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Abstract: The intent of shielding functions in delayed detached-eddy simulation methods (DDES) 
is to preserve the wall boundary layers as Reynolds-averaged Navier–Strokes (RANS) mode, 
avoiding possible modeled stress depletion (MSD) or even unphysical separation due to grid 
refinement. An entropy function fs is introduced to construct a DDES formulation for the k-ω shear 
stress transport (SST) model, whose performance is extensively examined on a range of attached 
and separated flows (flat-plate flow, circular cylinder flow, and supersonic cavity-ramp flow). Two 
more forms of shielding functions are also included for comparison: one that uses the blending 
function F2 of SST, the other which adopts the recalibrated shielding function fd_cor of the DDES 
version based on the Spalart-Allmaras (SA) model. In general, all of the shielding functions do not 
impair the vortex in fully separated flows. However, for flows including attached boundary layer, 
both F2 and the recalibrated fd_cor are found to be too conservative to resolve the unsteady flow 
content. On the other side, fs is proposed on the theory of energy dissipation and independent on 
from any particular turbulence model, showing the generic priority by properly balancing the need 
of reserving the RANS modeled regions for wall boundary layers and generating the unsteady 
turbulent structures in detached areas.  

Keywords: entropy; shielding function; delayed detached-eddy simulation 
 

1. Introduction 

Detached-eddy simulation (DES) takes advantage of the Reynolds-averaged Navier–Strokes 
(RANS) method where mean flow is attached and steady (e.g., walls), while offering, like large-eddy 
simulation (LES), the sensitivity to capture unsteady flow phenomena in areas of physical interest 
such as wakes or recirculation zones [1–5]. Although this strategy is beyond the computational cost 
of a steady RANS calculation, it reveals nearly as much information about the flow dynamics as LES. 
For this reason, DES has been serving as a promising way out of the limitation detaining LES from 
being applied to high Reynolds numbers in the past decades. While the idea of the original DES 
model is straightforward, DES is nevertheless one of the more difficult models to use in complex 
applications. A major concern is that the interface between the RANS and LES mode greatly 
depends on the grid spacing. The transition from RANS to LES mode would be located within the 
boundary layer, if the mesh is refined with grid spacing is much smaller than the boundary-layer 
thickness. The premature switch from RANS to LES mode will provide insufficient modeled 
Reynolds stresses, resulting in modeled stress depletion (MSD) and even non-physical separation 
[6,7]. To alleviate this deficiency, Menter and Kuntz [8] used the blending function F2 of the k-ω shear 
stress transport (SST) model [9] to “shield” the boundary layer, by which they implied “preserve 
RANS mode”, or “delay LES function” in 2004 (SST-DDES-F2). As a derivative of this proposal, 



Entropy 2017, 19, 93  2 of 15 

 

Spalart et al. [7] proposed a DDES variant based on the Spalart–Allmaras model [10] in 2006 
(SA-DDES), by constructing a generic shielding function fd to detect the boundary-layer region and 
“preserve RANS mode”. In turn, Gritskevich et al. [11,12] employed fd to consolidate a “standard” 
SST-DDES approach (SST-DDES-fd_cor) since the blending function F2 is found to be relatively 
conservative. In their work, fd was simply modified with a constant Cd1 increasing from 8 to 20, based 
on recalibrations in several flow cases rather than adequate physical negotiations. Recently, Zhao et 
al. [13] deduced an entropy function fs to distinguish the turbulent boundary layer from the external 
flow. This function is concluded to be general, independent of inflow conditions or any specific 
turbulence model. With this function, a new version of SA-based DDES (SA-SDES) is proposed. As 
aforementioned, due to the different combinations of baseline RANS model and shielding function, 
those DDES variants have been proposed with rather different characteristics, making model selection 
and interpretation of results challenging.  

As a first step, this article is aimed at avoiding the ambiguity of numerous shielding functions 
for the SST-based DDES method. In particular, the performance of entropy function fs is evaluated 
by promoting a novel SST-SDES method. Focusing on this ambition, this paper is organized as 
follows: Section 2 presents constructions of the two-equation SST model and SST-based DDES 
methods employed in the current study. Especially, the newly developed SST-SDES is described in 
detail. Section 3 is dedicated to the validation of the SST-SDES method. Comparisons with 
SST-DDES-F2 and -fd_cor are also provided, along with the merits and deficiencies of the above 
methods discussed. In this part, the effects of the baseline RANS model are preliminarily discussed. 
Finally, Section 4 gives the conclusions and future directions of this research.  

2. Numerical Methods 

The numerical algorithm for solving the mean flowfield is essentially the same as presented in 
Reference [14]. The time-dependent, compressible Reynolds-averaged Navier–Stokes equations are 
formulated in a generalized coordinate system. The 5th order weighted essentially nonoscillatory 
(WENO) scheme [15] is used to discretize the inviscid components, while the 4th order central 
differencing [16] is employed for the viscous terms. Time integration is achieved by dual-time 
stepping with sufficient sub-iterative convergence, which results in a second-order accuracy. The 
two-equation SST turbulence model is chosen as the base for the construction of the following DDES 
variants. This model uses a parameter F1 to switch from k-ω to k-ε, which is considered as one of the 
popular two-equation RANS models, particularly for moderate separation prediction [9]. 
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F1 is equal to 0 away from the surface (k-ε model), and switches over to 1 inside the boundary layer 
(k-ω model). 

The turbulent eddy viscosity is defined as follows 

( )t

2 1

,
max ,  /

k

F a

ρμ
ω

=
Ω

 (4) 



Entropy 2017, 19, 93  3 of 15 

 

in which F2 is a second blending function and behaves similarly to F1, defined by 
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The source terms in the model are given by 

3/2 1/2

k k k-ω k-ω

2

ω ω

, / , / ( )

, ,

i
ij

j

i
ij

t j

u
P D k l l k

x

u
P D

x

∗∂
= = =

∂

∂
= =

∂

τ β ω

α τ ρβω
ν

  (6) 

where lk-ω acts as the turbulent length scale of the SST model. The model constants used in SST 
model are defined as a1 = 0.31 and β* = 0.09. The remaining variables are obtained by blending the 
coefficients in the k-ω model (φ1) with those of the k-ε model (φ2) as follows  
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2.1. SST-DDES-F2 

For fine grids, the switch from RANS to LES mode in the pure DES strategy is found to take 
place somewhere inside the boundary layer and produce a premature (grid-induced) separation. In 
order to reduce grid influence, SST-DDES-F2 was first proposed with the help of underlying zonal 
formulation of the SST model. The turbulent length scale lk-ω is replaced by 

k-ω D ES max SSTm in( , / (1 ))l l C F= Δ − with Fsst = F1 or F2. In this work, we chose F2 as the shielding function 
following Reference [6,17]. Since SST model is based on a blending of k-ω and k-ε, Strelets [18] 
calibrated the model by running both the k-ω and k-ε models on isotropic turbulence. This leads to a 
blending constant as below 

DES 1 1(1 ) 0.61 0.78.C F F= − × + ×   (8) 

Δmax is the largest grid spacing defined by Δmax = max(Δx, Δy, Δz).  
The default of SST-DDES-F2 is the relatively conservative F2 function, which would suppress 

the formation of resolved turbulence in detached flow regions not sufficiently removed from walls 
(e.g., backward facing step flow, tip gap flows in axial turbines, etc.). This is the motivation for the 
development of SST-DDES-fd_cor. 

2.2. SST-DDES-fd_cor 

With the same “shielding” purpose, Spalart et al. [7] designed a function fd to ensure that the 
attached boundary layers are treated in RANS regardless of the grid resolution by using the 
quantity 

t
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where vt is the kinematic eddy viscosity, v is the molecular viscosity, Ui,j represents the velocity 
gradients, κ = 0.41 is the von Karman’s constant, and d is the distance to the wall. The parameter rd 
is slightly modified relative to the SA definition, whose value equals 1.0 in the logarithmic layer, 
and falls to 0 gradually towards the exterior edge of the boundary layer. This quantity is used in the 
function: 

3
d d1 tanh([8 ] ),f r= −   (10) 
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which is designed to be 0 in the boundary layer and 1.0 elsewhere. 
Since fd depends only on the eddy viscosity and the wall distance, it can therefore, in principle, 

be applied to any eddy viscosity based DDES model. Whereas the shielding function fd was 
considered generic, it was essentially calibrated for a one-equation SA model. Gritskevich et al. 
[11,12] proved that a recalibration is required if the same function is to be applied to a two-equation 
SST model. The original shielding function fd is modified as below: 

3
d_cor d1 tanh([20 ] ).f r= −   (11) 

In addition, the SST-DDES-fd_cor approach was consolidated with the length scale 

k-ω d_cor k-ω DES maxmax(0,  ).= − − Δl l f l C   (12) 

From the comparison between Equations (10) and(11), only one empirical constant is increased 
from 8 to 20. It may be questionable since the modification depends on recalibrations rather than 
physical negotiations. The essential parameter rd is not changed, which is relative to the SA 
definition. For the above reasons, the performance of SST-DDES-fd_cor will be further investigated in 
our work. 

2.3. SST-SDES 

Different from F2, fd and fd_cor, which originate from turbulence models, the entropy function fs 
is initially proposed to distinguish the turbulent boundary layer from the point of energy 
dissipation [13]. The basic hypothesis is that the turbulent boundary layer could be defined as the 
region where the local entropy generation rate caused by viscous dissipation is the most significant 
[19]. A novel entropy concept, named entropy increment ratio viss , was proposed as follows: 
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where vissΔ  means the entropy increment caused by the viscous dissipation. The derivation process 
of vissΔ  could be referred to [13,20], and the final form is presented as below: 
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. It should be noted that the 

entropy increment caused by wall-heat convection has been neglected in Equation (14) for 
numerical consideration, which may reduce the precision of vissΔ  at the isothermal wall. sΔ  is the 
state function of entropy obtained from Gibbs equations. For compressible flows, sΔ  has the 
formation as follows: 

v vln ln = ln ,
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and, in incompressible flows, sΔ  can be expressed by 

v ln .
T

s c
T∞

Δ =   (16) 

When the potential flows pass the wall, the mechanical energy is dissipated to zero due to the 
viscous frication. Therefore, the value of vissΔ  varies by orders of magnitude from the low-speed 
flows to hypersonic flows at the wall. Based on the modeling convenience, vissΔ  is normalized by 
the maximum entropy increment maxsΔ , which is approximated in adiabatic boundary-layer flows 
and given by 
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The remaining variables in Equations (14)–(17) are cν = R/(γ − 1) the specific heat at constant 
volume, R the gas constant, γ = 1.4 the specific heat ratio, and T, p and ρ the local temperature, 

pressure and density, respectively. 
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 is the thermal conductivity and Pr = 0.7 is Prandtl 

number in laminar flow, while t
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 and Prt = 0.9 are variables in turbulent flows. 

Subscript ∞ means the quantity in the far field. 
With vissΔ  normalized by maxsΔ  as Equation (13) shows, viss  represents the viscous 

dissipation rate per unit mechanical energy, whose value approaches unity towards the wall with a 
consistent trend. The range of boundary layer is well represented by viss  > 0 [13]. Moreover, in 
order to avoid the disturbance of entropy increase caused by shocks and detached vortex in 
complex flows, the entropy function fs is proposed to confine the predicted turbulent boundary 
layer near the wall, 

( )3
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where ls is the length-scale ratio, which is designed to be less than 1.0 in the boundary layer and 
increase quickly in the external flows. The formation of ls is as below 
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in which Cs = 0.12 and CDES = 0.65 are empirical constants. f(a1,a2) is an anisotropic function 
recommended by Lilly [21], which is a function of grids aspect ratios 
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where max/ , 1, 2i ia i= Δ Δ =  and Δi is one of the two shorter edges in the three directions.  
Then, the SST-SDES approach could be designed with the length scale 

k-ω s k-ω D ES m axm ax(0, ).l l f l C= − − Δ   (21) 

As mentioned above, the turbulent length scales of the above DDES methods are listed in 
Table 1. Note that, SST-DDES-F2 would automatically choose the smaller one by comparison of the 
length scales of the corresponding RANS and LES mode. For the left, they may adopt a combination 
of the length scales of the two modes, where the value of the corresponding shielding function lies 
in the range 0–1. Moreover, each shielding function could only decide the RANS modeled region 
near the wall. In the farfield where its value equals 1, the alternation of RANS and LES mode 
depends on the magnitudes of lk-ω and CDESΔ.  

Table 1. The turbulent length scales in SST-based DDES methods. 

Strategies 
Turbulent Length Scale

RANS Mode Transition Mode LES Mode 
SST-DDES-F2 lk-ω - CDESΔmax/(1 − F2) 

SST-DDES-fd_cor lk-ω lk-ω − fd_cor max(0, lk-ω − CDESΔmax) CDESΔmax 

SST-SDES lk-ω lk-ω − fs max(0, lk-ω − CDESΔmax) CDESΔmax 
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3. Results and Discussion 

3.1. Flat Plate Flow 

The performances of the above DDES methods are preliminarily investigated on a 
zero-pressure-gradient boundary-layer flow with Re = 2 × 106/m. All cases are computed in RANS 
mode with the DDES option activated. Similar to the procedure adopted by Reference [7], we also 
present three types of grids with different mesh resolutions in order to evaluate the grid sensitivity 
of the above DDES methods. Figure 1 displays the sketch maps of three grid densities in a boundary 
layer. In a Type I grid, the wall-parallel spacing Δx and Δz set Δ via the max formula and exceed δ, so 
that the DES length scale is on the “RANS branch” throughout the boundary layer. The shielding 
functions of DDES methods have no effect in a Type I grid, and all the results are consistent with 
those of SST (Figure 2). However, the modified shielding function fd_cor turns out to be overly 
conservative as it covers double the boundary-layer thickness, while both shielding functions F2 
(actually 1 − F2 in current notation) and fs accurately denote the whole layer (Figure 2a). Such a 
conservative shielding function fd_cor will inhibit the main DES functionality by suppressing the LES 
mode for resolved turbulence. The resolution of Type II grid ranges between the classical values 
used in LES and RANS simulations (with a target value of the grid-spacing equal to one tenth of the 
boundary-layer thickness). With this ambiguous grid, the RANS-modeled range (dw < CDESΔ) in 
SST-DES [18] only holds 18% of the boundary layer (Figure 3a), resulting in underestimating the 
eddy viscosity by almost 60% (Figure 3b) and the velocity profile slightly departing from that of SST 
at the log-law region (Figure 3a). This premature switching inside the boundary layer to the LES 
mode is completely eliminated for all the DDES methods, whereas the performances of the inherent 
shielding functions are similar to those in a Type I grid (Figure 2a). For a Type III LES grid, all 
spacings are much smaller than the boundary-layer thickness δ. Since the LES region where CDESΔmax 
< lk-ω occupies the bulk of the boundary layer, the velocity profile of SST-DES further departs from 
that of SST, along with the eddy viscosity being underestimated by 87% (Figure 4). All DDES 
methods could predict consistent results with those of SST. Compared with the performances in 
Type I and II grids, the modified fd_cor predicts a more accurate range of δ (fd_cor = 0), but rises to 1 
more slowly than F2 and fs. Additionally, the original fd is introduced in SST-DDES (SST-DDES-fd) 
and the results are also shown in Figure 5. The original one increased to be 1 in a much narrower 
domain (Figure 5a), which results in a less-reliable shielding capability. The SST-DDES-fd 
underestimates the eddy viscosity by about 40% (Figure 5b). This deficiency was also revealed in 
References [11,12].  

From the discussion above, while the shielding function fd of SA-DDES was considered generic 
[7], it is essentially calibrated for SA model. When it is applied into the SST-based DDES, the original 
fd proves to be less reliable, while the recalibrated fd_cor recommended in [11,12] turns out to be much 
too conservative. Compared with the performance of F2, the entropy function fs increases to 1 more 
quickly towards the edge of boundary layer, which is favorable for the safe protection of the LES 
resolved region.  

 
Figure 1. Grids in a boundary layer. Top Type I, natural DES; left Type II, ambiguous spacing; right 
Type III, LES. δ is the boundary-layer thickness. Assume Δz ≈ Δx. 
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(a) (b)

Figure 2. Comparisons of SST-based DDES results in Type I grid. (a) Velocity and shielding 
functions distributions; (b) Eddy viscosity distributions. 

(a) (b)

Figure 3. Comparisons of SST-based DDES results in Type II grid. (a) Velocity and shielding 
functions distributions; (b) Eddy viscosity distributions. 

(a) (b)

Figure 4. Comparisons of SST-based DDES results in Type III grid. (a) Velocity and shielding 
functions distributions; (b) Eddy viscosity distributions. 

(a) (b)

Figure 5. Performances of shielding function fd and its corrected version fd_cor on the flat plate flow 
when applied by SST-based DDES. (a) Velocity and shielding functions distributions; (b) Eddy 
viscosity distributions.  
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3.2. Circular Cylinder Flow 

The flow past a circular cylinder at Reynolds number 3900 based on the cylinder diameter D is 
chosen for the intended investigations. This kind of large separated flow is considered to be the 
primary application of DES variants. The size of the integration domain for the O-type grid is 20D in 
the cross-section plane [22], and the grid extends πD/2 in the z direction (Figure 6). The grid is 
clustered near the cylinder and the spacing is increased in a proper ratio. The distance of the first 
grid line to the wall is 10−5, which corresponds to a y+ less than 1.0. The dimensions in the order 
“streamwise × transverse × spanwise” are 137 × 137 × 41, which had been proved to be refined 
enough for DES simulations [23]. Periodic boundary condition was employed at the boundaries in 
the spanwise direction and no-slip boundary condition was prescribed at the surface of cylinders. 

 
(a) (b)

Figure 6. X-y grid for circular cylinder at Re = 3900. (a) Global map; (b) Local map around the wall. 

Three calculations were carried out on the same grid. The time-averaged distributions of 
shielding functions in the three DDES methods are compared in Figure 7. As pointed out by 
Zdravkovich [24], when the Reynolds number varies from 350 to 2 × 105, the flow past a circular 
cylinder is in the transition-in-shear-layers region, in which the separated boundary layer remains 
laminar, while a transition takes place along the free-shear layers with shedding vortexes leaving the 
body as large-scale turbulent vortices. Therefore, a little RANS-modeled region is needed before the 
separation point. However, both SST-DDES-F2 and -fd_cor preserve an obvious RANS region in front 
of the cylinder which seems redundant (Figure 7a,b). Comparatively, the shielding function fs 
employed by SST-SDES is sensitive to the local flow topology and could detect the boundary layer 
more physically (Figure 7c). 

 
(a) (b) (c) 

Figure 7. Distributions of corresponding shielding function inherent in SST-based DDES methods 
around the cylinder wall. (a) 1 − F2 in SST-DDES-F2; (b) fd_cor in SST-DDES-fd_cor; (c) fs in SST-SDES. 

Table 2 presents the values of global flow quantities in all cases and the experiment. According 
to Bearman [25], the mean recirculation length r /L D  of circular cylinders is inversely proportional 
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to the mean base pressure coefficient bCp− , whereas the mean drag coefficient DC is proportional to

bCp−  at subcritical Reynolds numbers. Following this rule, one can easily understand the 
relationship between Figure 8 Figure 9 and Table 2. As Figure 8 shows, the profile of SST-DDES-F2 is 
notably below the experimental result, related with the shortest recirculation area (Figure 9) and the 
largest mean drag coefficient among the three methods (Table 2). Compared with other results, the 
behavior of SST-DDES-F2 tends to be that of unsteady RANS (URANS) in some sense [18], as it 
reserved more regions for RANS mode. In contrast, SST-SDES predicts the most convenient results 
with the experimental data, with the longest recirculation area and the largest Strouhal number. 
After all, considering the experimental data and LES results with 961 × 960 × 48 grid resolution [26], 
all three DDES strategies could give convenient mean and fluctuating velocity distributions in the 
wakes, proving the capability to solve the large-separated flows (Figure 10 Figure 11).  

Table 2. Global flow quantities computed by four DES strategies. 

Strategies 
Global Flow Quantities

r /L D  DC St bCp−  
SST-DDES-F2 0.92 1.18 0.2031 1.144 

SST-DDES-fd_cor 1.05 1.14 0.2042 1.079 
SST-SDES 1.32 1.12 0.2048 0.957 

Experiment [27] 1.33 ± 0.05 0.99 ± 0.05 0.215 ± 0.005 0.88 ± 0.05 
rL : the time-averaged formation length based on the location of zero averaged-velocity, D: cylinder 

diameter, DC : time-averaged drag coefficient, St: Strouhal number, bCp− : back-pressure coefficient. 

 
Figure 8. Pressure coefficient around the cylinder surface (Experiment is from Reference [28]). 

 
Figure 9. Mean streamwise velocity along the centerline (Experiment is from Reference [28]). 
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Figure 10. Mean streamwise velocity at three locations in the near wake (Experiment is from 
Reference [28]). 

 
Figure 11. Streamwise velocity fluctuations at three locations in the near wake (Experiment is from 
Reference [26]). 

3.3. Cavity-Ramp Flow 

The cavity-ramp configuration could be considered as a simplified scramjet or ramjet for the 
next-generation hypersonic vehicles, which may be used to provide flame stabilization. The 
dominant features of the flow are the free-shear layer over the cavity and a large recirculation zone 
behind the cavity leading edge, which should be resolved in LES mode of DES variants. After 
reattachment, the flow forms the turbulent boundary layer on the ramped portion of the cavity, 
where the RANS mode is needed (Figure 12). Settles et al. [29] had carried out corresponding 
experiments, and the nominal inflow Mach number, pressure, and temperature are 2.92, 21,240 Pa, 
and 95.37 K, respectively. As Figure 13 shows, the three-dimensional grid used for this case consists 
of two blocks, containing 37 × 85× 33 points upstream of the cavity and 154 × 108 × 33 points 
downstream of the leading edge of the cavity. The grid was clustered to all solid surfaces, while the 
free-shear layer and reattachment regions were paid particular attention. It should be noted that this 
grid resolution is almost the same as Reference [30], which was proved to be refined enough for 
DES-like methods but were too coarse to properly capture the eddy structure by LES. A no-slip 
adiabatic condition was applied to the surface, and periodic boundary conditions were employed in 
the z direction. Initial conditions for DDES simulations are obtained by solving the flowfield with the 
corresponding RANS model. This case is also employed to evaluate the performances of SA-based DES 
and SDES [13]. 
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Figure 12. Flow structures for the cavity-ramp, depicted by time-averaged Mach number contours. 

 

Figure 13. Grid construction in the x-y plane. 

Figure 14 presents the time-averaged distribution of the shielding function inherent in 
corresponding DDES method. All of the three DDES methods could preserve a visible 
RANS-modeled region along the wall, whereas both SST-DDES-F2 and -fd_cor mistakenly shield the 
whole cavity as the boundary layer. Moreover, the inlet distribution of fd_cor fluctuates due to Ui,j ≈ 0 
outside of the inflow boundary layer. On the other side, SST-SDES protects a reasonable extent of the 
boundary layer as RANS mode in the cavity and after the reattachment along the ramp (Figure 14c). 
Specially, the distribution of entropy function fs of SST-SDES is almost the same as the one inherent 
in SA-SDES, proving the independence of fs on any particular turbulence model. 

 
(a) (b) (c) 

Figure 14. Distributions of corresponding shielding function inherent in SST-based DDES methods 
around the cavity-ramp wall. (a) 1 − F2 in SST-DDES-F2; (b) fd_cor in SST-DDES-fd_cor; (c) fs in SST-SDES. 

Figure 15 compares the time-averaged eddy viscosity distributions of the three DDES methods. 
Since the cavity is treated in RANS mode by both SST-DDES-F2 and -fd_cor, there are more prominent 
levels of eddy viscosity than the result of SST-SDES. The entropy function fs reliably indicates the 
development of the reattached boundary layer along the ramp, resulting in a more reasonable eddy 
viscosity distribution. The instantaneous vortex structures are visualized in Figure 16, using the 
Q-criterion. The initial growth of the shear layer is dominated by Kelvin–Helmholtz structures, 
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which are initially two-dimensional, and quickly break down into small vortices in the cavity. After 
reattachment, elongated horseshoe vortices are observed in the ramp portion, the size of which is on 
the order of half the domain width in the z direction [30]. Due to the abundant eddy viscosity in the 
cavity (Figure 15a,b), the turbulent fluctuations inherent in the separated flow are greatly 
suppressed, leading to fewer vortex structures (Figure 16a,b). However, for SST-SDES, the 
turbulence-resolving capability in the separation region is not impaired (Figure 16c), as the cavity is 
indicated as LES mode by entropy function fs.  

  
(a) (b) (c) 

Figure 15. Comparisons of eddy viscosity distributions of SST-based DDES methods for cavity-ramp 
flow. (a) SST-DDES-F2; (b) SST-DDES-fd_cor; (c) SST-SDES. 

 
(a) (b) (c) 

Figure 16. Isosurface of Q = U∞2/2H2 highlighting the turbulent structures, flooded by the magnitude 
of streamwise flow, U∞: freestream velocity, H: height of the cavity leading edge. (a) SST-DDES-F2; 
(b) SST-DDES-fd_cor; (c) SST-SDES. 

Figure 17a presents the time-averaged distributions of skin friction coefficient in the recovery 
region. In addition, the results of SA-based DES and SDES in Reference [13] are also included for 
comparisons. The x-axis is parallel to the ramp, measured from the juncture of the cavity and the 
ramp (Figure 12). Among the three DDES methods, the results of SST-SDES are the most consistent 
with the experiment. Since the rise of skin frication coefficient profile indicates the rate of recovery of 
the boundary layer downstream of reattachment, fs could denote a comparatively accurate 
development of the reattached boundary layer. As aforementioned, the friction coefficient 
distributions are underestimated by SST-DDES-F2 and -fd_cor, due to the lack of turbulent fluctuations 
resolved by LES mode. Accordingly, the recovering streamwise velocity predicted by SST-SDES 
develops more quickly than other results, which agrees well with experimental data (Figure 17b). 
Compared with the three above SST-based DDES methods, SA-DES and SA-SDES tend to predict 
much more convenient results with the experimental data. The discrepancies may lie in the variant 
performances of RANS models in adverse-pressure flows [31]. 
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(a) (b)

Figure 17. Time-averaged distributions of flow quantities. (a) skin-frication coefficients along the 
ramp; (b) velocity profiles in shear layer. 

4. Conclusions 

A novel version of SST-based DDES, named SST-SDES, was proposed by employing the 
entropy function fs to shield the turbulent boundary layer as RANS mode. For comparisons, the 
original SST-DDES-F2 and the recalibrated SST-DDES-fd_cor were also included to interpret their 
different performances. In the case of turbulent boundary-layer flow, all of the three DDES methods 
could avoid MSD phenomena. The entropy function fs in SST-SDES accurately indicates the layer 
range from the point of energy dissipation, while the modified shielding function fd_cor in 
SST-DDES-fd_cor turns out to be overly conservative as it covers double the boundary-layer thickness. 
For the circular cylinder flow with fully separation, all three methods could predict consistent 
results, regarding their mean and instantaneous performances. However, SST-DDES-F2 preserves an 
obviously redundant RANS region in front of the cylinder. For the cavity-ramp flow with both 
separation and reattachment, the entropy function fs of SST-SDES protects a reasonable extent of the 
boundary layer as RANS mode, resulting in the most convenient result with the experiment. Moreover, 
fs depicts a consistent distribution as the one inherent in SA-SDES, proving its independence on any 
particular turbulence model. On the downside, both shielding function F2 and fd_cor are so conservative 
that they suppressed the formation of large-scale turbulent structures in the cavity.  

In conclusion, all three DDES methods are capable of dealing with fully-separated flows past 
bluff bodies. However, for the engineering applications containing flow separations and 
reattachment, SST-SDES is preferred for the confident shielding function fs, which successfully 
balances the needs of avoiding the MSD problem and the desire of not impairing the 
turbulence-resolving capability. Nevertheless, a further recalibration of fd is suggested to be carried 
out on a more physical basis, when used in an SST-based DDES model.  
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