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Abstract: Multiscale entropy (MSE) of physiological signals may reflect cardiovascular health in 
diabetes. The classic MSE (cMSE) algorithm requires more than 750 signals for the calculations. The 
modified short-time MSE (sMSE) may have inconsistent outcomes compared with the cMSE at large 
time scales and in a disease status. Therefore, we compared the cMSE of 1500 (cMSE1500) consecutive 
and 1000 photoplethysmographic (PPG) pulse amplitudes with the sMSE of 500 PPG (sMSE500) pulse 
amplitudes of bilateral fingertips among middle- to old-aged individuals with or without type 2 
diabetes. We discovered that cMSE1500 had the smallest value across scale factors 1–10, followed by 
cMSE1000, and then sMSE500 in both hands. The cMSE1500, cMSE1000 and sMSE500 did not differ at each 
scale factor in both hands of persons without diabetes and in the dominant hand of those with 
diabetes. In contrast, the sMSE500 differed at all scales 1–10 in the non-dominant hand with diabetes. 
In conclusion, autonomic dysfunction, prevalent in the non-dominant hand which had a low local 
physical activity in the person with diabetes, might be imprecisely evaluated by the sMSE; therefore, 
using more PPG signal numbers for the cMSE is preferred in such a situation.  

Keywords: multiscale entropy; photoplethysmographic wave amplitudes; diabetes 
 

1. Introduction 

Costa et al. proposed conventional multiscale entropy (cMSE) for evaluations of the complexity 
of physiological signals [1]. In the cMSE algorithm, the original time series is coarse-grained and the 
sample entropy (SE) for each coarse-grained time series is calculated to quantify regularity at different 
time scales. The decimation procedure shortens the coarse-grained time series length by a factor of τ. 
Therefore, the coarse-grained time series at large scales may lead to an imprecise estimation of SE [2]. 
In addition, the SE may be invalid as long as no template vectors are matched to one another. 
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Inaccurate or invalid SE can reduce the reliability in distinguishing time series generated by different 
systems. These problems usually bring challenges of the cMSE algorithm at large-scale factors. Costa 
et al. suggested that to avoid an error at large-scale factors, the measured signal numbers had to be 
greater than 750 [3]. 

For a physiological signal such as pulse rate, which has an average of 60–100 beats per minute 
at rest, the signals usually require at least 20 min recording to obtain sufficient data for the cMSE 
analysis. Accordingly, a few modified MSE algorithms were developed for clinical applications with 
short-term data [2,4–6]. Wu et al. proposed the composite MSE and the refined one using a short-term 
signal series to compare the accuracy and validity of their modified MSE algorithms with the cMSE, 
whereas there were no data for the clinical application to the normal subjects and the diseased 
patients [2,4]. In contrast, Choi developed another modified MSE algorithm using 1000 
electroencephalographic wave signals to compare the accuracy with the cMSE in normal, interictal, 
and ictal conditions [5]. Although the results of the modified MSE were optimal to differentiate the 
three conditions, the signal points were greater than 750 as suggested and might not be fit for the so-
called “short-time” MSE. With regard to the modified short-duration MSE (sMSE) proposed by 
Chang et al., the sMSE of 600 peripheral arterial pulse wave velocity (PWV) signals was in line with 
the cMSE of 1000 PWV signals in healthy individuals and in those with diabetes [6]. Furthermore, 
Yang et al. used the sMSE of 350–400 electrocardiographic R-R intervals to evaluate the change of 
peripheral blood flow before and after acupuncture in healthy subjects [7].  

In a disease status, such as heart failure, the value of the cMSE is theoretically reduced at large 
scales and there may be a great concern for using sMSE in such a situation. Wu et al. also found that 
the cMSE of fingertip photoplethysmographic (PPG) pulse amplitudes in those with diabetes may be 
lower than that of the unaffected person [8]. Therefore, the aim of our study was to compare the sMSE 
of PPG pulse amplitudes of bilateral fingertips with the cMSE in healthy subjects and in those with 
type 2 diabetes.  

2. Methods 

2.1. Study Population 

Between July 2009 and October 2010, 113 right-hand dominant, middle- to old-aged men and 
women were prospectively enrolled for PPG examinations of their bilateral index fingertips in the 
Ministry of Health and Welfare Hualien Hospital. Of this population, 11 participants were excluded 
for a history of cardiovascular disease including coronary heart disease, ischemic stroke, peripheral 
vascular disease, heart failure, atrial fibrillation, and permanent pacemaker implantation, leaving a 
sample of 102 individuals for the MSE analysis. Diabetes mellitus was defined as fasting glucose ≥ 
126 mg/dL, or glycated hemoglobin (HbA1c) > 6.5%, or the use of hypoglycemic medications. Of these, 
49 participants did not have diabetes mellitus (the unaffected group), and 53 had type 2 diabetes. 
Since age, sex, and body weight might affect the MSE index, we matched these variables at baseline 
and selected 70 individuals (68.6%) from the initial study sample (35 from the unaffected and 35 from 
the diabetes groups, respectively) to perform a case-control comparison. This study was reviewed 
and approved by the Institutional Review Board of Hualien Hospital and National Dong-Hwa 
University. Each patient signed an informed consent.  

2.2. Study Protocol 

All measurements and procedures were performed in the morning (i.e., 8:30–10:30 a.m.). 
Demographic, anthropometric, and laboratory data for the analyses were obtained at the visit. Body 
mass index was defined as weight divided by height squared (kg/m2). Resting blood pressure was 
measured once over left arm of the supine participants by an automated oscillometric device 
(Microlife BP3AG1, Taipei, Taiwan) with an appropriate cuff size. Cholesterol and triglycerides 
concentrations were measured from blood samples obtained after a 12 h fast.  

The participants were asked to refrain from caffeine-containing beverages and theophylline-
containing medications for 12 h before each hospital visit. In addition, to minimize potential 
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erroneous readings from the infrared sensors arising from involuntary vibrations of the examinees 
and a decreased environmental temperature that tends to cause constriction of the peripheral vessels, 
all participants underwent blood sampling before data acquisition and were allowed to relax in a 
supine position for 10 min in a quiet room with temperature control at 26 ± 1 °C. The PPG infrared 
sensors were simultaneously applied to bilateral index fingertips of each participant for the 
acquisition of data for 30 min [8,9].  

2.3. Calculation of Bilateral Fingertips PPG Pulse Amplitude Series 

After being processed through an analog-to-digital converter (USB-6009 DAQ, National 
Instruments, Austin, TX, USA) at a sampling frequency of 500 Hz, the digitized PPG signals were 
stored on a computer and analyzed by the Matlab 7.7 software (MathWorks, Natick, MA, USA) [8]. 
PPG pulse amplitude was defined as the systolic peak or the distance between peak and trough of a 
pulse waveform (Figure 1). We retrieved consecutive 1500 PPG pulse amplitudes of left hand shown 
as PPGAL = {PPGAL(1), PPGAL(2), PPGAL(3), …, PPGAL(n)} and those of right hand as PPGAR = 
{PPGAR(1), PPGAR(2), PPGAR(3), ..., PPGAR(n)} from each participant simultaneously.  

 
Figure 1. PPGA of left hand (PPGAL) and right hand (PPGAR) were simultaneously acquired from 
PPGA(1) to PPGA (n = 500, 1000, or 1500). 

2.3.1. Detrending of PPGA Series Signal 

Empirical mode decomposition (EMD), proposed by Huang et al. [10,11], is a time space method 
to extract final signals regressed to the zero mean after the noises are removed from data generated 
in nonlinear and non-stationary processes. EMD was used to partition the {PPGAL(i)} and {PPGAR(j)} 
series, thereby eliminating the trend from the original series. Then the {PPGAL(i)} and {PPGAR(j)} 
series were normalized as shown in (1). In these equations, SDPPGAL  and SDPPGAR  represent the 
standard deviations of series {PPGAL(i)} and {PPGAR(j)}, respectively. PPGAL and PPGAR represent 
the mean of series {PPGAL(i)} and {PPGAR(j)}, respectively. Complexity analysis was performed on 
the normalized results, nPPGAL(i) and nPPGAR(j). 

nPPGAL(i) = 
PPGAL(i) - PPGAL

SDPPGAL

nPPGAR(j) = 
PPGAR(j) - PPGAR

SDPPGAR

 

(1) 
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2.3.2. Coarse-Grained Process and SE 

Multiple coarse-grained time series are constructed by averaging the data points within non-
overlapping windows of increasing length, τ (i.e., the scale factor), as follows: 

yj
(τ)=

1
τ

xi , 1 ≤ j ≤ 
N
τ

jτ

i = (j - 1)τ + 1

 (2) 

Thus, the length of each coarse-grained time series is N/τ. SE is then computed for each new 
coarse-grained time series {yj

(τ)}, and plotted as a function of the scale factor [12]. 

2.3.3. The cMSE of Bilateral Fingertips PPG Series Signal 

cMSE consists of two main procedures, namely coarse-graining and calculation of SE for each 
coarse-grained time series. First, the computation of SE comprises: 

(a) Define the data series x(n) with length N and the two parameters of m and r (where m = 
Embedded dimension of the vector; r = tolerance). N = 1000 and 1500 for nPPGAL(i) and 
nPPGAR(j), respectively. In addition, m = 2 and r = 0.15 were set according to previous Costa et 
al. study recommendation [13]. 

(b) Define N − m + 1 vectors, each of size m, composed as follows: 

um(i) = xi,xi + 1,…,xi + m - 1  , 1 ≤  i  ≤  N - m + 1  (3) 

(c) Define d[um(i),um j ] as the maximum value: d[um(i),um j ] = max{ | xi + k - 
xj + k| : 0 ≤ k ≤ m - 1} (i ≠ j) . Calculate the number of d[um(i),um j ]  within distance  and 
calculate the ratio of the number to the total N  - m  for each value of i  ≤ N - m + 1 and an 
average to all points is defined as: 

Cm(r) = 
1

N - m + 1
ln

ni
m

N - m + 1

N - m + 1

i = 1

 (4) 

(d) Increase the embedded dimension to m + 1, gives: 

Cm + 1(r) = 
1

N - m
ln

ni
(m + 1)

N - m

N - m

i = 1

 (5) 

(e) Therefore, SE is defined as: 

SE(m,r,N) = Cm(r) - Cm + 1(r) (6) 

2.3.4. The sMSE of Bilateral Fingertips PPG Series Signal 

The cMSE method adopts the original time series for computation, whereas the sMSE method 
takes advantage of the time lags from a number of time series generated from the original one. 
Through altering the number of lag from 0 to L (where L = τ − 1, τ = coarse-grained scale factor) on 
the native time series which we selected N = 500 for bilateral fingers PPG pulse amplitudes (7), a new 
time series, ( ), can be obtained (8). Thus, the number of new time series generated is L + 1: = , , … , , X  (7) ( ) = , , , … , , X , = + 1, = 0,1,2, … ,  (8) 

The L + 1 time series acquired then undergo coarse-grained processing with a scale factor τ (9), 
giving the time series of ( )( ). Hence: 

( )( ) = 1 ( ) , 1 ≤ ≤ − , = 0, 1, 2, … ,  (9) 
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The L + 1 ( )( ) are then subjected to SE computation and averaged, giving sMSE of scale factor 
τ in (10): 

sMSE = 1+ 1 ( ( )( )) (10) 

2.3.5. The PPGA-Based cMSE and sMSE Index 

On analyzing PPG signals by using both the cMSE and sMSE algorithms, Costa et al. reported 
the association of SE of small scales (τ = 1–5) with autonomic nervous activity and respiratory 
modulation [13]. Accordingly, the present study analyzed PPG signals using an overall MSE index 
(the average of scales 1–10, MSE1–10) and by dividing the MSE into small scales (the average of scales 
1–5, MSE1–5) and large scales (scales 6–10, MSE6–10) for inter-groups comparisons. 

2.4. Statistical Analysis  

The data are presented as mean ± standard deviation (SD). The continuous variables between 
the groups were compared using two-tailed t test and categorical variables between the groups were 
compared using chi-square test or Fisher’s exact test. The values between sMSE500 and each cMSE of 
PPG pulse amplitudes were compared using one-sample t test. A p < 0.05 was considered statistically 
significant. The SPSS software (Version 14.0, SPSS Inc., Chicago, IL, USA) was adopted for all 
statistical analyses. 

3. Results 

The baseline characteristics of the age-, sex-, and weight-matched two groups are shown in Table 1. 
As compared with participants in the unaffected group, those in the diabetes group had a faster pulse 
rate and higher HbA1c levels.  

Table 1. Baseline characteristics of the unaffected and diabetic participants. 

 Unaffected (n = 35) Diabetes (n = 35) p-Value 
Male, % 23 (51.43) 24 (54.29) 0.811 

Age, year 59.74 (8.19) 60.2 (6.58) 0.798 
Height, m 161.62 (8.48) 169.82 (50.45) 0.360 
Weight, kg 67.82 (10.22) 70.61 (14.73) 0.372 

Waist circumference, cm 88.47 (7.98) 90.94 (12.39) 0.336 
Pulse rate, beats/min 73.42 (8.68) 81.34 (10.93) 0.002 
Systolic BP, mmHg 127.94 (18.74) 123.91 (16.13) 0.349 
Diastolic BP, mmHg 75.82 (10.84) 74.23 (10.16) 0.539 

HbA1c, % 6.00 (0.39) 8.74 (1.74) 0.000 
Total cholesterol, mg/dL 188.15 (35.48) 182.06 (37.28) 0.506 

Triglyceride, mg/dL 111.18 (84.84) 137.23 (69.40) 0.187 
HDL-C, mg/dL 47.24 (16.09) 41.97 (17.78) 0.218 

Continuous variables are expressed as mean (SD) and categorical variables as number (percentage). 
Abbreviations: BP, blood pressure; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein 
cholesterol. 

Table 2 shows the comparisons between the cMSE of 1500 PPG pulse amplitudes (cMSE1500) and 
the sMSE of 500 PPG pulse amplitudes (sMSE500) in the right dominant hand and left non-dominant 
hand of the individuals with or without diabetes.  

The values of the cMSE1500 and those of the sMSE500 in both hands of the unaffected individuals 
did not differ at most scale factors 1–10, and neither did those of the right dominant hand (which 
means predominantly using one’s right hand) of the individuals with diabetes. On the contrary, the 
values of sMSE500 were significantly greater than those of cMSE1500 in the non-dominant hand of the 
individuals with diabetes across all scale factors 1–10. 
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Table 2. A comparison between cMSE1500 and sMSE500 of right hand and left hand in the unaffected 
and diabetic participants at each scale factor. Data are presented as mean (standard error) of MSE. 
One-sample t-test was used to compare the values between cMSE1500 and sMSE500 in each group. 

 Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9 Scale 10
Unaffected
right hand 

cMSE1500 
1.28  

(0.07) 
1.24  

(0.05) 
1.23  

(0.05) 
1.29  

(0.05) 
1.41  

(0.05) 
1.50  

(0.06) 
1.57  

(0.06) 
1.61  

(0.06) 
1.62  

(0.06) 
1.69  

(0.06) 

sMSE500 
1.46  

(0.07) 
1.36  

(0.05) 
1.35  

(0.06) 
1.39  

(0.05) 
1.48  

(0.05) 
1.57  

(0.06) 
1.66  

(0.06) 
1.74  

(0.07) 
1.71  

(0.07) 
1.78  

(0.07) 
p-value 0.082 0.10 0.12 0.16 0.30 0.40 0.26 0.19 0.32 0.34 

left hand 

cMSE1500 
1.29  

(0.08) 
1.27  

(0.06) 
1.24  

(0.04) 
1.31  

(0.04) 
1.43  

(0.05) 
1.50  

(0.04) 
1.57  

(0.04) 
1.61  

(0.05) 
1.65  

(0.05) 
1.68  

(0.05) 

sMSE500 
1.39  

(0.06) 
1.39  

(0.06) 
1.40  

(0.06) 
1.41  

(0.07) 
1.52  

(0.06) 
1.60  

(0.06) 
1.70  

(0.07) 
1.73  

(0.07) 
1.78  

(0.08) 
1.79  

(0.07) 
p-value 0.30 0.14 0.044 0.22 0.25 0.21 0.11 0.17 0.17 0.18 

Diabetes
right hand 

cMSE1500 
1.24  

(0.07) 
1.13  

(0.06) 
1.11  

(0.06) 
1.13  

(0.06) 
1.18  

(0.05) 
1.25  

(0.05) 
1.30  

(0.06) 
1.34  

(0.05) 
1.38  

(0.06) 
1.39  

(0.06) 

sMSE500 
1.45  

(0.09) 
1.30  

(0.07) 
1.26  

(0.07) 
1.23  

(0.07) 
1.33  

(0.07) 
1.38  

(0.07) 
1.44  

(0.08) 
1.53  

(0.09) 
1.52  

(0.08) 
1.53  

(0.08) 
p-value 0.080 0.078 0.16 0.33 0.14 0.21 0.20 0.086 0.15 0.21 

left hand 

cMSE1500 
1.12  

(0.08) 
1.07  

(0.07) 
1.05  

(0.06) 
1.08  

(0.06) 
1.16  

(0.06) 
1.25  

(0.06) 
1.31  

(0.07) 
1.32  

(0.07) 
1.37  

(0.07) 
1.41  

(0.08) 

sMSE500 
1.52  

(0.08) 
1.41  

(0.07) 
1.36  

(0.06) 
1.38  

(0.06) 
1.50  

(0.06) 
1.53  

(0.06) 
1.67  

(0.08) 
1.61  

(0.07) 
1.68  

(0.07) 
1.64  

(0.06) 
p-value 0.0020 0.0020 0.0020 0.0020 0.0020 0.0070 0.0030 0.0050 0.0070 0.031 

 

Figure 2. Comparisons between sMSE500 (solid green line), cMSE1000 (solid blue line), and cMSE1500 

(solid red line) with standard errors (vertical bar) in right hand (a,c) and left hand (b,d) of the 
unaffected and those with diabetes. 
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Figure 2 shows the comparisons between cMSE1500, cMSE1000, and sMSE500 at scale factors 1–10 in 
the right dominant hand and left non-dominant hand of the individuals with or without diabetes. 
There were no differences between cMSE1500, cMSE1000, and sMSE500 at each scale factor in the right 
dominant hand of the unaffected and those with type 2 diabetes, and in the left non-dominant hand 
of the unaffected. However, the values of cMSE1500, cMSE1000, and sMSE500 differed significantly from 
the lowest to the highest at each scale factor in the left non-dominant hand of those with diabetes. 

Figure 3 shows the MSE differences between the unaffected and those with diabetes in the 
dominant hand and non-dominant hand. In the right dominant hand, the large-scale sMSE500, 
cMSE1000, and cMSE1500 values of the unaffected were significantly smaller than those of the 
individuals with diabetes. In contrast, in the left non-dominant hand, the large-scale cMSE1500 of the 
unaffected was significantly smaller than that of those with diabetes. However, the large-scale 
sMSE500 and cMSE1000 of the unaffected did not differ from those of the individuals with diabetes. 

 

Figure 3. MSE differences between the unaffected (solid blue line) and the diabetes (solid red line) in 
dominant right hand (a,c,e) and non-dominant left hand (b,d,f). 
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4. Discussion 

Our principal findings were that in participants without diabetes, the small- and large-scale 
sMSE500 and each cMSE of both the dominant and non-dominant hands did not differ significantly. 
In those with diabetes, the sMSE500 and each cMSE of the dominant hand were similar as well; 
however, both the small- and large-scale sMSE500 and each cMSE of the non-dominant hand differed 
significantly. This suggested that if PPG signals were acquired from the non-dominant and physically 
inactive hand, the sMSE and cMSE of lower PPG signal numbers could not differentiate the 
unaffected individuals and those with diabetes.  

Previous studies have demonstrated that poor glycemic control and physical inactivity increase 
the risk of microvascular disease and cardiovascular or peripheral autonomic neuropathy in diabetes 
[14–16]. A meta-analysis of randomized trials revealed that the risk of microvascular complications 
could be reduced by improving glycemic control [17]. In addition, the prevalence of microvascular 
complications may be reduced by exercise which improves glycemic control and endothelial function in 
diabetes [18–20]. The PPG pulse amplitudes of the fingertips are affected by central cardiopulmonary 
cycles and peripheral blood volume, pressure, and resistance [21]. Therefore, the MSE of PPG pulse 
amplitudes might represent the complexity of cardiovascular, respiratory, and autonomic nervous 
function. Both diabetes with hyperglycemia and weak handgrip strength are associated with higher risk 
of microvascular complications and thereby bilateral fingertip PPG pulse amplitude signals can be used 
for comparisons between cMSE and sMSE.  

Our study clarified that the sMSE of lower PPG pulse signals from the non-dominant hand of 
those with diabetes was overinflated and did not differ from that of the unaffected individuals, 
resulting in an erroneous conclusion. To our knowledge, there is a higher probability of 
microvascular and autonomic nervous dysfunctions of the non-dominant physically inactive hand in 
diabetes. As has been shown in post-exercise heart rate recovery [22,23], those with impaired cardiac 
autonomic function would have a slowly declining heart beat rate at one or two minutes after 
cessation of the treadmill test. This may explain why more numbers of PPG pulse signals are required 
for the MSE analysis in a multi-comorbid condition. Although, in our study, the PPG pulse 
amplitudes were acquired after resting for 10 min in all participants, a longer time for a faster heart 
beat rate to slow down in those with diabetes who had a weak parasympathetic nervous activity 
might be necessary. The unaffected participants with a mean pulse rate of 73.4 beats per minute 
would take an average of 6.8 min to obtain 500 PPG pulse signals, whereas diabetic patients with a 
mean pulse rate of 81.3 beats per minute had to take only 6.1 min. Therefore, as the same signal 
numbers were analyzed between the two groups, the unaffected had more resting time and might be 
more hemodynamically stable than that with diabetes. To avoid this time bias, more resting time 
prior to acquiring the PPG signals or using the same PPG measuring period rather than the same 
signal numbers is recommended for sMSE comparisons between groups.  

The strengths of our study include the availability of large numbers of serial PPG pulse 
amplitude signals of bilateral fingertips and the availability of a wide range of data on other 
covariates. Additionally, we used case-control comparisons to lessen the effect of age, sex, and weight 
on the MSE index. In contrast, residual confounding may have contributed to the difference between 
groups. 

In conclusion, diabetic autonomic function may be imprecisely evaluated by the sMSE; therefore, 
using more signal numbers for the cMSE analysis is recommended in such a situation.  
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