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Abstract: Numerical investigation of the effects of magnetic field strength, thermal radiation, Joule
heating, and viscous heating on a forced convective flow of a non-Newtonian, incompressible
power law fluid in an axisymmetric stretching sheet with variable temperature wall is accomplished.
The power law shear thinning viscosity-shear rate model for the anisotropic solutions and the
Rosseland approximation for the thermal radiation through a highly absorbing medium are
considered. The temperature dependent heat sources, Joule heating, and viscous heating are
considered as the source terms in the energy balance. The non-dimensional boundary layer equations
are solved numerically in terms of similarity variable. A parameter study on the Nusselt number,
viscous components of entropy generation, and thermal components of entropy generation in fluid is
performed as a function of thermal radiation parameter (0 to 2), Brinkman number (0 to 10), Prandtl
number (0 to 10), Hartmann number (0 to 1), power law index (0 to 1), and heat source coefficient
(0 to 0.1).

Keywords: thermal radiation; forced convection; entropy generation; viscous dissipation; power law;
stretching sheet

1. Introduction

The study of the axisymmetric flow of a power-law fluid past a stretching sheet from the
perspective of the thermodynamic and forced convective heat transfer aspects happens in many
applications such as the polymer industry [1], metallic plate cooling [2], plastic sheet drawing [3],
drawing of wire and fiber [4], hot rolling [5], paper fabrication [6], aerodynamics [7], etc. The heat

Entropy 2017, 19, 94; doi:10.3390/e19030094 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 94 2 of 22

transfer occurrence is an important criterion in such applications as the nature of the final product
is dependent on the heat transfer rate [8–10]. There are some studies that consider the control of
the temperature and velocity fields for the axisymmetric power-law fluid flow of a past a stretching
sheet without allowing for the thermal radiation [11,12], whereas on the other hand, heat transfer by
concurrent radiation and convection is significant in numerous circumstances [13,14].

Considering its scientific applications, Crane [15] initiated the study on boundary layer flow in
cylindrical coordinates owing to a stretching cylinder. Crane’s work was advanced in heat transmission
by Wang [16], viscid effects by Burde [17] and Ishak [18,19], stagnation point special effects by
Mastroberardino [20] and Weidman and Ali [21], slip effects by Wang and Ng [22], oscillation by
Munawar et al. [23], hydromagnetic effects and permeable wall by Vajravelu et al. [24], haemodynamic
applications by Joodaki et al. [25] and Forman et al. [26,27], optimum length of artery rings [28],
stretching wall in vascular development by Jones [29], wall-blood interactions by Das et al. [30], etc.

Entropy generation effects in polymer applications [31–33] due to flow and heat transfer over
stretching flat plates in Cartesian coordinates have been investigated by numerous researchers [34–41].
On the other hand, a smaller number of investigations are considered in collected works concerning the
study of entropy generation effects in flow over stretching surfaces in cylindrical coordinates [42,43] in
comparison with Cartesian coordinate studies.

In the current paper, an optically thick (highly absorbing medium) incompressible power law
fluid passes a radially stretching sheet. The radiative properties of various polymers are presented
in [44]. The index of refraction as a function of wavelength for various polymers was decreased
uniformly by increases of the wavelength and the index of refraction as a function of temperature
for PMMA (λ = 589.3 nm) and a critical point was observed at 105 ◦C [44]. In addition, ultraviolet
light transmission through PMMA increased with the increase in wavelength and the transmissivity of
CAB, PC and glass as a function of wavelength is changed through all wavelength domains.

The mechanical and thermo-physical properties of polymer liquid crystals used in this manuscript
were obtained from [45] with respect to the Rosseland approximation [46]. The numerical procedure
from standard routines [47] is compared with previous works on MHD flow of a variable viscosity
nanofluid over a radially stretching convective surface with radiative heat [48–51]. Various fluids
such as Sisko Fluid [52] are investigated with various models such as the multiscale [53] and
hybrid molecular continuum methods [54,55], in porous media [56] and parallel plate confining
boundaries [57] and slip law effects [58] with nanoparticles [59]. The deriving forces of some flows
come from propagation of viscous gravity flows [60,61] with the opposing force of a porous media
matrix [60,62–74].

Considering all the above, the goal of the present article was to investigate entropy production in
a steady state fully developed forced convection incompressible flow over an axisymmetric stretching
sheet such that the stretching wall is subjected to different wall temperatures and the Rosseland
approximation model. The effects of thermal radiation coefficient, Prantdl number, Hartmann number,
and Brinkmann number on entropy generation are investigated numerically and the results are
interpreted using graphs.

2. Governing Equations

Shrinkage is the contraction of a molded part as it cools after injection. Most of this is inherent
shrinkage that occurs in the mold process while cooling and a small amount of shrinkage occurs
after ejection as the part continues to cool, especially for Delrin (an acetal homopolymer with
an excellent balance of properties that bridges the gap between metal and plastic). Stretching,
as an opposite phenomena to control the shrinkage and cure the residual stress, is important
in practice and applications such as injection and mold opening tolerance [44,45]. Typical
shrink rates vary between 0.001/in/in and 0.020/in/in with the most common being around
0.006/in/in (ABS = 0.005–0.007, acetal = 0.018–0.025, acrylic = 0.002–0.008, nylon 6 = 0.006–0.014,
nylon 66 = 0.012–0.018, polycarbonate = 0.005–0.007, PET = 0.005–0.012, polyethylene = 0.015–0.050,
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polypropylene = 0.010–0.025, PP (30% glass) = 0.004–0.0045, polystyrene = 0.002–0.006, PS (30% glass) =
0.0005–0.0010, PVC = 0.003–0.0008). In addition, an asymmetrical shrinkage resin is used for common
tolerances ranges of isotropic plastics. For example polymers filled with long glass fibers which shrink
more in the cross (transverse) direction than the longitudinal (flow) direction should not be used for
round holes and core pins. To study the critical thermodynamics aspects of laminar power law flow
over an infinitely radially stretching sheet, an axisymmetric 2-dimensional sketch as shown in Figure 1
is well considered. The fluid is considered non-Newtonian and incompressible. As exemplified,
the fluid in contact with the surface of the non-permeable stretching sheet will travel along with the
sheet without any slippage.
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Meanwhile some polymers have outstanding optical properties and are easy to mold and form
into any shape; they are frequently used to substitute transparent materials, for instance inorganic glass.
Polymers have been introduced into a diversity of applications, for instance automotive headlights,
signal light covers, optical fibers, imitation jewelry, chandeliers, toys and home appliances.

Organic materials like polymers are also an excellent choice for high impact applications where
inorganic materials such as glass would easily shatter. Conversely, as a result of the difficulties
encountered in upholding dimensional stability, they are not apt for precision optical needs. Additional
drawbacks include lower scratch resistance, when associated to inorganic glasses, making them
impractical for certain applications, for instance automotive windshields. The r- and z-components of
the velocity at any point are denoted by v and u; while the stretching sheet (z = 0) is maintained at the
uniform temperatures Tw, respectively. The temperature difference between the medium temperature,
T∞, and the stretching sheet, Tw, is also assumed to be high enough to induce heat transfer due to
radiation. Since an infinitely large medium is assumed, the flow velocity at far distances from the plate
is assumed to be zero. In cylindrical coordinates the continuity is (by the assumptions of vφ = 0 and vzz

� vrr):
∂v
∂r

+
v
r
+

∂u
∂z

= 0 (1)

where (u, v) are the velocity components in the (z, r) directions. The normal to the sheet magnetic
field which is applied on the fluid is used for the control of velocity profile of the mold near the sheet.
Magneto hydrodynamics (MHD) forces (or hydromagnetics) are a kind of Lorentz force created in
electrically conducting fluids with magnetic properties. The external magnetic fields can produce
currents in the moving conductive fluid near the sheet, which in turn polarizes the fluid but is not strong
enough to affect the external magnetic field. The set of equations that describe MHD are a combination
of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. In
cylindrical coordinates the momentum equations is (by the assumptions of vφ = 0 and vzz � vrr):

ρ

(
v

∂v
∂r

+ u
∂v
∂z

)
=

∂

∂z

(
K
∣∣∣∣∂v

∂z

∣∣∣∣n−1 ∂v
∂z

)
− σB2v (2)
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where (u, v) are the velocity components in the (z, r) directions, ρ is the fluid density, σ is the fluid
electric conductivity, K is the flow consistency index and n is the power law index. The power law
model is a simple model that accurately represents the shear thinning region in the viscosity versus
strain rate curve, but neglects the Newtonian plateau present at small strain rates. For n = 1 the fluid is
Newtonian, with a dynamic coefficient of viscosity k. For n > 1 the behavior of the fluid is dilatant or
shear-thickening (rare in polymer cases) and for 0 < n < 1 the behavior is shear-thinning. The power
law indexes for common thermoplastics at ordinary mold temperatures are: n = 0.41 for high density
polyethylene, n = 0.39 for low density polyethylene, n = 0.66 for polyamide, n = 0.98 for polycarbonate,
n = 0.38 for polypropylene, n = 0.28 for polystyrene, n = 0.26 for polyvinyl chloride.

The maximum temperatures reached at a specific pressure loss and flow rate are a design variable
in mold extrusion processes to ensure an economically feasible system. Here the heat is considered to
be produced by Joule heating, viscous heating, radiative heating, and temperature dependent sources.
The applied external magnetic field which polarized the fluid causes the Joule heating in it. This heat
source term, also known as Ohmic heating and resistive heating, is the process by which the passage of
an electric current through a conductor releases heat. The amount of heat released is proportional to the
square of the current. This relationship is known as Joule’s first law or the Joule–Lenz law. The viscous
heating in polymers is also caused by dispersive and distributive mixing heads during extrusion.

The energy equation for thermal radiative absorbance of thermal radiation in a semi-transparent
gray medium is assumed here to be reigned by the Rosseland approximation [46] for conductive
radiative heat flux. The diffusion approximation is extremely convenient to use. The equation of
energy is:

ρCp

(
v

∂T
∂r

+ u
∂T
∂z

)
=

∂

∂z

(
k

∂T
∂z
− ∂qr

∂z

)
+ K

∣∣∣∣∂v
∂z

∣∣∣∣n+1
+ σB2v2 + Q(T − Tre f ) (3)

The last term in Equation (3) is a linearized internal heating source which can affect the injection
molding process and the final product. This term is considered to be increased by any increase of
temperature as the increase of temperature can increase the chemical reaction rates and physical
collisions between polymer chains. Following the Rosseland approximation (for the case of an optically
thin grey medium) with radiative heat flux qr in Equation (3) is modeled as:

qr = −
4σ∗
3χ

∂T4

∂z
, (4)

where σ* and χ are the Stephan-Boltzman constant and the Rosseland-mean absorption coefficient
(for absorption, scattering, and/or extinction) of the optically thick medium, respectively. As the
differences within the flow are such that T4 can be expressed as a linear function of temperature,
T4 = T4

∞ + 4T3
∞(T − T∞) + . . ., expanding T4 in a Taylor series about T∞ and neglecting higher order

terms thus:
T4 ≈ 4T3

∞T − 3T4
∞. (5)

One may define a radiative conductivity. This model is more valuable for the optically thick
medium with optical thickness (χ × r) greater than 3 and the boundary layer equation that governs
the heat transfer phenomenon is written as [38]:

ρCp

(
v

∂T
∂r

+ u
∂T
∂z

)
=

∂

∂z

(
k

∂T
∂z

+
4σ∗

3χ

∂
(
n2T4)
∂z

)
+ K

∣∣∣∣∂v
∂z

∣∣∣∣n+1
+ σB2v2 + Q(T − T∞) (6)
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where T is the medium temperature, k is the thermal conductivity of the fluid, µ is the viscosity of
the fluid, σ is the Stefan-Boltzmann constant, and n is the refractive index. The associated boundary
conditions at the solid walls and infinity are:

v(z = 0) = cr1/3 (7)

v(z = ∞) = 0 (8)

u(z = 0) = 0 (9)

T(z = 0) = Tw (10)

T(z = ∞) = T∞ (11)

The system of Equations (1), (2) and (6)–(11) can be solved numerically or analytically. Similar
equations are solved in other studies by numerical methods [47–49] or analytical series solution
methods [45]. In thermodynamics, entropy is a measure of disorder and defined as a degree of the
number of specific means where a thermodynamic system could be settled. The entropy is a state
function and its alteration is associated to the initial and final state. In keeping with the Second Law
of Thermodynamics, the entropy of an insulated system on no condition decreases; such a system
will automatically change in the direction of thermodynamic equilibrium, the arrangement with
maximum entropy. The present system which is not isolated and has irreversible processes that
decrease in entropy provided they increase the entropy of its surroundings by at least that same
quantity (increasing the combined entropy of the system and its environment).

The irreversibility in the boundary layer flow of a blood fluid has two components of energy
and momentum. Consequently, local volumetric entropy production may occur as a result of fluid
friction and heat transfer in the direction of finite temperature gradients. Following Jamalabadi [50],
the volumetric rate of entropy generation is given by:

.
S′′′ g =

1
T2

∞

(
k

∂T
∂z

+
16T3

∞n2σ∗

3χ

∂T
∂z

)(
∂T
∂z

)
+

K
T∞

∣∣∣∣∂v
∂z

∣∣∣∣n+1
+

σB2v2

T∞
+ Q(

T
T∞
− 1) (12)

The first term in Equation (12) refers to the heat transfer irreversibility and the second term
symbolizes the local entropy generation rate due to fluid friction, correspondingly. As well the third
term is produced by magneto-hydrodynamic (MHD) effects while the forth term is the contribution of
the internal heat source.

The equivalent stream formulations of momentum and energy equations are:

1
r2

∂2ψ

∂r∂z
∂ψ

∂z
− 1

r3

(
∂ψ

∂z

)2
− 1

r2
∂ψ

∂r
∂2ψ

∂z2 =
K
ρ

(
−1

r

)n ∂

∂z

(∣∣∣∣∂2ψ

∂z2

∣∣∣∣n−1
∂2ψ

∂z2

)
+

σB2

ρr
∂ψ

∂z
(13)

1
r

∂ψ
∂r

∂θ
∂z −

1
r

∂ψ
∂z

∂θ
∂r = k

ρCp
∂2θ
∂z2 (1 + NR) +

K
ρCp(Tw−T∞)

∣∣∣− 1
r

∂2ψ

∂z2

∣∣∣n+1
+ σB2

ρCp(Tw−T∞)r2

(
∂ψ
∂z

)2
+ Q

ρCp
θ (14)

where ψ denotes the stream function and is defined as:

v = −1
r

∂ψ

∂z
(15)

u =
1
r

∂ψ

∂r
(16)

where θ denotes the dimensionless temperature and is defined as:

θ =
T − T∞

Tw − T∞
(17)
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and NR is 16kR where kR is the radiation conductivity:

kR =
σ∗n2(Tw − T∞)3

3kχ
(18)

Since Equation (13) is a parabolic partial differential equation and since there is no geometric
length scale in the problem, a similarity type of solution will be sought. The r component of velocity
will have the following functional form:

v = cr1/3 f ′(η) (19)

where η is the similarity variable, f is the dimensionless stream function, and the prime denotes
differentiation with respect to η, but when η is constant, v should be constant. By introducing the
ansatz of:

η = αrpz (20)

and:
ψ = βrq f (η) (21)

we find the radial velocity component from Equation (15) as:

v = −1
r

∂ψ

∂z
= − βrq

r
f ′(η)

∂η

∂z
= − βrq

r
f ′αrp (22)

comparing Equation (19) and Equation (22) results in:

c = −αβrp+q−4/3 (23)

or:
β =
−c
α

(24)

and:
p = 4/3− q (25)

respectively. Then Equation (21) can be rewritten as:

ψ =
−c
α

r4/3−q f (η) (26)

As well the other component of velocity from Equation (16) is:

u =
1
r

∂ψ

∂r
= βrq−2(q f (η) + pη f ′(η)

)
(27)

then the components of Equation (2) are:

v
∂v
∂r

= c2r−1/3 f ′
(

f ′

3
+ pη f ′′

)
, (28)

u
∂v
∂z

= −c2r−1/3 f ′′
(
q f + pη f ′

)
, (29)

∂

∂z

(∣∣∣∣∂v
∂z

∣∣∣∣n−1 ∂v
∂z

)
= αn+1cnrn/3+p(1+n)n| f ′′ |n−1 f ′′′ (30)

substituting the stream function from Equation (26) in Equation (13) results in:

ρ
(

c2r−1/3 f ′
(

f ′
3 + pη f ′′

)
− c2r−1/3 f ′′ (q f + pη f ′)

)
= Kαn+1cnrn/3+p(1+n)n| f ′′ |n−1 f ′′′ − σB2cr1/3 f ′ (31)
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or in a simpler form:

f ′2

3
− f f ′′ q =

Kαn+1cn−2

ρ
r(1/3+p)(1+n)n| f ′′ |n−1 f ′′′ − σB2

ρc
r2/3 f ′ (32)

by equating the power of the r in viscous term similar to the inertia term in Equation (32) the following
equality for “p” is derived:

nm + p(n + 1) = −1/3 (33)

that is:
p = −1/3, q = 5/3 (34)

as well by equating the order of the coefficient of the highest degree terms of ‘f ’ in viscous term similar
to the inertia term in Equation (32) the following equality for ‘α’ is derived:

α =
n+1

√
5ρc2−n

3Kn
(34)

Since the similarity variable is:

η =

(
5ρc2−n

3Kn

) 1
n+1

r1/3z (35)

The resulted axial velocity component from Equations (28) and (34) is:

u = − n+1

√
3Knc2n−1

5ρ

r−1/3(5 f − η f ′)
3

(36)

Although the similarity parameter η, is independent of the radial coordinate when it describes
the motion of a Newtonian fluid (in the case n = 1), the velocity is linearly dependent on the radial
coordinates as stated by Equation (19). To explore the physical meaning of the results of the similarity
solution in a Newtonian case with variable viscosity see Makinde et al. [48].

As well, for values of n < 1, the similarity variable is an increasing function of both variables “r”
and “z”. This fact seems to be in contrast to the similarity variable in Cartesian coordinate which is a
ratio between the variables “y” and “x” (Blasius boundary layer). Again, those figures with n < 1 are
physically inadmissible. This difference between the cylindrical coordinates and Cartesian coordinates
is not essential as in a similarity solution we look for a solution in which at least one coordinate lacks a
distinguished origin; more physically, it describes a flow which “looks the same” either at all times,
or at all length scales.

In addition, based on the Equation (32) the magnetic field distribution should be in the form of:

B = B0r−1/3 (37)

to have a similarity solution for the problem.
According to the similarity variable found in Equation (35), by substituting the stream function

from Equation (21) in left hand side of Equation (14) results in:

1
r

∂ψ

∂r
∂θ

∂z
− 1

r
∂ψ

∂z
∂θ

∂r
= −5cr−2/3

3
f θ′ (38)
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According to the similarity variable found in Equation (35), by substituting the stream function
from Equation (21) in left hand side of Equation (14) results in:

k
ρCp

∂2θ
∂z2 (1 + NR) +

K
ρCp(Tw−T∞)

∣∣∣− 1
r

∂2ψ

∂z2

∣∣∣n+1
+ σB2

ρCp(Tw−T∞)r2

(
∂ψ
∂z

)2
+ Q

ρCp
θ

= k
ρCp

θ′′ α2r−2/3(1 + NR) +
K

ρCp(Tw−T∞) |cα f ′′ |n+1 + σB0
2r−2/3

ρCp(Tw−T∞)

(
cr1/3

)2
+ Q

ρCp
θ

(39)

In addition, based on Equation (39) the heat source coefficient distribution should be in the
form of:

Q = Q0r−2/3 (40)

and the temperature distribution as:

Tw = T∞ + ∆T · r2/3 (41)

to have a similarity solution for the problem.
In order to elucidate the physical principle, in this paper the non-dimensionalized variables are

presented. The non-dimensional parameters which arise are:
Dimensionless heat source number:

Q̂ =
Q0

k
n+1

√
9K2n2c2n−4

25ρ2 (42)

Prandtl group is used for thermal boundary layer thickness (the ratio of momentum diffusivity to
thermal diffusivity):

Pr =
Cp

k
n+1

√
9ρn−1K2n2c3n−3

25
(43)

for contribution of the convective heat transfer the Peclet number is used (the ratio of the thermal
energy convected to the fluid to the thermal energy conducted within the fluid):

Pe = ρKcnαn+1 (44)

The effect of the applied magnetic field can measured by the Hartman number (the ratio of
electromagnetic force to the viscous force):

Ha = B0

√
σ

ρc
(45)

The Brinkman number is used to determine the relative importance between dissipation effects
and fluid conduction effects (the ratio between heat produced by viscous dissipation and heat
transported by molecular conduction. i.e., the ratio of viscous heat generation to external heating):

Br =
Kcn+1αn−1

k∆T
(46)

The Bejan number proposed to measure the ratio of heat transfer irreversibility divided by total
irreversibility due to heat transfer and fluid friction for the power-law non-Newtonian boundary layer
flow. The Bejan number is given by:

Be =
1

T2
∞

(
k + 16T3

∞n2σ∗

3χ

)(
∂T
∂z

)2

1
T2

∞

(
k + 16T3

∞n2σ∗
3χ

)(
∂T
∂z

)2
+ K

T∞

∣∣∣ ∂v
∂z

∣∣∣n+1
+ σB2v2

T∞
+ Q( T

T∞
− 1)

(47)
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and finally, the entropy generation number:

Ns =

.
S′′′ g

Kcn+1/T∞
(48)

In general, the entropy generation number proposed by Bejan and the entropy generation per
unit amount of heat transferred are not same. The entropy generation number is to evaluate the
irreversibility of heat process and is proposed which is in consistent with the entropy generation per
unit amount of heat transferred in entropy generation analysis.

Substituting various derivatives that appear in the boundary-layer Equations (9) and (10), and
considering dimensionless parameters in Equations (13), (14) and (21)–(24), the non-dimensional
momentum and energy equations as a system of ordinary coupled differential equations can be
rewritten as:

| f ′′ |n−1 f ′′′ + f f ′′ −
(

f ′2 + 3Ha2 f ′

5

)
= 0 (49)

(1 + NR)θ′′ +
5Pr
3

f θ′ + Br| f ′′ |n+1 + Ha2 f ′2 + Q̂θ = 0, (50)

In addition, the non-dimensional form of the boundary conditions in the equations from
Equation (3) to Equation (6) can be rewritten as:

f (0) = 0 (51)

f ′(0) = 1 (52)

lim
η→∞

f ′(η) = 0 (53)

θ(z = 0) = 1 (54)

lim
η→∞

θ(η) = 0 (55)

The minimization of entropy generation in boundary layers with heat transfer attracts substantial
interest from engineers studying heat transfer amplification methods. In such practices the key
objective is to increase the solid–fluid heat transfer constant compared with the coefficient of
the unaugmented (untouched) surface. On the other hand, a parallel objective is to register this
enhancement without causing a destructive increase in the stretching sheet power required by the
forced-convection arrangement. These two objectives reveal the conflict that goes along with putting
into practice any intensification procedure: a design alteration that improves the thermal contact can
be expected to augment the mechanical stretching power requirement. In dimensionless forms, local
components of entropy generation can be expressed as follows:

The contribution due to viscous loss:

SV =

(
ρc2−n(3n + 1)

Kn(n + 1)

)
| f ′′ |n+1 (56)

the contribution made by heat transfer:

Sθ =


(

ρ(3n+1)
n(n+1)

) 2
n+1
(

k + 16T3
∞n2σ
3χ

)
K

n+3
n+1 c

3−4n−n2
n+1 T∞

θ′
2 (57)
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the contribution due to MHD forces (Ohmic dissipation):

SM =

(
σB2c2

Kcn+1

)
f ′2 (58)

the contribution made by heat source:

SQ =

(
Q

Kcn+1∆T

)
θ′

2 (59)

the contribution due to fluid friction is the summation of viscous heating and MHD heating:

Su = SV + SM (60)

The Bejan number:

Be =
ST

ST + Sv + SM + SQ
(61)

and entropy generation number:

Ns =

(
T∞

Kcn+1

)(
ST + Sv + SM + SQ

)
(62)

3. Results and Discussion

This paper presents the results of a detailed theoretical investigation on the viscous propagation
of non-Newtonian stretching sheet-motivated currents. Regarding the Navier-Stokes theory,
a self-similarity solution for viscous propagation of power-law currents that has not been
experimentally evaluated was used. Solving Equations (49) and (50) with the boundary conditions of
Equations (51)–(55) is presented in this section. That system of ordinary differential equations are the
governing equations of steady state power law forced convection flow in thermal radiative absorbing
medium with viscous effects over an axisymmetric stretching sheet under no-slip conditions. After
solving that problem the entropy generation in the power law flow is discussed.

This has the advantage that the integration region is then finite. The non-dimensional first
order differential governing Equation (48) is solved numerically by using the Runge-Kutta-Fehlberg
method with shooting technique [51] for various finite boundary layer lengths. The grid size of 0.01 is
chosen were the maximum change in final value is less than 10−4. The results are compared with the
solution of Crocco-transformed Equation and plotted in Figure 2. The deduction of the boundary layer
equations, by use of the order of magnitude analysis on governing Navier-Stokes equations of viscous
fluid flow leads to a parabolic partial differential equations, rather than the elliptical form of the full
Navier-Stokes equations. As the second order method for parabolic partial differential equations with
100 points is used, the order of magnitude of the error of the converged solution is less than 10−4.
Other than this, the Table 1 presents a comparison of the f ” between the present results and those
obtained previously [52] for special case of, Ha = 0, n = 0, and nonlinear stretching (m = −1/3).
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Figure 2. Prantdl boundary layer equation for various boundary layer thicknesses versus the Crocco
solution [51].

Table 1. Comparison of the f ” between the present results and those obtained previously [52] for
special case of, Ha = 0, n = 0, and nonlinear stretching (m = −1/3).

f”(0)

Present work Khan et al. [52]

1.17 1.173721

The derivative of the dimensionless temperature which is a measure of the Nusselt number for
the power-law indexes of 0.01, 0.1, 0.708 and 1 is illustrated in Figure 3 for Pr = 1. For all curves the η∞

is considered as 20 and by increasing the power-law index the thermal boundary layer thickness is
smaller and the effect of the moving surface just sensed at near distances. The finite value of similarity
variable at the right boundary represents the infinity condition to a value far from the initial point for
numerical calculation. Without the magnetic field the temperature decreases as the distance from the
wall increases while the existence of a magnetic field causes an upsurge of temperature at the η∞ equal
to 5 and decreases after this peak As shown, by increasing the power-law index the thinner thermal
boundary layer leads to a higher rate of heat exchange. The maximum Nusselt number occurs at the
n = 0.1. In Figure 4 the dimensionless thermal entropy generated versus similarity variable for various
power-law indexes is presented. As shown most of the thermal entropy generation occurs near the
stretching wall and it increases with the increase of the power law index.

Entropy 2017, 19, 94  11 of 22 

 

 
Figure 2. Prantdl boundary layer equation for various boundary layer thicknesses versus the Crocco 
solution [51]. 

Table 1. Comparison of the f″ between the present results and those obtained previously [52] for 
special case of, Ha = 0, n = 0, and nonlinear stretching (m = −1/3). 

f″(0) 
Present work Khan et al. [52] 

1.17 1.173721 

The derivative of the dimensionless temperature which is a measure of the Nusselt number for 
the power-law indexes of 0.01, 0.1, 0.708 and 1 is illustrated in Figure 3 for Pr = 1. For all curves the η∞ 
is considered as 20 and by increasing the power-law index the thermal boundary layer thickness is 
smaller and the effect of the moving surface just sensed at near distances. The finite value of 
similarity variable at the right boundary represents the infinity condition to a value far from the 
initial point for numerical calculation. Without the magnetic field the temperature decreases as the 
distance from the wall increases while the existence of a magnetic field causes an upsurge of 
temperature at the η∞ equal to 5 and decreases after this peak As shown, by increasing the 
power-law index the thinner thermal boundary layer leads to a higher rate of heat exchange. The 
maximum Nusselt number occurs at the n = 0.1. In Figure 4 the dimensionless thermal entropy 
generated versus similarity variable for various power-law indexes is presented. As shown most of 
the thermal entropy generation occurs near the stretching wall and it increases with the increase of 
the power law index. 

 
Figure 3. First derivative of dimensionless temperature versus power-law index for Ha = 1, NR = 0,  
Br = 0. Figure 3. First derivative of dimensionless temperature versus power-law index for Ha = 1, NR = 0,

Br = 0.



Entropy 2017, 19, 94 12 of 22

Entropy 2017, 19, 94  12 of 22 

 

 
Figure 4. Dimensionless thermal entropy generated versus similarity variable for various power-law 
indexes (Ha = 1; Pr = 1; NR = 0; Br = 0). 

The derivative of dimensionless temperature which is a measure of the Nusselt number for 
Prantdl numbers in the range of 0.01 through 7 for polystyrene (n = 0.28) at various Prantdl numbers 
for Hartmann numbers equal to unity, is exemplified in Figure 5. As demonstrated, generally by 
increasing the Prantdl number the thermal boundary layer depth is reduced and the effect of the 
stretching sheet surface is felt in the fluid near it. As revealed by the growth of the Prantdl number 
the skinny thermal boundary layer causes a greater heat transfer rate up until Pr = 3.5. After the 
maximum Nusselt number any increase of the Prantdl number causes a decrease of the first 
derivative of the dimensionless temperature. In Figure 6 the dimensionless thermal entropy 
generated versus similarity variable for various Prantdl numbers is presented. As shown most of the 
thermal entropy generation occurs near the stretching wall and it decreases rapidly as the Prantdl 
number increases within the range from η∞ to less than unity. 

 
Figure 5. First derivative of the dimensionless temperature versus Prantdl number for Ha = 1, NR = 0, 
Br = 0, n = 0.28. 

 
Figure 6. Dimensionless thermal entropy generated versus similarity variable for various Prantdl 
numbers (Ha = 1; n = 0.28; NR = 0; Br = 0). 

Figure 4. Dimensionless thermal entropy generated versus similarity variable for various power-law
indexes (Ha = 1; Pr = 1; NR = 0; Br = 0).

The derivative of dimensionless temperature which is a measure of the Nusselt number for
Prantdl numbers in the range of 0.01 through 7 for polystyrene (n = 0.28) at various Prantdl numbers
for Hartmann numbers equal to unity, is exemplified in Figure 5. As demonstrated, generally by
increasing the Prantdl number the thermal boundary layer depth is reduced and the effect of the
stretching sheet surface is felt in the fluid near it. As revealed by the growth of the Prantdl number the
skinny thermal boundary layer causes a greater heat transfer rate up until Pr = 3.5. After the maximum
Nusselt number any increase of the Prantdl number causes a decrease of the first derivative of the
dimensionless temperature. In Figure 6 the dimensionless thermal entropy generated versus similarity
variable for various Prantdl numbers is presented. As shown most of the thermal entropy generation
occurs near the stretching wall and it decreases rapidly as the Prantdl number increases within the
range from η∞ to less than unity.
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In Figures 7 and 8 the effects of the thermal radiation parameter on various thermal and entropy
generation aspects of the system for the high density polyethylene (n = 0.41) are illustrated. The
thermal boundary layer depth is increased by increasing the thermal radiation parameter (in η∞ < 1)
and the effect of a stretching sheet surface affects the temperature in the adjacent fluid. The matching
derivative of the dimensionless temperature is proportional to the Nusselt number for the thermal
radiation parameters in range of 0.01 through 10 on a logarithmic scale, as exemplified in Figure 7.
As discovered by intensification of the thermal radiation parameter the lean thermal boundary layer
causes a better convective heat transfer. The constant rate of decrease of Nusselt number based on the
thermal radiation parameter is maintained through the whole domain of NR < 2.
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In Figure 8 the dimensionless thermal entropy produced versus similarity variable for numerous
thermal radiation parameters is revealed. As shown most of the thermal entropy generation occurs
near the stretching sheet and it decreases quickly as the thermal radiation parameter increases.
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The effect of the Brinkman parameter as a measure of viscous dissipation is demonstrated in
Figure 9 for low density polyethylene. As shown the θ” value at the wall is increased linearly by
increasing Br, even while at low Br it changes smoothly as presented in the figure. Figure 10 exemplifies
the effect of the Brinkman number on the dimensionless temperature component of the entropy profiles.
As seen by increasing Br the temperature component of the entropy increases, especially near the
wall. The maximum again appears at the walls. By increasing of distance from the stretching wall,
the dimensionless temperature profile decreases and this loss is more for lower Brinkman numbers.
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There is a significant body of research on multi-scale modelling in simulations of flow and
heat transfer problems [54], hybrid molecular continuum method using point wise coupling [55],
and coupling strategies for hybrid molecular-continuum simulation methods. This method is a
physics-based model; it uses generalized hydrodynamic equations and can be interpreted as a
regularization of the Navier-Stokes equations. As the onset of turbulence has not yet been calculated
for the axisymmetric stretching wall, a multiscale computational fluid dynamics method is a good
approach to solve viscous flow problems in a thin boundary layer and capture the small flow scales
of turbulence.



Entropy 2017, 19, 94 15 of 22

The critical value of the Hartmann number shows its effect on the Nusselt number at the wall
in Figure 12. The first derivative of dimensionless temperature versus Hartmann number decreased
for Ha < 0.8 and increased for Ha > 0.8 based on the Hartmann number for polypropylene at Pr = 5.
The minimum Nusselt number occurs at a Hartmann number equal to 0.8. At this moment the wall
cannot deliver its heat to the fluid based on its overheating. Figure 13 illustrates the dimensionless
thermal entropy generated versus similarity variable for various Hartmann numbers. As plotted,
with the increase of Hartmann number and distance from the wall the thermal entropy generation
is decreased. A similar behavior can be observed in Figure 14 for the dimensionless viscous entropy
generated versus similarity variable for various Hartmann numbers.
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The critical value of the heat source number for polyamide at Pr = 1 displays its consequence on the
Nusselt number at the wall in Figure 15. As shown the first derivative of the dimensionless temperature
versus heat source number decreased for Q < 0.006 and increased for Q > 0.006 based on the heat
source number. The minimum Nusselt number occurs at a Hartmann number equal to 0.8. At this
value the wall cannot deliver its heat to the fluid based on its overheating. Figure 16 illustrates the
dimensionless thermal entropy generated versus similarity variable for various heat source numbers.
As plotted, with the increase of heat source number and distance from the wall the thermal entropy
generation is decreased. Table 2 summarizes all the important results, by different parameter.
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Table 2. Parameters effects on heat transfer and entropy characteristics.

δ Nu Su ST

n (0 to 1) decrease increase independent decrease
Pr (0.001 to 10) decrease increase independent increase

NR (0 to 2) increase decrease independent decrease
Br (0 to 10) increase increase increase increase
Ha (0 to 1) downward parabola downward parabola increase increase

Qr (0 to 0.01) downward parabola downward parabola independent downward parabola

To present the result of boundary layer analysis in an application a uniform grid of 0.5 m × 0.3 m
with 0.01 grid size is used for the case of K = 0.35 Pa0.26, c = 0.001 m2/3·s−1, n = 0.26. The stream lines
is plotted to show the flow direction towards the stretching sheet in Figure 17. The velocity vector
components are found from the Equations (19) and (36). As shown the maximum velocity is increased
near the axis of symmetry and when the fluid approaches the stretching surface.
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After finding the effects of the involved parameters of the problem on flow and heat transfer, the
entropy generation numbers, as well as the Bejan number, for various values of Hartmann numbers are
evaluated. The generation of entropy at the local differential level could be presented by the entropy
and Bejan numbers. Figures 18 and 19 illustrate the effect of the Hartmann number on Bejan number
and entropy number, respectively. Both numbers versus similarity variable for various Hartmann
numbers are decreasing as radial distance goes on. As well, the increase of magnetic field causes an
increase in both numbers.
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4. Conclusions

In this study, a thorough investigation of the steady state flow near an axisymmetric stretching
sheet with thermal radiation, Joule heating, temperature dependent heat sources and viscous heating
has been performed. In order to get the similarity solution, the magnetic field, the heat source and
the temperature of the plate must have specific distributions. This limitation should be considered
in the practical applications of the method and results of this paper. The results can be summarized
as follows:

(1) The coupled model is able to simulate the flow of a shear thinning fluid. By increasing n,
the boundary layer of heat transfer is decreased and the heat transfer on the stretching sheet
is increased. The justification and the reason behind the trends depicted have been explained
in detail.

(2) By increasing Pr, the boundary layer of heat transfer is decreased and the heat transfer rate on the
stretching sheet is increased. Such a development of the heat flux over the heat source prevents
the cooling of the fluid on the bottom wall. An increment in Prandtl number shows a marked
reduction in the temperature profile.

(3) By increasing NR, the boundary layer of heat transfer is increased and the convective heat transfer
rate on the stretching sheet is decreased. A reduction of Nu can be explained by an attenuation of
the convective flow and also by narrowing of the boundary layer.

(4) In two-dimensional (2D) non-Newtonian flow, by increasing Br, the boundary layer of heat
transfer and the convective heat transfer rate on the stretching sheet are increased.

(5) By increasing Ha, the boundary layer of heat transfer and the convective heat transfer rate on the
stretching sheet have a minimum at Ha = 0.8. An increase in the Ha leads to an attenuation of
convective flow and less intensive cooling of the bottom part of the cavity. Average Nusselt and
Bejan numbers and average total entropy generation are increasing functions of Ha.

(6) By increasing Q, the boundary layer of heat transfer and the convective heat transfer rate on the
stretching sheet has minimum on Q = 0.006.

(7) By increasing n, Pr the heat transfer part of the entropy increases dramatically while the viscous
part of the entropy is not changed.
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Nomenclature

Be local Bejan number
Br Brinkmann number
Cp specific heat at constant pressure J/kg·K
Ha Harttmann number
k thermal conductivity of the fluid W/mK
K flow consistency index
n power law index
n* refractive index
NR Radiative number
Q Heat source coefficient
r Coordinate component m
Pr Prantdl number
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S′′′ dimensionless average entropy generation J/Ksm3

Su dimensionless local entropy generation due to fluid friction J/Ksm3

St dimensionless local entropy generation due to the heat transfer J/Ksm3

T medium temperature K
u velocity component in the zrdirection m/s
v velocity component in the r direction m/s
z Coordinate component m

Greek Symbol

α thermal diffusivity m2/s
θ dimensionless temperature
σ fluid electric conductivity S/m
ρ fluid density kg/m3

σ* Stephan-Boltzman constant kg·s−3·K−4

χ Rosseland-mean absorption coefficient
µ viscosity of the fluid Pa·s
ρCp heat capacitance J/m3·K
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