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Abstract: This paper analyses the complexity of multivariate electroencephalogram (EEG) signals
in different frequency scales for the analysis and classification of focal and non-focal EEG signals.
The proposed multivariate sub-band entropy measure has been built based on tunable-Q wavelet
transform (TQWT). In the field of multivariate entropy analysis, recent studies have performed
analysis of biomedical signals with a multi-level filtering approach. This approach has become
a useful tool for measuring inherent complexity of the biomedical signals. However, these methods
may not be well suited for quantifying the complexity of the individual multivariate sub-bands of the
analysed signal. In this present study, we have tried to resolve this difficulty by employing TQWT for
analysing the sub-band signals of the analysed multivariate signal. It should be noted that higher
value of Q factor is suitable for analysing signals with oscillatory nature, whereas the lower value of
Q factor is suitable for analysing signals with non-oscillatory transients in nature. Moreover, with an
increased number of sub-bands and a higher value of Q-factor, a reasonably good resolution can be
achieved simultaneously in high and low frequency regions of the considered signals. Finally, we
have employed multivariate fuzzy entropy (mvFE) to the multivariate sub-band signals obtained
from the analysed signal. The proposed Q-based multivariate sub-band entropy has been studied
on the publicly available bivariate Bern Barcelona focal and non-focal EEG signals database to
investigate the statistical significance of the proposed features in different time segmented signals.
Finally, the features are fed to random forest and least squares support vector machine (LS-SVM)
classifiers to select the best classifier. Our method has achieved the highest classification accuracy
of 84.67% in classifying focal and non-focal EEG signals with LS-SVM classifier. The proposed
multivariate sub-band fuzzy entropy can also be applied to measure complexity of other multivariate
biomedical signals.

Keywords: Tunable-Q wavelet transform; complexity; multivariate fuzzy entropy; bivariate focal
EEG signals; statistical analysis; classifiers

1. Introduction

Approximately 60 million people worldwide are affected by a neurological disorder known as
epilepsy [1]. Electroencephalogram (EEG) signals are generally used for the medical investigations
of the epilepsy disorder [2]. Epilepsy is broadly classified into two categories—namely, focal and
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generalized epilepsy. Focal epilepsy affects the limited area of the brain. It has been noticed that
20% patients of generalized epilepsy and 60% patients of focal epilepsy develop resistance to drugs
and undergo surgery [3]. Hence, it would be of prime importance to localize the brain area affected
by focal epilepsy for medical diagnosis. There are some presurgical localization methods—namely,
positron emission tomography (PET) [4], magnetic resonance imaging (MRI) [5,6], and single photon
emission computed tomography (SPECT) [7] are useful for locating epilepsy affected brain areas.
The epileptogenic focus can also be located with the help of EEG signals before presurgical evaluation.
The EEG signal based method for locating the epilepsy affected brain area is convenient. Moreover,
EEG signals provide good temporal resolution.

Recording of focal (F) and non-focal (NF) EEG signals can be used to locate the brain area that
is affected by epilepsy disease. The brain area from where first seizure EEG signal changes are
identified gives rise to F EEG signals; on the other hand, the brain area that does not contribute to
seizure onset generates NF EEG signals [8]. It should be noted that seizure segments are absent in
F and NF types of EEG signals [8]. The non-stationary signal analysis techniques are suitable for
EEG signal analysis [9]. In [8], the authors have found that F type EEG signals are more stationary,
less random, and more nonlinear in comparison to the NF type of EEG signals. Recently, several
automated signal processing based methods have been proposed that can detect the changes in the
attributes of EEG signals prior to onset of the seizure and hence locate epileptogenic focus. In [10],
for localizing epileptic events, the authors have used wavelet packet and time-frequency waveforms
for the characterization of spikes in the electrocorticograph (ECoG) signals of 21 patients. In [11,12],
the authors have analyzed delta asymmetry of EEG signals recorded from partial epilepsy patients
in order to lateralize and localize epileptic focus. It has been found that, prior to neocortical epilepsy
onset, the high frequency oscillations (HFO) (60–100 Hz) increase significantly, which can be a helpful
measure for the localization of the seizure onset zone [13]. In [14], the authors employed empirical
wavelet transform (EWT) [15] for the separation of EEG rhythms and projected the obtained EEG
rhythms in two-dimensional (2D) reconstructed phase space (RPS). The authors measured the area of
the EEG rhythms in 2D RPS plots corresponding to different levels of central tendency measure (CTM)
values. These computed area parameters were fed to a least squares support vector machine (LS-SVM)
classifier for the the detection of focal EEG signals.

In previous studies [16–21], the entropy based features have been found to be useful for the
discrimination of F and NF EEG signals. In [16], the F and NF types of EEG signals were classified
using delay permutation entropy (DPE) and support vector machine (SVM) classifier. The authors
found that for the delay range 5 to 30, the NF type EEG signals have a higher DPE index in comparison
to F type EEG signals. In [17], the authors decomposed EEG signals into numbers of intrinsic mode
functions (IMFs) using the empirical mode decomposition (EMD) method [22]. They extracted average
sample entropy (ASE) as well as average variance of instantaneous frequency (AVIF) features from the
obtained IMFs in order to classify F and NF types of EEG signals. In [18], the authors have extracted
several entropy features from the individual channel IMFs—namely, approximate entropy, Shannon
entropy, sample entropy, Renyi’s entropy, phase entropy 1 and phase entropy 2 from the IMFs of
EEG signals. They obtained the average of those entropy values of the same index IMFs of both of
the channels in order to find final feature vectors. They measured the complexity of the IMFs in a
spectral domain using average Renyi’s entropy and average Shannon entropy in a higher order spectral
domain using average phase entropy 1 and average phase entropy 2. The authors also measured the
self similarity of the IMFs using ASE and average approximate entropies. In [19], a method based on
discrete wavelet transform (DWT) was proposed for the classification of F and NF types of EEG signals.
The authors decomposed the EEG signals up to six levels using Daubechies order 4 (db4) wavelet
and extracted several entropy features from the DWT coefficients. In [20], the authors analyzed F
and NF types of EEG signals in the EMD-DWT domain and extracted spectral entropies—namely,
Shannon entropy, log-energy entropy, and Renyi entropies for the discrimination of F and NF types of
EEG signals. They obtained better discrimination of F and NF type of EEG signals with log-energy
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entropy in the EMD-DWT domain. In [21], F and NF types of EEG signals were decomposed using a
time-frequency localized wavelet filter-bank and computed several entropy features followed by an
LS-SVM classifier to classify F and NF types of EEG signals.

It should be noted that most of the previous methods performed the univariate analysis of F
and NF types of EEG signals which do not consider the cross channel information present in the
multivariate EEG signals. In this paper, we have tried to measure the complexity of bivariate F and NF
types of EEG signals by considering two channels simultaneously to distinguish F and NF types of EEG
signals. In [23,24], authors proposed multivariate multi-scale sample entropy based on the concept
of coarse graining and multivariate embedding theory [25]. They applied the proposed method to
the complexity analysis of bivariate physiological signals and three-dimensional (3D) wind speed
signals. Though sample entropy and its multivariate extension algorithms are very popular, they
may produce undefined or unreliable results for short-time series. The reason behind this can be
explained as: sample entropy and its multivariate extension use vector similarity definitions based on
Heaviside function. This creates a very rigid boundary with the set threshold denoted as r. Due to this
rigid boundary, computed entropy value changes abruptly with even slight changes of threshold r.
The sample entropy may also be undefined for no vector matching with very small threshold r [26,27].
To increase the statistical stability of entropy values of univariate signals, the fuzzy entropy has been
proposed based on fuzzy theory [27,28]. The fuzzy entropy has been applied as a complexity measure
for many signals such as biomedical signals [29–31] and bearing fault diagnosis [32]. As a generalized
form of univariate fuzzy entropy, multivariate fuzzy entropy (mvFE) has also been proposed for the
multivariate signals [33,34]. In [35], the authors have applied multivariate fuzzy measure entropy for
the analysis of multivariate cardiovascular signals.
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Figure 1. TQWT based multivariate sub-band fuzzy entropy.

In this work, we propose tunable-Q wavelet transform (TQWT) [36] based multivariate sub-band
fuzzy entropy measure and studied the effectiveness of the proposed technique for the discrimination
of bivariate F and NF types of EEG signals. Figure 1 shows the block diagram of the proposed
TQWT based multivariate sub-band fuzzy entropy. In Figure 1, SB 1, SB 2 and so on represent the
obtained sub-band 1, sub-band 2 and so on, respectively, after decomposition with TQWT. It should
be noted that the same indexed sub-bands of different channels belong to the same oscillatory level.
After that, we have used two different classifiers to evaluate the performance of our proposed feature
extraction method. Our proposed multivariate sub-band fuzzy entropy measure utilizes TQWT based
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filter-bank for quantifying the complexity of multivariate narrow band sub-band signals, which can be
a generalized tool for measuring complexity of other multivariate signals with proper selection of the
Q-parameter.

The rest of the paper is organised as follows: Section 2 gives a brief description of the EEG
database used in this study. Section 3 discusses the computation of the existing mvFE, Section 4
describes the computation of proposed Q-based multivariate sub-band fuzzy entropy, and Section 5
discusses the statistical significance of the proposed features and experimental results. Finally, Section 6
concludes the paper.

2. Bern–Barcelona EEG Dataset

The proposed TQWT based multivariate sub-band fuzzy entropy has been studied on the publicly
available Bern–Barcelona EEG database [8]. The database contains the intracranial EEG recordings
of five patients who suffered from drug-resistant long-standing temporal lobe epilepsy. The studied
database includes bivariate EEG signals of both F and NF categories. For each of the F and NF
categories, the database contains 3750 pairs of bivariate EEG signals. The signals were recorded with
a sampling rate of 512 Hz. The duration of each bivariate EEG signals is 20 s. In this study, the first
50 F and NF types of bivariate EEG signals are selected to find the optimal signal length that provides
statistically significant discrimination between two classes. Finally, based on the outcome of the
analysis of the first 50 F and NF EEG signals, we have chosen the optimum signal length and classified
3750 F and 3750 NF types of bivariate EEG signals.

3. Multivariate Fuzzy Entropy (mvFE)

The computation of mvFE can be summarised by the following steps [33]:

• Step 1: Generation of the multivariate composite embedded reconstruction from the s-variate
time-series {xk,j}N

j=1 where k = 1, . . . , s, based on the Takens embedding theorem as follows [23,25]:

Xm(j) = [x1, j, x1, j+τ1 , ..., x1, j+(m1−1)τ1
, x2, j, x2, j+τ2 , ..., x2, j+(m2−1)τ2

, ..., xs, j, xs, j+τs , ..., xs, j+(ms−1)τs ], (1)

where M = [m1, m2, ..., ms] denotes embedding vector and τ = [τ1, τ2, ..., τs] represents time
lag vector. For example, channel 1 (x1(t)) of a bivariate time series is expressed as x1(t) =

{a1, a2, · · · , aN} and channel 2 (x2(t)) is expressed as x2(t) = {b1, b2, · · · , bN} with N number of
samples for each time-series. If we consider τ = [1, 2] and M = [2, 2], then some of the composite
delay vectors are expressed as [a1, a2, b1, b3], [a2, a3, b2, b4], [a3, a4, b3, b5], etc.

• Step 2: Formation of (N − n) composite delay vectors Xm(j)∈ <m, where j = 1, 2, · · · , N − n and
n = max{M} ×max{τ}.

• Step 3: Defining the distance as the maximum norm and computed between two composite delay
vectors such as Xm(j) and Xm(i).

• Step 4. Defining the fuzzy membership function as [33]:

θ(d, r) = exp
(
−(d) fs /r

)
, (2)

where d denotes computed distance between two composite delay vectors, r denotes chosen
threshold parameter and fs represents fuzzy power.

• Step 5. Define the global quantity ψm(r) for a chosen fuzzy power fs and threshold r as [33]:

ψm(r) = 1
N−n

N−n

∑
j=1

N−n

∑
i=1,j 6=i

exp

(
−(d[Xm(i), Xm(j)]) fs

r

)
N − n− 1

.
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• Step 6. Increment of the dimensionality from m to m + 1 in such a way so that the dimensionality
of the other variables do not change, which is possible in s different ways, such as from
[m1, m2, ..., mh, ..., ms] to [m1, m2, ..., mh+1, ..., ms] for h = 1, · · · , s.

• Step 7. Computation of ψ(m+1)(r) by considering the increased dimensionality.

• Step 8. Finally, the computation of the mvFE can be expressed as follows [33]:

mvFE(X, τ, r, M, fs) = −ln

(
ψ(m+1)(r)

ψm(r)

)
. (3)

We have normalized each channels data to unit variance in order to maintain total variation same
for all the considered multivariate series as suggested in [23]. In this work time lag (τk) is considered
as 1 where as embedding dimension (mk) is taken as 2 for all the available channels. The value of
threshold parameter (r) has been taken as 0.15 multiplied with standard deviation of normalized
time series as suggested in [23]. The fuzzy power ( fs) is considered as 2 for computation of mvFE
according to [33].

4. TQWT Based Multivariate Sub-Band Fuzzy Entropy

In this work, we have computed the mvFE of the sub-band signals falling in the same
oscillatory levels. The sub-band signals of the individual channels have been obtained using
TQWT. The TQWT is a special type of DWT and has found a wide range of applicability in
biomedical signal analysis [37–41], bearing fault detection [42,43], and cross-terms reduction in
time-frequency distribution [44]. The TQWT is useful to analyse oscillatory signals by adjusting
input parameters—namely, Q, redundancy or over-sampling rate denoted by R [36], and number of
decomposition levels denoted by J. The brief description of the input parameters are as follows:

For oscillatory signal analysis, the value of the parameter Q should be chosen high, as a result the
wavelets generated will have more oscillations with narrow frequency responses as compared to their
center frequencies. The high Q value is used for analysing oscillatory signals. The lower value of Q is
used to analyse signals having piecewise smooth structures like transients. For a lower value of Q,
generated wavelets have fewer oscillations and wider frequency responses compared to their center
frequencies. The lower value of Q gives good frequency resolution in the low frequency region; on the
other hand, higher value of Q is useful to get good frequency resolution in the high frequency region
of the spectrum. This property of TQWT has been used to design a filter-bank that provides nearly
uniform resolution for all frequency components in [44]. The designed filter-bank has been studied for
the reduction of cross-terms in Wigner–Ville distribution based time-frequency analysis.

The parameter R localizes the wavelet in the time domain without changing its shape. For a fixed
Q value, the overlap of the adjacent frequency responses increases with increased value of the
redundancy parameter R. This results in the requirement of a higher number of levels to cover
the entire frequency region.

The TQWT is built by the concept of two channel filter bank operation. Let the high-pass and low-pass
scale factors be denoted by δ and γ, respectively, for the two-channel filter bank. The frequency response
corresponding to low-pass filter in TQWT mathematically expressed as [36]:

T0(ω) =


1, if |ω| ≤ (1− δ)π,

θ
(

ω+(δ−1)π
γ+δ−1

)
, if (1− δ)π < |ω| < γπ,

0, if γπ ≤ |ω| ≤ π.

(4)
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The frequency response of the high-pass filter in TQWT can be mathematically expressed as [36]:

T1(ω) =


0, if |ω| ≤ (1− δ)π,

θ
(

γπ−ω
γ+δ−1

)
, if (1− δ)π < |ω| < γπ,

1, if γπ ≤ |ω| ≤ π,

(5)

where θ(ω) is known as Daubechies filter frequency response [36]. Low-pass scale factor (0 < γ < 1)
and high-pass scale factor (0 < δ ≤ 1) are to be chosen in order to satisfy the condition γ + δ > 1.

The redundancy parameter (R), quality factor (Q), and maximum number of sub-bands (Jmax) of
TQWT are mathematically defined as [36]:

R =
δ

1− γ
; Q =

2− δ

δ
; Jmax =

[
log(δN/8)
log(1/γ)

]
, (6)

where N is the length of the analysed signal.
Detailed mathematical expressions of Q, R, center frequency ( fc) and bandwidth (B) of TQWT are

provided in [36].
The TQWT based multivariate sub-band fuzzy entropy is computed as follows:

1. All of the EEG signals corresponding to different channels are decomposed with the same input
parameters (Q, R, J) using TQWT. The sub-band signals are reconstructed by performing inverse
TQWT operation. This results in the same number of sub-band signals denoted by Ss

j (n) for
every individual channel. The indexes j and s correspond to decomposition level and channel
number, respectively.
Figure 2 presents the F type EEG signal and its sub-band signals, and Figure 3 shows the NF type
EEG signal and its associated sub-band signals obtained using TQWT (Q = 1; R = 3; J = 16).

2. The mvFE described in the previous section has been computed for the sub-band signals of the
same oscillatory levels belonging to different channels. As an example, sub-band 1 of different
channels are used to compute mvFE and so on.
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Figure 2. (a) Plot of F type EEG signal (channel “x”); (b–r) Plot of reconstructed sub-band signals
obtained using TQWT.
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Figure 3. (a) Plot of NF type EEG signal (channel “x”); (b–r) Plot of reconstructed sub-band signals
obtained using TQWT.

5. Results and Discussion

The Q-based multivariate sub-band fuzzy entropy described in the previous section has been
applied to 50 F and NF types of bivariate EEG signals. We have studied four different segments
of EEG signals of durations corresponding to 20 s, 10 s, 5 s, and 2 s, respectively, to find out the
statistical significance of the computed features over different time spans. Tables 1 and 2 present the
results of the statistical analysis of the computed features. We have performed the Kruskal–Wallis
statistical test [45] to find the statistical significance (p < 0.05) of the computed features in different
oscillatory levels of the analyzed signals. The Kruskal–Wallis statistical test has been used for finding
the statistical significance of the features computed from EEG signals [14,46]. In this paper, we have
fixed the redundancy parameter (R) as 3 and considered sufficiently many levels (at maximum J = 16)
for decomposition of EEG signals using TQWT. The Q parameter of TQWT has been varied from 1 to 4.
It should be noted that, with increased value of Q parameter, the number of levels of decomposition (J)
should also be increased to achieve sufficiently good resolution in low- and high-frequency regions of
the spectrum.

In this study, for 20 s and 10 s duration segmented EEG signals, J has been considered as 16.
For 5 s and 2 s duration segmented EEG signals, the maximum possible J has been considered as per
Equation (6). In Tables 1 and 2, we have reported the analysis of five sub-band signals that give the
highest statistical significance for the discrimination of F and NF types of EEG signals. We have also
reported the mean and standard deviation (SD) values of the proposed entropy features corresponding
to those sub-band signals. It has been observed from Tables 1 and 2 that neither of the entropy
features by themselves sufficiently quantify the differences of F and NF kinds of EEG signals. In a
few cases, the overlap of the computed entropy features are significantly high. This implies that a
simple threshold applied on these parameters will not be sufficient to distinguish F and NF groups of
EEG signals.
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Table 1. Statistical analysis results of the proposed TQWT based multivariate sub-band fuzzy entropy computed for 20 s and 10 s duration segments.

Q 20 s 10 s

1

SB number SB 3 SB 4 SB 5 SB 6 SB 2 SB 3 SB 4 SB 5 SB 2 SB 6
F: Mean (SD) 0.359 (0.086) 0.288 (0.083) 0.223 (0.076) 0.174 (0.065) 0.412 (0.100) 0.366 (0.086) 0.296 (0.085) 0.233 (0.081) 0.417 (0.102) 0.185 (0.071)

p-value 1.29 × 10−11 3.92 × 10−8 1.55 × 10−6 7.43 × 10−6 1.28 × 10−5 4.22 × 10−10 3.63 × 10−7 1.50 × 10−5 1.38 × 10−4 2.95 × 10−4

NF: Mean (SD) 0.455 (0.039) 0.380 (0.068) 0.307 (0.081) 0.2417 (0.073) 0.4931 (0.04) 0.452 (0.048) 0.378 (0.072) 0.306 (0.085) 0.488 (0.048) 0.242 (0.078)

2

SB number SB 6 SB 7 SB 5 SB 8 SB 9 SB 7 SB 6 SB 8 SB 5 SB 9
F: Mean (SD) 0.377 (0.083) 0.329 (0.084) 0.389 (0.081) 0.295 (0.082) 0.256 (0.08) 0.338 (0.086) 0.387 (0.084) 0.301 (0.083) 0.392 (0.081) 0.266 (0.086)

p-value 3.64 × 10−11 4.59 × 10−11 3.22 × 10−8 6.74 × 10−8 1.26 × 10−6 3.93 × 10−9 1.29 × 10−8 1.24 × 10−7 1.44 × 10−7 8.73. × 10−6

NF: Mean (SD) 0.464 (0.032) 0.431 (0.049) 0.471 (0.032) 0.384 (0.063) 0.341 (0.074) 0.43 (0.054) 0.463 (0.043) 0.382 (0.066) 0.467 (0.042) 0.341 (0.079)

3

SB number SB 9 SB 10 SB 8 SB 11 SB 7 SB 10 SB 8 SB 9 SB 11 SB 12
F: Mean (SD) 0.374 (0.081) 0.337 (0.083) 0.397 (0.078) 0.314 (0.083) 0.388 (0.086) 0.346 (0.085) 0.403 (0.074) 0.387 (0.084) 0.321 (0.087) 0.295 (0.085)

p-value 7.63 × 10−11 8.36 × 10−11 3.32 × 10−9 3.32 × 10−9 7.70 × 10−7 4.83 × 10−9 2.75 × 10−8 3.77 × 10−8 6.00 × 10−8 1.66 × 10−6

NF: Mean (SD) 0.459 (0.034) 0.438 (0.047) 0.474 (0.033) 0.405 (0.057) 0.465 (0.035) 0.438 (0.055) 0.471 (0.045) 0.459 (0.044) 0.405 (0.063) 0.373 (0.069)

4

SB number SB 13 SB 12 SB 11 SB 14 SB 10 SB 13 SB 11 SB 14 SB 12 SB 15
F: Mean (SD) 0.343 (0.081) 0.372 (0.080) 0.393 (0.079) 0.326 (0.082) 0.399 (0.076) 0.352 (0.084) 0.401 (0.081) 0.334 (0.089) 0.383 (0.084) 0.311(0.081)

p-value 1.15 × 10−10 1.32 × 10−10 1.5 × 10−10 4.09 × 10−9 5.78 × 10−8 6.45 × 10−9 1.10 × 10−7 2.91 × 10−7 3.49 × 10−7 7.98 × 10−7

NF: Mean (SD) 0.441 (0.046) 0.457 (0.038) 0.473 (0.034) 0.414 (0.053) 0.468 (0.032) 0.441 (0.056) 0.473 (0.048) 0.415 (0.059) 0.457 (0.048) 0.384 (0.066)

Table 2. Statistical analysis results of the proposed TQWT based multivariate sub-band fuzzy entropy computed for 5 s and 2 s duration segments.

Q 5 s 2 s

1

SB number SB 3 SB 4 SB 2 SB 5 SB 6 SB 3 SB 2 SB 4 SB 5 SB 6
F: Mean (SD) 0.367 (0.084) 0.306 (0.083) 0.414 (0.104) 0.243 (0.077) 0.195 (0.073) 0.370 (0.079) 0.410 (0.104) 0.322 (0.081) 0.255 (0.075) 0.202 (0.069)

p-value 6.83 × 10−10 2.95 × 10−6 2.04 × 10−5 2.30 × 10−5 5.82 × 10−4 4.24 × 10−8 1.13 × 10−4 1.63 × 10−4 1.77 × 10−4 3.20 × 10−4

NF: Mean (SD) 0.455 (0.051) 0.3789 (0.069) 0.489 (0.051) 0.315 (0.084) 0.251 (0.076) 0.446 (0.064) 0.480 (0.069) 0.377 (0.071) 0.315 (0.081) 0.259 (0.079)

2

SB number SB 6 SB 7 SB 5 SB 8 SB 10 SB 6 SB 7 SB 5 SB 8 SB 10
F: Mean (SD) 0.387 (0.085) 0.343 (0.088) 0.396 (0.089) 0.316 (0.083) 0.239 (0.077) 0.392 (0.079) 0.355 (0.083) 0.394 (0.095) 0.339 (0.081) 0.256 (0.081)

p-value 2.35 × 10−8 5.35 × 10−8 1.72 × 10−6 1.90 × 10−6 3.53 × 10−5 3.73 × 10−6 1.06 × 10−5 5.19 × 10−5 2.3 × 10−3 4.3 × 10−3

NF: Mean (SD) 0.464 (0.049) 0.433 (0.056) 0.468 (0.047) 0.386 (0.064) 0.307 (0.083) 0.457 (0.064) 0.424 (0.073) 0.461 (0.069) 0.387 (0.068) 0.301 (0.076)

3

SB number SB 10 SB 11 SB 9 SB 8 SB 12 SB 10 SB 8 SB 9 SB 7 SB 11
F: Mean (SD) 0.349 (0.085) 0.333 (0.087) 0.389 (0.083) 0.407 (0.078) 0.312 (0.082) 0.362 (0.084) 0.402 (0.084) 0.406 (0.081) 0.402 (0.105) 0.363 (0.092)

p-value 1.64 × 10−8 1.39 × 10−7 4.84 × 10−7 3.38 × 10−6 2.38 × 10−5 1.45 × 10−5 4.62 × 10−5 1.8 × 10−3 2.0 × 10−3 5.5 × 10−3

NF: Mean (SD) 0.442 (0.059) 0.413 (0.061) 0.462 (0.049) 0.469 (0.054) 0.377 (0.070) 0.429 (0.077) 0.464 (0.074) 0.453 (0.069) 0.458 (0.073) 0.415 (0.080)

4

SB number SB 13 SB 14 SB 12 SB 11 SB 10 SB 11 SB 10 SB 9 SB 8 SB 2
F: Mean (SD) 0.354 (0.084) 0.345 (0.088) 0.386 (0.087) 0.401 (0.089) 0.410 (0.081) 0.405 (0.090) 0.405 (0.091) 0.409 (0.108) 0.391 (0.112) 0.183 (0.136)

p-value 1.58 × 10−8 4.58 × 10−8 9.51 × 10−7 8.73 × 10−6 1.06 × 10−5 2.95 × 10−4 5.82 × 10−4 3.15 × 10−2 6.27 × 10−2 7.09 × 10−2

NF: Mean (SD) 0.447 (0.064) 0.427 (0.055) 0.460 (0.049) 0.471 (0.055) 0.466 (0.052) 0.461 (0.076) 0.463 (0.078) 0.455 (0.078) 0.441 (0.081) 0.228 (0.135)
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It is clearly observed from Tables 1 and 2 that mvFE computed for NF types of EEG signals are
higher than the F types of EEG signals in every considered segment for analysis. This supports the
findings of the previous works studied using this database [18]. To present the comparison of the
features in different considered segments, it has been found that with increased segment duration,
the computed p-values are significantly lower than those for shorter segment durations. This implies
that proposed Q-based multivariate sub-band fuzzy entropy features give better discrimination with
longer segment size. The variation of the Q-parameter puts a significant impact on the computed
features in different oscillatory levels. For a lower value of Q (Q = 1), the p-values obtained for lower
order sub-band signals are significantly lower than the p-values computed for higher order sub-band
signals with mvFE features. When Q is chosen as high (Q = 4), the mvFE features computed for
higher order sub-band signals are statistically more significant to discriminate F and NF types of EEG
signals. We have used confidence interval (CI) plots for showing the discrimination between F and NF
types of EEG signals. In [47], CI plots were used for the discrimination of seizure, seizure-free, and
healthy groups of EEG signals. In Figures 4–7, we have shown the CI plots (99% confidence limits of
the mean value) for different time segmented signals with different quality factors (Q varies from 1
to 4), where red and blue lines represent the F and NF groups of EEG signals. In Figure 4, we have
shown the CI plot (with 99% confidence) for different values of the Q parameter when signal duration
of 20 s is considered. It is clear from Figure 4 that with increased value of the Q parameter, the mvFE
gives more discrimination in higher order sub-bands. It should be noted that we have not achieved
significant discrimination in the first (highest frequency) and last (lowest frequency) sub-band signals
irrespective of the value of Q parameter used. Figures 5–7 show the CI plots (99% confidence) for
10 s, 5 s, and 2 s duration segmented EEG signals, respectively. It can be noticed from Figures 5–7
that the discriminating ability of the proposed entropy features get reduced for shorter duration of
the EEG signals. From the CI plot of Figure 7, it is obvious that F and NF groups of EEG signals
are not distinguishable in most of the sub-band signals using 2 s duration segmented signals. Thus,
keeping in mind the outcome of the above statistical analysis on 50 F and 50 NF EEG signals using
our proposed features, we have considered 20 s signal duration to classify F and NF groups of EEG
signals. It should be noted that all the available signals (3750 F and 3750 NF) in the Bern–Barcelona
EEG database have been considered for classification work. To find the optimal subset of features,
we have applied a wrapper based feature selection technique [48] available in the WEKA machine
learning toolbox (Weka 3.6.13, University of Waikato, Hamilton, New Zealand) [49]. Finally, we have
used two classifiers—namely, random forest classifier [50] (available in WEKA) and least squares
support vector machine classifier (LS-SVM) [51] with Morlet wavelet [14,52] and radial basis function
(RBF) kernels. The chosen values of kernel parameters ω and a for Morlet wavelet kernel are 0.5 and 6,
respectively. The RBF [14] kernel parameter σ = 1 has been selected in this work. The performance
of the proposed feature extraction method with the mentioned classifiers has been evaluated with a
10-fold cross-validation method [53]. The use of a 10-fold cross-validation method for the classification
of biomedical signals is advantageous [14,54].

Finally, we have computed three classification performance parameters [55]—namely, accuracy
(Acc), sensitivity (Sens), and specificity (Spec). These parameters are defined as, Acc = (TP + TN)/(TP
+ TN + FP + FN), Sens = TP/(TP + FN), and Spec = TN/(TN + FP), where TP counts the number
of truly detected F EEG signals, TN denotes the number of truly classified NF EEG signals, FN is
the number of misclassified F EEG signals, and FP counts the number of wrongly classified NF EEG
signals. In Table 3, we have presented the computed Acc, Sens, and Spec values of the mentioned
classifiers for different considered value of Q parameter. It has been found from our current study
that for each considered values of Q parameter, the performance of LS-SVM classifier is better than
random forest classifiers in terms of the computed classification performance parameters—namely,
Acc, Sens, and Spec. The highest obtained classification accuracy of random forest classier is 83.2%
for Q = 1. The LS-SVM classifier achieved the highest classification accuracy of 84.67% with Morlet
wavelet kernel for Q = 2. It is clear from Table 3 that obtained classification accuracies of LS-SVM
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classifier with RBF kernel for different values of Q parameters are slightly lower as compared with
LS-SVM classifier with Morlet wavelet kernel. In the previous classification works [17–19,21] using this
database, authors combined multiple entropy features to classify F and NF EEG signals. They averaged
the computed entropy features in order to measure the complexity of bivariate F and NF EEG signals.
However, in this work, we have used only mvFE to discriminate F and NF EEG signals. It should be
noted that in spite of moderate values of the evaluated classification parameters, the proposed feature
extraction method provided the platform to compute multivariate sub-band entropies for measuring
the signal complexity in different frequency scales. Moreover, the filtering parameters (Q, R, and J) can
be tuned optimally to achieve better discrimination between two classes of signals. Thus, the proposed
multivariate sub-band entropy features can also be computed to measure the complexity of other
multivariate signals of interest. In the future, other existing entropy features can also be explored in the
proposed framework to measure the complexity of multivariate signals in multiple oscillatory levels.
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Figure 4. Confidence interval plot of proposed TQWT based multivariate sub-band fuzzy entropy with
99% confidence for 20 s signal duration. (a) For Q = 1; R = 3; J = 16; (b) For Q = 2; R = 3; J = 16;
(c) For Q = 3; R = 3; J = 16; (d) For Q = 4; R = 3; J = 16.
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Figure 5. Confidence interval plot of proposed TQWT based multivariate sub-band fuzzy entropy with
99% confidence for 10 s signal duration. (a) For Q = 1; R = 3; J = 16; (b) For Q = 2; R = 3; J = 16;
(c) For Q = 3; R = 3; J = 16; (d) For Q = 4; R = 3; J = 16.
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Figure 6. Confidence interval plot of proposed TQWT based multivariate sub-band fuzzy entropy with
99% confidence for 5 s signal duration. (a) For Q = 1; R = 3; J = 16; (b) For Q = 2; R = 3; J = 16;
(c) For Q = 3; R = 3; J = 16; (d) For Q = 4; R = 3; J = 15.
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Figure 7. Confidence interval plot of proposed TQWT based multivariate sub-band fuzzy entropy with
99% confidence for 2 s signal duration. (a) For Q = 1; R = 3; J = 16; (b) For Q = 2; R = 3; J = 16;
(c) For Q = 3; R = 3; J = 16; (d) For Q = 4; R = 3; J = 11.

Table 3. Evaluated classification performance parameters using the proposed multivariate sub-band
fuzzy entropy features.

Q
Random Forest LS-SVM LS-SVM

(Morlet Wavelet Kernel) (RBF Kernel)

Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%) Acc (%) Sens (%) Spec (%)

1 83.20 85.10 81.30 83.37 83.14 83.60 82.81 81.62 84
2 83.1 84.6 81.6 84.67 83.86 85.46 84.11 82.64 85.57
3 81.9 82.6 81.1 82.88 82.45 83.31 82.65 81.41 83.89
4 80.9 81.8 80.1 83.48 83.20 83.76 82.80 81.28 84.32
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6. Conclusions

A Q-based multivariate sub-band fuzzy entropy has been proposed in this paper. The proposed
entropy measure is based on the TQWT method. The proposed method was applied for the
discrimination of F and NF types of EEG signals. To evaluate the statistical significance of the proposed
features, the Kruskal–Wallis statistical test was applied. The proposed feature extraction method has
been applied to different time-segmented EEG signals. It was found that the computed mvFE features
are statistically more significant for longer duration EEG signals. The proposed feature extraction
method decomposed EEG signals prior to the computation of mvFE. Thus, different values of the
Q parameter generated distinct filter banks and resulted in distinct entropy values. The effectiveness
of the proposed feature extraction method was presented using CI plots for different time segmented
signals to discriminate F and NF types of EEG signals. Finally, we have used two classifiers to evaluate
the discrimination ability of our proposed feature extraction method.

The proposed TQWT parameter based mvFE has provided statistically significant discrimination
between F and NF classes of EEG signals. The developed method needs to be studied in a large EEG
database that includes recordings of long durations from a larger number of subjects before applying
it for clinical purposes. It should be noted that the proposed TQWT based mvFE structure is not only
limited for analysis of bivariate F and NF EEG signals but can also find applicability in other classes of
multivariate physiological signals corresponding to normal and abnormal classes.
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