numerics (symbols) we set ε = 0.01; Ty = 1 (◦) and
Ty = 100 (∗) and we varied Tx from 0 to Ty.
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Figure 3. The mean velocity v, the heat flow Q̇ (left, v blue, Q̇ red) and the figure of merit η (right)
as the functions of reservoir temperatures for Tx > Ty. Approximate analytical curves (solid lines)
are plotted using Equations (25) and (26). In the numerics (symbols), we set ε = 0.01; Tx = 1 (◦) and
Tx = 100 (∗), and we varied Ty from 0 to Tx.

If we compare the ratchet performance for the two regimes of operation (Tx < Ty vs. Tx > Ty),
on the level of individual trajectories, we find that the regime Tx < Ty is much more advantageous:
it both gives a larger mean velocity of the particles and is not that noisy (see lower panels in Figure 1).
The fluctuations (quantified by an effective diffusion coefficient) have been studied in [45], where it
was shown that they are indeed much larger in the regime Tx > Ty. The mean particle velocity can
be read from Figures 2 and 3. In particular, in Figure 1, we took Tx = 1, and Ty = 10 for the regime
Tx < Ty and Tx = 10, and Ty = 1 for the regime Tx > Ty, and, in both cases, ε2 = 0.01. In the regime
Tx < Ty, we can read from Figure 2 that, for Tx/Ty = 0.1, the rescaled velocity v/ε2T2

y approximately
equals −0.2 and because we have ε2T2

y = 1 for this regime, we estimate the mean velocity v ≈ −0.2.
On the other hand, in the regime Tx > Ty, we find from Figure 3 that the rescaled velocity v/ε2T2

y for
Tx/Ty = 0.1 is approximately 0.2 and thus the average velocity is v ≈ 0.2ε2T2

y = 0.002 (quantitative
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disagreement with Figure 1 is due to the fact that ε is not small enough there). Thus, the mean velocity
in the regime Tx > Ty is by two orders of magnitude smaller than that in the regime Tx < Ty.

The poor performance of the ratchet in the Tx > Ty regime is also evident if we compare energetic
costs per velocity, i.e., the figures of merit η plotted in the right panel of Figure 3, against that in the
Tx < Ty case shown in the right panel of Figure 2. Both figures of merit are equal for Ty = Tx. From
Figure 3, we see that η in Tx > Ty regime decreases with increasing temperature difference. Hence,
the maximum attained by η in Ty > Tx regime is the global maximum of the figure of merit. The only
situation when the ratchet with Tx > Ty can have a larger figure of merit is in an extreme situation
when the transversal reservoirs (the pawl) are kept at a very cold temperature.

5. Current Circulation and Local Heat Transfer

As first noted in [56], the origin of the ratchet effect is related to the circulation of probability
current. Let us now illustrate this circulation and investigate its connection to the heat flow. To do this,
we return back to the physical coordinates x and y. The reduced probability density for particle position
in a unit cell of the potential, the longitudinal probability current and the transversal probability current
in these coordinates can be calculated from the corresponding variables defined in the preceding
sections as p(x, y) = P(x, y/ε)/ε, jx(x, y) = Jx(x, y/ε)/ε and jy(x, y) = Jζ(x, y/ε)/ε2, respectively.
The streamlines of the vector j(x, y) = (jx(x, y), jy(x, y)) are shown in Figure 4 for Tx < Ty and in
Figure 5 for Tx > Ty. In both figures, we plot the streamlines on top of four important quantities:
the potential landscape U(x, y), the reduced probability density p(x, y), the local heat flow to the
longitudinal reservoir qx(x, y) = −jx(x, y)∂U(x, y)/∂x and the local heat flow to the transversal
reservoir qy(x, y) = −jy(x, y)∂U(x, y)/∂y. The shown data were obtained numerically using the same
method as in the preceding section.

Figure 4. Circulation of the probability current j(x, y) in a unit cell of the potential for Tx < Ty.
The particle moves on average to the left (v < 0, see Figure 2). The current are plotted on top of the
potential energy landscape (upper left), reduced probability density (upper right), local heat flow to
the longitudinal reservoir (lower left) and local heat flow to the transversal reservoir (lower right).
The data were obtained numerically using Tx = 0.2, Ty = 2 and ε2 = 1.
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In the panels with j(x, y) plotted on top of p(x, y), it is clearly visible how the probability currents
feed maxima of the reduced probability distributions. These maxima are larger than the corresponding
equilibrium values of P at any of the two temperatures Tx and Ty. On the other hand, the panels where
the current is plotted on top of the potential and the two heat flows show us at which coordinates
the heat is drawn from the x reservoir (if jx(x, y) points uphill in the x-direction, then qx(x, y) < 0)
and from the y reservoir (similarly, if jy(x, y) points uphill in the y-direction, qy(x, y) < 0). The panels
with the heat flows also demonstrate how much heat is on average exchanged at a given point
with the individual heat reservoirs. Can the complex behavior depicted in Figures 4 and 5 be
understood and predicted using simple physical arguments? In the rest of this section, we will
provide an affirmative answer.

Figure 5. Circulation of the probability current j(x, y) in a unit cell of the potential for Tx > Ty.
The particle moves on average to the right (v > 0, see Figure 3). The current is plotted on top of the
potential energy landscape (upper left), reduced probability density (upper right), local heat flow to
the longitudinal reservoir (lower left) and local heat flow to the transversal reservoir (lower right).
The data were obtained numerically using Tx = 1, Ty = 0.2 and ε2 = 0.1.

The derivation of the approximate formulas introduced in the preceding sections was based on
the Fick–Jacobs theory developed for particles diffusing in a single thermal bath through asymmetric
channels with hard walls. Although the expansion in the channel width works well both in the
setup with hard walls and in our two-temperature soft-wall model, microscopic explanations of
emerging ratchet effects differ. While the ratchet effects occurring in hard-wall channels are of entropic
origin [7,14,17,42], the ratchet effect for the present two-temperature soft-wall ratchet is of an energetic
nature. In fact, the main operational principle of the present ratchet can be understood with the aid
of a simple discrete ratchet model depicted in Figure 6. Note that an analogous discrete model was
introduced in [64]. In contrast to thorough quantitative analysis of [64], here we focus on qualitative
discussion of the discrete model with the main aim to understand the basic working principle of the
continuous model and, in particular, appearance of the circulation of the probability current.
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Figure 6. Schematic illustration of the simple discrete model of the two- temperature ratchet. Red (blue)
arrows depict transitions driven by the reservoir at Ty (Tx).

In the Figure 6, we show one cell of the periodic energy landscape of the discrete ratchet. The red
(blue) arrows depict transitions between the discrete states caused by heat exchange with reservoir at
the temperature Ty (Tx). We assume that the energies of the individual microstates correspond to their
vertical position in the sketch, i.e., ε1 = ε2 = ε3 < ε4 < ε5 < ε6. The discrete ratchet thus represents
the roughest possible simplification of the complex two-dimensional model discussed in this paper:
the transitions between the lower energy levels correspond to the force-free diffusion in the x-direction
near the channel center (y = 0), while the transitions between the upper levels correspond to the
diffusion in the x-direction at some fixed nonzero y, where the particle experiences the asymmetric
potential. The sites 1 and 4 stand for the x position with the smallest k(x) (widest channel), and the
sites 3 and 6 match the x position with the largest k(x) (narrowest channel).

The main physical assumption imposed on the system is that the transition rates between the
individual states fulfill the detailed balance condition. The transition rates in the x-direction (blue)
satisfy the relation

rx
i→j

rx
j→i

= exp
(
−

εj − εi

Tx

)
. (27)

Similarly we have ry
i→j/ry

j→i = exp[−(εj − εi)/Ty] for the transitions in the y-direction (red).
These conditions secure that, for Tx = Ty, the system reaches the thermal equilibrium state
πi ∝ exp[−εi/Tx] with vanishing microscopic probability currents, πiri→j − πjrj→i = 0.

Let us now assume that the system is initially in thermal equilibrium with Tx = Ty and we
slightly increase the temperature Tx (leaving Ty unaltered). Then, the detailed balance condition (27)
implies that the ratio of transition rates for going from lower to upper states in the x-direction to the
corresponding rates for going back will be increased as compared to the equilibrium situation. Raising
Tx thus leads to positive uphill probability currents in the x-direction, and the heat flows to the system
from the longitudinal bath. In our discrete model, the probability will flow from state 4 to states 5 and
6 and from state 5 to state 6. Meanwhile, the exit rate from state 6 in the y-direction will be the same
as in equilibrium, and thus the occupation of this state will become larger than in equilibrium once a
new stationary occupation of the energy levels consistent with the new reservoir temperatures and
non-zero microscopic probability currents will be established. In the 2D ratchet model, we observe
similar behavior: for Tx > Ty, the probability density for position develops a global maximum at the
x position where the channel is narrowest (see Figure 5). The fact that we get microscopic probability
currents uphill in the potential landscape together with the continuity of the probability current implies
that, in our discrete model, the probability current will circulate in two circuits: the clockwise circuit
3→ 2→ 1→ 4→ 5→ 6→ 3 and the counter-clockwise circuit 3→ 1→ 4→ 6. Similar circulation of
the probability current is also found in the 2D ratchet (see Figure 5).

Let us now consider the opposite situation Tx < Ty. Analogous with the above reasoning,
the detailed balance condition (27) leads to increased downhill rates and decreased uphill transition
rates in the x-direction with respect to the equilibrium situation Tx = Ty. Probability will thus flow



Entropy 2017, 19, 119 13 of 17

both from the left and from the right to state 4, and the heat flows to the system from the transversal
bath. Once the system reaches a new steady state, the occupation probability of state 4 will be larger
than the previous equilibrium one. An analogy of this behavior occurs also in the 2D model where the
probability density for position develops its global maximum at the x position where the channel is
widest, which can even split the y-direction into two global maxima positioned outside the minimum of
the potential energy landscape (see Figure 4). Again, the probability current will circulate in two circuits:
the counter-clockwise circuit 3→ 2→ 1→ 4→ 5→ 6→ 3 and the clockwise circuit 3→ 1→ 4→ 6.
This behavior also mimics the circulation of probability currents emerging in the 2D ratchet (see Figure 4).

The direction of the global mean probability current can be determined from the following
consideration. As we have discussed above, for Tx > Ty, the particle will on average move uphill in
the x-direction. Both in the discrete and in the two-dimensional model, the energy landscape is of the
sawtooth type: some x moving uphill in the x- direction corresponds to the current to the right and
vice versa for other x positions. However, for the discrete energy landscape of Figure 6 (and also for
the potential used in the 2D model), there are less x positions where the probability would flow to
the left than to the right (also the probability to move against smaller energy difference is larger) and
thus we obtain the global mean probability current to the right in accordance with Figure 3. Similar
reasoning explains why the global probability current in the system is, for Tx < Ty, directed to the left
(see Figure 2).

To close this section, let us note that the above reasoning based solely on the detailed balance
condition (27) and general characteristics of the problem (different temperatures in x- and y-directions
and shape of the potential) can be expected to give correct results only in the vicinity of thermal
equilibrium, i.e., for small |Tx − Ty|. For larger temperature differences, the current direction
is determined by the detailed form of the transition rates. For example, for the exponential
rates rx,y

i→j = exp[−(εj − εi)/(2Tx,y)], the discrete model yields only one current reversal so our
close-to-equilibrium analysis gives correct current direction for all temperatures. On the other hand,
for the transition rates of the form rx,y

i→j = Tx,y exp[−(εj− εi)/(2Tx,y)], one finds that the mean probability
current changes its sign twice and the above reasoning gives the right current direction for small
temperature differences only. Finally, for the specific potential (1), the dynamics of the 2D ratchet is
such that the close to equilibrium analysis always gives the correct direction of the current.

6. Conclusions

The ratchet and pawl mechanism inspired by Feynman’s famous thought experiment can be
successfully analyzed by a generalization of the Fick–Jacobs theory. The generalization applies far
from thermal equilibrium (Tx 6= Ty) and captures a fully nonlinear response even for large temperature
differences. The mean velocity of rotating wheels and the mean heat current between the reservoirs,
Equation (25), and hence their ratio (the figure of merit, Equation (26)), are given in terms of scaling
functions that depend on the fraction Tx/Ty only. These functions provide a compact description of
the ratchet performance in its different working regimes.

The theory predicts a complex behavior of the probability current within the potential unit cell.
Further numerical analysis reveals that the ratchet effect is closely related to the circulation of the
probability current. The asymmetry of the potential rectifies these vortices and thus the ratchet effect
(directed motion) appears. The vortices themselves result from coupling each degree of freedom
(wheels and pawl) to heat baths at different temperatures. Their origin is, however, far from being
well understood. It is an intriguing open question for further research to reveal the role of circulating
currents in creation of directed transport, their connection with the shape of the potential and with
local heat currents. We have also shown that it may be helpful to build an intuition studying discrete
systems, which we have used to determine direction of the directed motion on physical grounds.

From a general perspective, the present model and the developed theory offer a rare opportunity
to discuss and test laws of irreversible thermodynamics far from thermal equilibrium [57,58,60–62,76].
Our findings may stimulate further research in this field since the present model serves as a nontrivial
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example of a strongly nonequilibrium system with known nonlinear response. It also could be very
interesting to realize the present model experimentally using optical tweezers [77–82]. The different
temperatures Tx, Ty can be experimentally realized as described in [77,82]. The method described
therein can be used to achieve temperature differences up to thousands of Kelvins and the ratchet
performance can thus be experimentally investigated effectively in the whole temperature range.

Last but not least, it is worth applying the presented analytical method to the original Feynman’s
model with a single ratchet wheel and the pawl being pushed against its teeth by a spring [47,55–57].
Then, instead of the y-symmetric parabolic potential (1), one should use an asymmetric potential
describing force from the spring and possibly a reflecting boundary condition required when the
pawl touches the wheel. This setting is qualitatively similar to the present one, yet different in details
(the potential, boundary conditions), which helped us to solve the present model analytically. Finally,
let us emphasize importance of the spring for the heat transfer between the two reservoirs. To this end,
we note that the potential (1) should be understood as the simplest model of a “soft” repulsion between
the pawl and ratchet teeth. It cannot be replaced by a pure elastic hard-wall repulsion without loss of
the ratchet effect. For hard-wall repulsion, the potential energy U(x, y) is constant everywhere in the
channel and there is no heat flow between the two reservoirs (the expressions for heat flows (20) contain
partial derivatives of the potential U). Thus, for the hard-wall repulsion, the two heat reservoirs
decouple and the system cannot work as a ratchet. In all Brownian models of Feynman’s original
setting [47,55–57], there is a potential interaction between the two degrees of freedom, x and y, which
(possibly in cooperation with the reflecting boundary) allows for a heat transfer between the reservoirs.
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