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Abstract: In this paper, firstly, manifold PD(n) consisting of all n× n symmetric positive-definite
matrices is introduced based on matrix information geometry; Secondly, the geometrical structures of
information submanifold of PD(n) are presented including metric, geodesic and geodesic distance;
Thirdly, the information resolution with sensor networks is presented by three classical measurement
models based on information submanifold; Finally, the bearing-only tracking by single sensor is
introduced by the Fisher information matrix. The preliminary analysis results introduced in this
paper indicate that information submanifold is able to offer consistent and more comprehensive
means to understand and solve sensor network problems for targets resolution and tracking, which
are not easily handled by some conventional analysis methods.
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1. Introduction

As an interesting research area in matrix information geometry, symmetric positive-definite
(SPD) matrices offer detailed analysis and comprehensive results by considering them as geometrical
objects [1–3]. Meanwhile, it also can be found that some applications are related to SPD matrices
of real numbers [4–7]. In the last thirty years, its applications have spanned several discipline
areas such as information theory, systems theory, control theory, signal processing and mathematical
programming [8–15]. Considering the set of all n× n SPD matrices as a manifold PD(n), by defining
affine Riemannian metric on PD(n), ones can find that PD(n) becomes a complete Riemannian
manifold (Hadamard space) [16]. Thus, for any two points on PD(n), there exists the shortest curve,
namely, geodesic connecting them. It is remarkable that ones can obtain an explicit expression of the
geodesic on PD(n) to conveniently calculate the geodesic distance [3].

Fisher information matrix (FIM) is one of important contents in the probability theory and
statistics [17,18]. Since a FIM is a symmetric positive-definite matrix, the set of all Fisher information
matrices (FIMs) corresponding to a given probability distribution family is a submanifold of PD(n),
which is called the information submanifold of PD(n). Thus, some properties including metric and
geodesic about the information submanifold can be obtained through the differential geometrical
theory of PD(n). In addition, for the sensor networks, the resolve ability of multiple closely spaced
targets with a given sensor measurement model is a basic concept about the sensor systems and
an extremely important aspect of their over-all performance [19,20]. Some sensor measurement
models have been introduced in [21–23]. The information resolution based on statistical manifold is
introduced in [24,25] which cannot give an geodesic explicitly expressed in general. Meanwhile, as a
very important issue for sensor networks, target tracking has also been investigated [22,23,26]. In this

Entropy 2017, 19, 131; doi:10.3390/e19030131 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 131 2 of 18

paper, the above two aspects are considered by the information submanifold for sensor networks.
Accordingly, by virtue of information submanifold, we give the analysis of sensor networks to gain
a better understanding and more comprehensive investigation of sensor system issues for target
resolution and tracking. In particular, the information distance (IFD) between two targets is used to
measure target resolvability in the region covered by the sensor system and is exactly calculated by the
geodesic on PD(n). Comparing with some classical resolution, such as normal resolution defined by
half-power width, Kullback-Leibler divergence defined by distance-like measurement, the presented
information resolution is defined by the information submanifold with geodesic distance not Euclidean
distance (Ed), which can show the geometrical property of the measurement models more efficiently.
It is also compared with the Rao geodesic distance which is defined by statistical manifold through
three classical sensor network measurement models in this paper. The simulation results indicate
that the presented information resolution has the similar efficient as Rao geodesic distance and less
computation complexity because of the application of Fisher information and the geodesic explicitly
expressed for any two FIMs.

The outline of this paper is organized as follows. In Section 2, the geometrical structures of
PD(n) are stated briefly. The information submanifold theory is presented in Section 3. The target
resolution and tracking with some classical measurement models based on the geodesic distance on
the information submanifold are presented and analyzed in Section 4. Finally, some conclusions are
given at Section 5.

2. Manifold of Symmetric Positive-Definite Matrices

In this section, basic materials including some definitions and results about manifold of the n× n
SPD matrices PD(n) are reviewed [8,16]. These will be used throughout this paper. Let Sym(n,R)
denote the space of all n× n real symmetric matrices, and the set of all n× n SPD matrices is considered
as a manifold

PD(n) = {A|A ∈ Sym(n), A > 0}, (1)

where A > 0 means that the quadratic form cT Ac > 0 for all c ∈ Rn/{0}. Then, the exponential
mapping from Sym(n,R) to PD(n) is usually given by

exp : Sym(n,R)→ PD(n),

exp(X) =
∞

∑
n = 0

Xn

n!
, X ∈ Sym(n,R). (2)

It is well known that exp(YXY−1) = Y exp(X)Y−1 and exp(X+Y) = exp(X) exp(Y) if XY = YX.
When ||A− I|| < 1, the logarithmic mapping can be given by

log : PD(n)→ Sym(n,R),

log(A) =
∞

∑
n = 1

(−1)n+1 (A− I)n

n
. (3)

In particular, log(AB) = log(A) + log(B) if AB = BA. Another important fact is that

log(A−1BA) = A−1 log(B)A. (4)

For a given matrix A ∈ PD(n), the Riemannian metric is defined by

< X, Y >A= tr{A−1XA−1Y}, (5)
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where X, Y ∈ TAPD(n) are two tangent vectors over PD(n) at A and tr{} denotes the trace of object
matrix. The positive definiteness of this metric is due to the fact that

< X, X >A= tr{A−
1
2 XA−

1
2 A−

1
2 XA−

1
2 }. (6)

Then, manifold PD(n) with the Riemannian metric becomes a Riemannian manifold. The geodesic
P(t) ⊂ PD(n), with initial point P(0) = P0 and initial tangent vector Ṗ(0) = S, is given by

P(t) =P
1
2

0 exp(tP−
1
2

0 SP−
1
2

0 )P
1
2

0

=P0 exp(tP−1
0 S). (7)

Let P(0) = A, P(1) = B, then the geodesic connecting A and B is given by

PA,B(t) = A(A−1B)t, t ∈ (−∞,+∞). (8)

The geodesic distance between A and B on PD(n) is given by

dPD(n)(A, B) = || log(A−1B)||F =

(
n

∑
i = 1

ln2 λi

) 1
2

, (9)

where λi is the eigenvalue of matrix A−1B for i = 1, · · · , n. The mean in the Riemannian sense of
two SPD matrices A and B is given by A(A−1B)

1
2 . If all Pk belong to a single geodesic of PD(n), i.e.,

Pk = C exp(tkS)CT , we have

Rm(P) = C exp
(

1
m

m

∑
k = 1

tkS
)

CT . (10)

It can be seen that Rm(P) = P
1
m

1 P
1
m

2 · · · P
1
m

m if and only if CCT = In.

Proposition 1. Let A, B ∈ PD(2), then the geodesic distance between A and B is given by

d(A, B) =
{

ln2 tr{A−1B}+
√

tr2{A−1B} − 4|A|−1|B|
2

+ ln2 tr{A−1B} −
√

tr2{A−1B} − 4|A|−1|B|
2

} 1
2

,

(11)

where |A| denotes the determinant of matrix A.

Proof. For two 2× 2 SPD matrices

A =

(
a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
, (12)

we get

A−1B = |A|−1

(
a22b11 − a12b12 a22b12 − a12b12

a11b12 − a12b11 a11b22 − a12b12

)
. (13)

By a direct calculation, we see that the eigenvalues of A−1B satisfy

λ2 − tr{A−1B}λ + |A|−1|B| = 0, (14)
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and furthermore, we have

λ1 =
tr{A−1B}+

√
tr2{A−1B} − 4|A|−1|B|

2
,

λ2 =
tr{A−1B} −

√
tr2{A−1B} − 4|A|−1|B|

2
.

(15)

Finally, by (9), the geodesic distance between A and B can be obtained as (3) for any
two SPD matrices.

Proposition 2. If A and B are diagonal matrices on PD(n), i.e., A = diag(a11, a22, · · · , ann) and
B = diag(b11, b22, · · · , bnn), then the geodesic connecting A and B is given by

PA,B(t) = diag(a1−t
11 bt

11, a1−t
22 bt

22, · · · , a1−t
nn bt

nn). (16)

The corresponding geodesic distance is given by

dPD(n)(A, B) =

(
n

∑
i=1

ln2(a−1
ii bii)

) 1
2

. (17)

Proof. For two diagonal matrices

A = diag(a11, a22, · · · , ann), B = diag(b11, b22, · · · , bnn), (18)

we can get

A−1B = diag(a−1
11 b11, a−1

22 b22, · · · , a−1
nn bnn). (19)

Therefore, by (4), the geodesic connecting A and B is given by

PA,B(t) =A(A−1B)t

=diag(a11, a22, · · · , ann)

[
diag(

b11

a11
,

b22

a22
, · · · ,

bnn

ann
)

]t
(20)

=diag(
bt

11

at−1
11

,
bt

22

at−1
22

, · · · ,
bt

nn

at−1
nn

).

Meanwhile, because the eigenvalues of matrix A−1B are

λi = a−1
ii bii, i = 1, · · · , n, (21)

by (9), the geodesic distance between A and B satisfies

dPD(n)(A, B) =

√
n

∑
i=1

ln2
(

bii
aii

)
. (22)

3. Information Submanifold

As well known that the probability distribution family M = {p(x; θ)} is called a statistical model
with probability density function (pdf) p(x; θ) [27], if it satisfies the following regularity conditions:

1. All the p(x; θ)’s have a common support so that p(x; θ) > 0 for all x ∈ X, where X is the support.
2. For every fixed θ, {∂i ln p(x; θ)}n

i=1 are linearly independent, where ∂i =
∂

∂θi .
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3. The moments of random variables ∂i ln p(x; θ) exist up to necessary orders.
4. The partial derivatives ∂i and the integration with respect to the measure F can always be

exchanged as

∂i

∫
f (x; θ)dF =

∫
∂i f (x; θ)dF (23)

for any smooth functions f (x; θ).

Based on the theory of probability distribution, for a given pdf p(x; θ) with θ = (θ1, θ2, · · · , θn) ∈
Θ ⊂ Rn, the FIM G(θ) = (gij)n×n is defined by

gij = E[∂i ln p(x; θ)∂j ln p(x; θ)], (24)

where E[·] denotes the expectation with respect to the pdf p(x; θ). Particularly, for the multivariate
normal distribution with the pdf

p(x; θ) =(2π)−
n
2 (det(Σ(θ))−

1
2 exp

{
−1

2
(x− µ(θ))TΣ−1(θ)(x− µ(θ))

}
, (25)

where µ(θ) and Σ(θ) are the mean and the covariance of the distribution, respectively, we have

gij(θ) =

[
∂µ(θ)

∂θi

]T
Σ−1(θ)

[
∂µ(θ)

∂θ j

]
+

1
2

tr
{

Σ−1(θ)
∂Σ(θ)

∂θi Σ−1(θ)
∂Σ(θ)

∂θ j

}
. (26)

For the pdf p(x; θ), by the theory of differential geometry [28], it is easy to know that the set

Sp(n) = {G(θ)|gij = E[∂i ln p(x; θ)∂j ln p(x; θ)], θ ∈ Θ} (27)

is a submanifold of PD(n). Then, we can give the following definition.

Definition 1. For a given pdf p(x; θ), the determinant of FIM G(θ), i.e., |G(θ)|, is called Fisher information of
p(x; θ), while the set {G(θ)} is called information submanifold of PD(n) for the given probability distribution
family M.

Proposition 3. For the exponential family {p(x; θ)} with the pdf

p(x; θ) = exp

{
c(x) +

n

∑
i=1

θiFi(x)− ψ(θ)

}
, (28)

we have

Sp(n) = {G(θ)|gij = ∂i∂jψ(θ)}. (29)

In fact, for the exponential family with the pdf (28) where θ = {θ1, · · · , θn} is the natural
coordinate system, {Fi(x)}n

i = 1 are independent function, and ψ(θ) is the potential function which is
independent to x, by direct calculation we can get

gij(θ) = ∂i∂jψ(θ). (30)

From (4), suppose that G(θ0) = A and G(θ1) = B are two FIMs corresponding to the same
statistical model, then the geodesic connecting A and B is given by

PA,B(t) = G(θ0)
[

G(θ0)
−1G(θ1)

]t
. (31)
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From (9), the corresponding geodesic distance is given by

dp(A, B) =

(
n

∑
i = 1

ln2 λi

) 1
2

, (32)

which is also called information distance (IFD) between θ0 and θ1, where λi is the eigenvalue of matrix
G(θ0)

−1G(θ1).

3.1. The Information Submanifold for the Normal Distribution

In particular, for the normal distribution with the pdf

p(x; θ) =
1√
2πσ

exp
{
− (x− µ)2

2σ2

}
, (33)

where θ = (µ, σ), µ and σ are the mean and the variance, respectively, by (24), we can get the FIM as

G(θ) =
1
σ2

(
1 0
0 2

)
, (34)

which is positive-definite diagonal matrix.

Proposition 4. Suppose that A = G(θ1) and B = G(θ2), where θ1 = (µ1, σ1) and θ2 = (µ2, σ2).
The geodesic connecting A and B is given by

PA,B(t) =

 σ2t−2
1
σ2t

2
0

0 2σ2t−2
1
σ2t

2

 . (35)

The geodesic distance between A and B is

dp(A, B) =
√

2
∣∣∣∣ ln

σ1

σ2

∣∣∣∣. (36)

Proof. By (16) and (35), we can easily obtain that

PA,B(t) =

 ( 1
σ2

1
)1−t( 1

σ2
2
)t 0

0 ( 2
σ2

1
)1−t( 2

σ2
2
)t

 =

 σ2t−2
1
σ2t

2
0

0 2σ2t−2
1
σ2t

2

 ,

dp(A, B) =
(

ln2 σ1

σ2
+ ln2 σ1

σ2

) 1
2

=
√

2
∣∣∣∣ ln

σ1

σ2

∣∣∣∣.

Proposition 5. Suppose that Pi = G(θi), θi = (µi, σi), i = 1, 2, · · · , m, are m FIMs corresponding the normal
distribution, then the Riemannian mean of them is given by

Rm(P) =

(
(∏m

i = 1 σi)
− 2

m 0
0 2(∏m

i = 1 σi)
− 2

m

)
, (37)

and the geometric mean is given by
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Gm(P) =
√

2
2

(
1 0
0 2

)
. (38)

Proof. From (35), for any A, B ∈ S(θ), we have PA,B(t) ⊂ S(θ). Therefore, for any m FIMs Pk ∈ S(θ),
they are all belong to PA,B(t). Then, by (10), we can get the Riemannian mean as

Rm(P) = P
1
m

1 P
1
m

2 · · · P
1
m

m

=

 ( 1
σ2

1
)

1
m 0

0 ( 2
σ2

1
)

1
m

 · · ·
 ( 1

σ2
m
)

1
m 0

0 ( 2
σ2

m
)

1
m


=

(
(∏m

i=1 σi)
− 2

m 0
0 2(∏m

i=1 σi)
− 2

m

)
.

Meanwhile, the geometric mean is given by

Gm(P) = ∑m
i=1 Pi√
|∑m

i=1 Pi|
=

( √
2

2 0
0
√

2

)
.

3.2. The Information Submanifold for the Von Mises Distribution

In probability theory and directional statistics, the von Mises (voM) distribution which is also
known as the circular normal distribution or Tikhonov distribution is an important continuous
probability distribution on the circle. For the voM distribution with the angle variable ϕ given by

p(ϕ; µ, κ) =
1

2πI0(κ)
exp{κ cos(ϕ− µ)}, (39)

where ϕ ∈ [0, 2π], µ ∈ [0, 2π], κ > 0, and Ir(κ) is the modified Bessel function of integer order
r satisfying

Ir(κ) = (2π)−1
∫ 2π

0
cos(rϕ) exp{κ cos ϕ}dϕ, (40)

the components of the FIM G(θ) = (gij) with θ = (µ, κ) are respectively

g11 =
κI1(κ)

I0(κ)
, g12 = g21 = 0, (41)

g22 =
I2
0(κ) + I0(κ)I2(κ)− 2I2

1(κ)

2I2
0(κ)

. (42)

Similarly as the last subsection, let A = G(θ1) and B = G(θ2) be two FIMs for voM distribution
where θi = (µi, κi), then by a calculation from (3), we can see that the geodesic connecting A and
B satisfies

PA,B(t) =

 κ1−t
1 κt

2
I1−t
1 (κ1)It

1(κ2)

I1−t
0 (κ1)It

0(κ2)
0

0 L(κ1, κ2)

 , (43)

where

L(κ1, κ2) =

[
I2
0(κ1) + I0(κ1)I2(κ1)− 2I2

1(κ1)

2I2
0(κ1)

]1 − t[ I2
0(κ2) + I0(κ2)I2(κ2)− 2I2

1(κ2)

2I2
0(κ2)

]t

. (44)
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The geodesic distance between A and B is given by

dp(A, B) =
{

ln2
[

κ2I0(κ1)I1(κ2)

κ1I0(κ2)I1(κ1)

]
+ ln2

[
I2
0(κ1)

(
I2
0(κ2) + I0(κ2)I2(κ2)− 2I2

1(κ2)
)

I2
0(κ2)

(
I2
0(κ1) + I0(κ1)I2(κ1)− 2I2

1(κ1)
)]} 1

2

. (45)

3.3. The Information Submanifold for Curved Gaussian Distribution

For the curved Gaussian distribution with the pdf [29]

p(x; θ) =
1√

2πau
exp

{
− (x− u)2

2a2u2

}
= exp

{
− x2

2a2u2 +
x

a2u
− 1

2a2 − ln
√

2πau
}

,
(46)

where θ = (θ1, θ2) with θ1 = 1
a2u and θ2 = − 1

2a2u2 . By (29), we can get the corresponding FIM

G(θ) =

(
a2u2 2a2u3

2a2u3 2a2u4(a2 + 2)

)
, (47)

and it’s inverse matrix

G(θ)−1 =
1

2a4u4

(
2u2(a2 + 2) −2u
−2u 1

)
. (48)

As the same time, let A = G(θ1) and B = G(θ2) be two FIMs for curved Gaussian distribution
where θi = ( 1

a2ui
,− 1

2a2u2
i
), then by (3), we can get the geodesic connecting A and B

PA,B(t) =(au1)
2−2tu2t

2

(
1 2u1

2u1 2u2
1(a2 + 2)

) a2 + 2− 2u2
u1

2u2(a2+2)(u1−u2)
u1

u2−u1
u2

1

u2
2(a2+2)−2u1u2

u2
1

t

. (49)

The geodesic distance between A and B is given as

dp(A, B) =
{

ln2
[

u2
2(a2 + 2)(u2

1 + u2
2)− 4u1u3

2]

2a2u4
1

+
√

K
]

+ ln2
[

u2
2(a2 + 2)(u2

1 + u2
2)− 4u1u3

2

2a2u4
1

−
√

K
]} 1

2

,

(50)

where K =
[
(a2 + 2)(u2

1 + u2
2)− 4u1u2

]2 − 4a4u2
1u2

2.

4. Application of Information Submanifold for Sensor Networks

4.1. Information Resolution Based on Information Submanifold

In this subsection, the information resolution based on information submanifold is served as a
new metric to measure the intrinsic similarities of the corresponding information matrix and is optimal
to determine such resolution with respect to the underlying similitude which generates the manifold of
SPD matrices based on differential geometry. It is defined on the basis of consideration of information
distance connecting two relative FIMs for two measurement results. According to the definition, a new
resolution cell denoted as Γ(θ, δ) is a geodesic ball described by the set of equidistant points θ′ from the
center θ in an information submanifold which is defined by a measurement model {p(x; θ)}. Therefore,
we have the following definition.
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Definition 2. For a given measurement model with pdf p(x; θ) and a known target state θ with δ > 0, the set

Γ(θ, δ) := {θ′|dp(G(θ), G(θ′)) = δ, δ ≥ 0}, (51)

is called information resolution cell, where dp(G(θ), G(θ′)) given by (32) is the IFD of the two targets and δ is
the radius of the information resolution cell which is called the information resolution limit.

Given a minimal resolution limit value δ0 for a sensor network, we can distinguish two targets
by the information resolution dp(G(θ), G(θ′)), i.e., if dp(G(θ), G(θ′)) > δ0, the two targets can be
distinguished, otherwise, we cannot distinguish them so that regard them as one target. In the
following three subsections, we will use three classical measurement models, i.e., range-bearing
measurement model, two-bearings measurement model and three dimensional (3D) range-bearings
measurement model, to show the effectiveness of information resolution based on information
submanifold.

4.1.1. Range-Bearing Measurement

As well known that, assume that the sensor is located at the origin of coordinate s0 = (0, 0),
the range-bearing measurement model can be represented as

x =

(
τ

ϕ

)
=

( √
x2 + y2

arctan y
x

)
+

(
wτ

wϕ

)
, (52)

where wτ ∼ N(0, r4σ2
τ) with r =

√
x2 + y2, wϕ ∼ N(0, σ2

ϕ) and θ = (x, y)T . It should be noted that the
term r4 appeared in the diagonal of range component to take into account the fact that the amplitude
of the radar echo signal attenuates according to the fourth power of the target range. Then, we can
see that the sensor measurement x satisfies the Gaussian distribution with the mean and covariance
matrix given by

µ(θ) =

( √
x2 + y2

arctan y
x

)
, C(θ) =

(
r4σ2

τ 0
0 σ2

ϕ

)
. (53)

By (26), the corresponding FIM satisfies

g11 =
1

(x2 + y2)2

[
x2

(x2 + y2)σ2
r
+

y2

σ2
ϕ
+ 8x2

]
, (54)

g12 = g21 =
1

(x2 + y2)2

[
xy

(x2 + y2)σ2
r
− xy

σ2
ϕ
+ 8xy

]
, (55)

g22 =
1

(x2 + y2)2

[
y2

(x2 + y2)σ2
r
+

x2

σ2
ϕ
+ 8y2

]
. (56)

According to the FIM above, we can obtain an information submanifold corresponding to the
range-bearing measurement model and calculate the information distance between any two measured
target states for determining whether they can be resolved or not.

Assume that the area of interest is 30× 30 with στ = 1 and σϕ = 0.2. The sensor is located at (0, 0)
and the known target T0 is located at (10, 15). At the same time, without loss of generality, we assume
that the detection target Tt is on the same plane with T0 and the sensor.

Figure 1a shows the information distance between two closely spaced targets T0 and Tt for
range-bearing measurement sensor network. Figure 1b is the contour map of Figure 1a. A same plot is
generated in Figure 2a in Rao geodesic distance based on information matrix metric (DF). And the
contour map generated via DF in the same scenario as in Figure 1b is given in Figure 2b. From this,
we can see that the IFD increases with the area centered at the location of T0. At the same time,
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we can know that the change of IFD is more larger when the detected target Tt is closer to the sensor
S0. Clearly, the uncertainty area is under a given threshold to the value of IFD and target Tt can be
distinguished from target T0 when it is outside this area. There are sixteen targets with Ed, DF and IFD
as shown in Table 1 corresponding to T0 = (10, 15) and T′0 = (8, 13), respectively. It can be seen that
the IFD is increasing with the Ed between T0 and Tt, especially when Tt is moving to close the sensor.
Meanwhile, we can also know that the IFD is different for two detected targets with the same Ed to
T0, and the closer the Ed of one target to S0 is, the bigger the IFD to S0 is in generally. For example,
setting T1 = (3, 8) and T8 = (17, 22) with the same Ed = 9.90 and DF = 1.28 to S0 for T0, however
the relationship of the IFD is 2.15 > 1.23 which indicates that the presented information resolution
is more efficient and accurate than others for this measurement system. In addition, if the minimal
resolution limit δ0 is given as 0.25 for the samples in Table 1, the four targets T4, T5, T12 and T13 cannot
be distinguished with T0, and the others can be distinguished. For target T′0, we can get the similar
analysis results as T0.
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Figure 1. (a) IFD between two closely spaced targets for range-bearing measurement model; (b) The contour
map of Figure 1a.
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Figure 2. (a) DF between two closely spaced targets for range-bearing measurement model; (b) The contour
map of Figure 2a.
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Table 1. DF and IFD with T0(T′0) for range-bearing measurement model.

Tt (3,8) (5,10) (7,12) (9,14) (11,16) (13,18) (15,20) (17,22)
Ed 9.90(7.07) 7.07(4.24) 4.24(1.41) 1.41(1.41) 1.41(4.24) 4.24(7.07) 7.07(9.90) 9.90(12.73)
DF 1.28(1.12) 0.97(0.73) 0.62(0.26) 0.22(0.26) 0.22(0.73) 0.62(1.12) 0.97(1.47) 1.28(1.78)
IFD 2.15(1.67) 1.37(0.89) 0.74(0.27) 0.23(0.25) 0.21(0.69) 0.59(1.07) 0.93(1.40) 1.23(1.70)

Tt (3,22) (5,20) (7,18) (9,16) (11,14) (13,12) (15,10) (17,8)
Ed 9.90(10.30) 7.07(7.62) 4.24(5.10) 1.41(3.16) 1.41(3.16) 4.24(5.10) 7.07(7.62) 9.90(10.30)
DF 2.73(3.65) 1.98(2.67) 1.19(1.61) 0.39(0.56) 0.39(0.72) 1.19(1.43) 1.98(2.21) 2.73(2.97)
IFD 0.94(1.26) 0.68(0.99) 0.41(0.73) 0.14(0.53) 0.14(0.48) 0.40(0.62) 0.65(0.85) 0.87(1.09)

4.1.2. Two-Bearings Measurement

Suppose that two sensors S1 and S2 are located at (η1, ξ1) and (η2, ξ2) respectively. The sensors
can observe two bearings of the target T0 = (x, y) and each of the measurement ϕi satisfies the voM
distribution, i.e.,

ϕi ∼ voM(µi, κ), (57)

where µi = arctan y−ξi
x−ηi

, and κ is a constant. Sine the sensor measurements are independent, each voM
distribution is with common concentration parameter κ and the measurement at ith sensor has circular
mean ϕi, then the bearing measurements ϕ = (ϕ1, ϕ2) satisfy the joint distribution with the pdf

p(ϕ; θ) =
1

2πI 2
0 (κ)

exp

{
2

∑
i=1

κ cos(ϕi − µi)

}
, (58)

where θ = (x, y)T is the local coordinate. Then, by (24), we can obtain the corresponding FIM as

g11 = κ
I1(κ)

I0(κ)

2

∑
i = 1

(y− ξi)
2

[(x− ηi)2 + (y− ξi)2]2
, (59)

g12 = g21 = −κ
I1(κ)

I0(κ)

2

∑
i = 1

(y− ξi)(x− ηi)

[(x− ηi)2 + (y− ξi)2]2
, (60)

g22 = κ
I1(κ)

I0(κ)

2

∑
i = 1

(x− ηi)
2

[(x− ηi)2 + (y− ξi)2]2
. (61)

Thus, we can obtain an information submanifold corresponding to the two-bearings measurement
model and calculate the information distance between two measured target states.

Assume that the area of interest is 50× 50 and κ = 9. The two sensors are located at S1 = (0, 0),
and S2 = (50, 0), respectively. The target T0 is located at (20, 30). Without loss of generality, we also
assume that the detection target Tt is on the same plane with T0 and the sensors.

Figure 3a shows the information distance between two spaced targets T0 and Tt for the two-bearings
measurement sensor network. Figure 3b is the contour map of Figure 3a. A same plot is generated
in Figure 4a in Rao geodesic distance based on information matrix metric. And the contour map
generated via DF in the same scenario as in Figure 1b is given in Figure 4b. Accordingly, it is easy
to know that the IFD increases with the area centered at the location of T0. At the same time, we
can know that the change of IFD is more larger when the detected target Tt is closer to the line S1S2

connecting the sensor S1 and S2. Clearly, the uncertainty area is under a given threshold to the value of
IFD and target Tt can be distinguished from target T0 when it is outside this area. As shown in Table 2
with T0 = (20, 30) and T′0 = (25, 17), for the selected samples, we can also get the similar property
which is given in the last subsection. For example, setting T1 = (11, 11) and T8 = (39, 39) with the
same Ed = 21.02, the corresponding relationships about DF and IFD are 0.38 < 0.55 and 1.88 > 0.91,
respectively. Thus, we can know that the presented information resolution has the same efficient as the
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Rao geodesic distance for the measurement model. Meanwhile, based on the geometrical property of
this measurement model, i.e., the closer the detected target Tt to the line S1S2 is, the bigger the change
of the Fisher information is, it can be seen that the presented method is more accuracy than others
for this measurement model. Similarly, for a given minimal resolution limit δ0 = 0.40, there are only
T5 and T6 which cannot be distinguished from T0, while the all targets can be distinguished from T′0
under the same situations.
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Figure 3. (a) IFD between two closely spaced targets for two-bearings measurement model; (b) The contour
map of Figure 3a.
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Figure 4. (a) DF between two closely spaced targets for two-bearings measurement model; (b) The contour
map of Figure 4a.

Table 2. DF and IFD T0(T′0) for two-bearings measurement model.

Tt (11,11) (15,15) (19,19) (23,23) (27,27) (31,31) (35,35) (39,39)
Ed 21.0(15.2) 15.8(10.2) 11.1(6.3) 7.6(6.3) 7.6(10.2) 11.1(15.2) 15.8(20.3) 21.0(26.1)
DF 0.38(0.53) 0.29(0.32) 0.21(0.16) 0.21(0.26) 0.21(0.33) 0.31(0.46) 0.43(0.60) 0.55(0.72)
IFD 1.88(1.71) 1.31(1.05) 0.90(0.59) 0.60(0.52) 0.38(0.81) 0.36(1.20) 0.58(1.59) 0.91(1.97)

Tt (2,33) (5,30) (8,27) (11,24) (14,21) (17,18) (20,15) (23,12)
Ed 18.3(28.0) 15.0(23.9) 12.4(19.7) 10.8(15.7) 10.8(11.7) 12.4(8.5) 15.0(5.4) 18.3(5.4)
DF 0.53(0.64) 0.43(0.52) 0.34(0.46) 0.27(0.38) 0.23(0.30) 0.23(0.22) 0.47(0.17) 0.62(0.19)
IFD 1.05(2.07) 0.76(1.80) 0.56(1.55) 0.58(1.30) 0.76(1.04) 0.99(0.78) 1.24(0.54) 1.50(0.53)

4.1.3. 3D Range-Bearings Measurement

Using a similar method, we consider the 3D positioning model in this subsection. Let the range,
azimuth and altitude angle of the target T(x, y, z) be τ, α and β, respectively. In the network of single
conventional sensor measurement model, the state of a target is simply represented by its location,
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i.e., θ = (x, y, z). The sensor can observe range and bearings of the target, and then the measurement
model can be written as

x =

 τ

α

β

 =


√

x2 + y2 + z2

arctan y
x

arctan z√
x2+y2

+

 wτ

wα

wβ

 , (62)

where τ, α and β denote the range, angle of rotation and angle of altitude of the measurement subject
to an additive zero-mean Gaussian noise ω = [ωτ , ωα, ωβ] with the covariance C(θ), respectively.
Therefore, the measurement x obeys a normal distribution with the mean and the covariance
respectively satisfying

µ(θ) =


√

x2 + y2 + z2

arctan y
x

arctan z√
x2+y2

 , C(θ) =

 R4σ2
τ 0 0

0 σ2
α 0

0 0 σ2
β

 , (63)

where R =
√

x2 + y2 + z2, στ, σα and σβ are the standard deviations of range and bearings measurement
noise, respectively. By (26), we can calculate the FIM elements of model (62) respectively as follows

g11 =
x2

R4

[
1

R2σ2
τ
+

z2

(x2 + y2)σ2
β

+ 8

]
+

y2

(x2 + y2)2σ2
α

, (64)

g22 =
y2

R4

[
1

R2σ2
τ
+

z2

(x2 + y2)σ2
β

+ 8

]
+

x2

(x2 + y2)2σ2
α

, (65)

g33 =
z2

R4

(
1

R2σ2
τ
− 1

σ2
β

+ 8

)
+

1
σ2

β

, (66)

g12 = g21 =
xy
R4

[
1

R2σ2
τ
+

z2

(x2 + y2)σ2
β

+ 8

]
− xy

(x2 + y2)2σ2
α

, (67)

g13 = g31 =
xz
R4

(
1

R2σ2
τ
− 1

σ2
β

+ 8

)
, (68)

g23 = g32 =
yz
R4

(
1

R2σ2
τ
− 1

σ2
β

+ 8

)
, (69)

By the six equations above, we can calculate the geodesic distance between any two information
matrices corresponding to the 3D measurement model. Assume that the area of interest is 40× 40× 50,
στ = 1, and σα = σβ = 0.2. Then, the sensor is located at (0, 0, 0), and the reference target is located
at (20, 20, 20). In addition, we assume that the moving target is on the same plane with z = 20 for
simplifying the simulation results.

Figure 5a shows the information distance between two closely spaced targets T0 and Tt for 3D
range and angle measurement sensor network and Figure 5b is the contour map of Figure 5a. From
this we can know that the IFD increases with the area centered at the location of T0. The closer that
target Tt to T0 is, the smaller the IFD is. For a given resolution limit δ0, we can easily know that
two targets whether can be distinguished or not by calculating the IFD between them, i.e., there are
two detection points or one point. A same plot is generated in Figure 6a in Rao geodesic distance based
on information matrix metric. And the contour map generated via DF in the same scenario is given in
Figure 6b. For some samples as shown in Table 3 with T0 = (20, 20, 20) and T′0 = (16, 16, 16), the similar
analysis results can be also obtained as the 2D range-bearing measurement model. For example, by a
given minimal resolution limit δ0 = 0.25, there are only T4 and T5 which cannot be distinguished from
T0 and only T4 which cannot be distinguished from T′0 with the presented method.
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Figure 5. (a) DF between two closely spaced targets for 3D range-bearings measurement sensor
network; (b) The contour map of Figure 5a.
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Figure 6. (a) DF between two closely spaced targets for 3D range-bearings measurement sensor
network; (b) The contour map of Figure 6a.

Table 3. DF and IFD with T0(T′0) for 3D range-bearings measurement sensor network.

Tt (6,6,6) (10,10,10) (14,14,14) (18,18,18) (22,22,22) (26,26,26) (30,30,30) (34,34,34)
Ed 24.3(17.3) 17.3(10.4) 10.4(3.5) 3.5(3.5) 3.5(10.4) 10.4(17.3) 17.3(24.3) 24.3(31.2)
DF 70.0(50.0) 50.0(30.0) 30.0(10.0) 10.0(10.0) 10.0(30.0) 30.0(50.0) 50.0(70.0) 70.0(90.0)
IFD 2.41(1.96) 1.3(0.94) 0.71(0.27) 0.21(0.24) 0.19(0.64) 0.52(0.97) 0.81(1.26) 1.06(1.51)

Tt (6,6,34) (10,10,30) (14,14,26) (18,18,22) (22,22,18) (26,26,14) (30,30,10) (34,34,6)
Ed 24.3(22.9) 17.3(16.4) 10.4(10.4) 3.5(6.6) 3.5(8.7) 10.4(14.3) 17.3(20.7) 24.3(27.4)
DF 70.0(90.0) 50.0(70.0) 30.0(50.0) 10.0(30.0) 10.0(10.0) 30.0(10.0) 50.0(30.0) 70.0(50.0)
IFD 2.47(1.96) 1.49(0.95) 0.84(0.27) 0.27(0.36) 0.26(0.89) 0.76(1.39) 1.20(1.83) 1.58(2.21)

Remark 1. From the analysis with the three sensor systems above, it illustrates the sensing ability of the sensor
networks to distinguish two closely spaced targets. A minimal detectable information distance may be identify
in the maps for a given resolution limit δ0. If information distance between two targets is below the given
threshold, the two closely spaced targets may not be distinguished by the sensor system and are considered
as one target. Otherwise, we can distinguish them as two different targets. In addition, compared with some
classical resolution, information resolution based on information submanifold and information resolution based
on statistical manifold are all defined throughout geodesic distance and can all show the geometric property of
sensor networks measurement system. It should be noted that, because there is no explicit geodesic expression on
statistical manifold in general, the geodesic calculation has very high complexity and is approximately handled
by the Euclidean distance sometimes. Thus, it would be some cause of calculation error for target resolvability,
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especially when the two targets is not fairly close to each other. However, the information distance based on
information submanifold is only related to FIMs corresponding to the targets states and can be calculated by an
explicit geodesic expression on PD(n). Meanwhile, the presented resolution in this paper can show the Fisher
information and the measurement models more effectively.

4.2. Bearing-Only Tracking With Single Sensor

In this subsection, we present a new tracking method based on information submanifold for
bearing-only tracking with a single sensor. By (59)∼(62), as a function of the second sensor location,
the determinant of the FIM can be given by

f (η2, ξ2) =

[
κI1(κ)(x̃1ỹ2 − x̃2ỹ1)

I0(κ)R2
1R2

2

]2

, (70)

where x̃1 = x− η1, x̃2 = x− η2, ỹ1 = y− ξ1, ỹ2 = y− ξ2, and Ri = (x− ηi)
2 + (y− ξi)

2.
For the given locations of the two sensors, we can get the Fisher information for the detection

target by (70) which represents the volume of the amount of information. Under the same situation as
in the last subsection, the target information map and the contour map for the two-bearings passive
sensor networks can be obtained as shown in Figure 7a,b on a logarithm scale. From the two figures,
it can be seen that the amount of the information is very little and even almost is zero nearby the
straight line passing through the two sensors. In fact, the target can not be located in this region due to
the bearing-only measurement. In order to eliminate the unmeasurable area and obtain the maximal
Fisher information, we can move the sensor with respect to the target. If the trajectory of the target
moving is known, the sensor would have an optimal scheduling such that maximal target information.
Therefore, we make the following parameter replacement using the polar coordinate{

η2 = η1 + r cos ϕ,
ξ2 = ξ1 + r sin ϕ,

(71)

where r and ϕ denote the step length and the direction of the sensor movement, respectively.
Substituting (71) into (70), we see that (70) becomes

f (r, ϕ) =

{
κI1(κ)[x̃1(ỹ1 − r sin ϕ)− (x̃1 − r cos ϕ)ỹ1]

I0(κ)R2
1[R

2
1 − 2r(x̃1 cos ϕ + ỹ1 sin ϕ) + r2]

}2

. (72)
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Figure 7. (a) Target information for the sensor network with two-bearings passive sensor networks;
(b) The contour map of target information.
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Taking the partial derivative of (72) with respect to ϕ and setting it to be zero, we can obtain the
optimal sensor heading course ϕopt which satisfies the following expression

tan ϕopt =

|r2−R1|
2rR1

+ ỹ1
x̃1

1− |r
2−R1|
2rR1

· ỹ1
x̃1

. (73)

Without loss of generality, let the Line-of-Sight from the sensor to the target be the baseline
direction of the coordinate systems. The optimal sensor moving direction based on (73) can be
simplified as

ϕopt = ± arctan
|r2 − R2

1|
2rR1

= ± arctan
|λ2 − 1|

2λ
, (74)

where λ = r/R1.
Assume that the initial state of the sensor locates at (0, 0), and the location of the target is (10, 0).

Then, we can get the polar relation map about the optimal moving direction ϕopt and the moving
radius r as Figure 8.
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Figure 8. Optimal sensor movement direction for given radius.

As described in Figure 8, the optimal direction of the sensor changes from 90◦ to 0◦ with the
increase of the length of tracking radius. And when the radius equals to the distance between the
target and the sensor, i.e., r = R1, the optimal direction is 0◦. Therefore, we can select the optimal
direction based on the radius of the sensor which we design in the practical applications.

5. Conclusions

In this paper, we have proposed the information submanifold and its applications for sensor
networks based on SPD matrices. Three simple examples corresponding three probability distributions
are calculated with the geodesic and geodesic distance. The problems of target resolution and tracking
with a single sensor based on the information submanifold are analyzed and computed through
two classical sensor networks models. The simulation results have shown that the proposed method
yields very effective performance in practical environments. Our future work will focus on the
applications of the curvature of the information submanifold for the management and tracking of the
sensor networks.
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