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1. Introduction

The notion of topological pressure for the potential was introduced by Ruelle [1] for expansive
dynamical systems. Walters [2] generalized it to the general case and established the classical variational
principle, which states that the topological pressure is the supremum of the measure-theoretic entropy
together with the integral of the potential over all invariant measures. In the special case that the
potential is zero, it reduces to the variational principle for topological entropy.

The entropy concepts can be localized by defining topological tail entropy to quantify the local
complexity of a system at arbitrary small scales [3]. A variational principle for topological tail entropy
was established in the case of homeomorphism from subtle results in the theory of entropy structure by
Downarowicz [4]. An elementary proof of this variational principle for continuous transformations was
obtained by Burguet [5] in term of essential partitions. Ledrappier [6] presented a variational principle
between the topological tail entropy and the defect of upper semi-continuity of the measure-theoretic
entropy on the cartesian square of the dynamical system involved, and proved that the tail entropy is
an invariant under any principal extension. Kifer and Weiss [7] introduced the relative tail entropy for
continuous bundle random dynamical systems (RDSs) by using the open covers and spanning subsets
and deduced the equivalence between the two notions.

A relative version of the variational principle for topological pressure was given by Ledrappier and
Walters [8] in the framework of the relativized ergodic theory, and it was extended by Bogenschiitz [9]
to random transformations acting on one place. Later, Kifer [10] gave the variational principle for
random bundle transformations.

In this paper, we propose a relative variational principle for the relative tail pressure, which is
introduced for random bundle transformations by using open random sets. The notion defined
here enables us to treat the different open covers for different fibers. We deal with the product
RDS generated by a given RDS and any other RDS with the same base. We obtain a variational
inequality, which shows that the defect of the upper semi-continuity of the relative measure-theoretic
entropy of any invariant measure together with the integral of the random continuous potential in
the product RDS cannot exceed the relative tail pressure of the original RDS. In particular, when the
two continuous-bundle RDSs coincide, we construct a maximal invariant measure in the product
RDS to ensure that the relative tail pressure could be reached, and establish the variational principle.
For the trivial probability space and the zero potential, the relative tail pressure is the topological tail
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entropy defined in [3] and the variational principle reduces to the version deduced by Ledrappier [6]
in deterministic dynamical systems. As an application of the variational principle we show that the
relative tail pressure is conserved by any principal extension.

The paper is organized as follows. In Section 2, we recall some background in the ergodic theory.
In Section 3, we introduce the notion of the relative tail pressure with respect to open random covers
and give the power rule. Section 4 is devoted to the proof of the variational principle and shows that
the relative tail pressure is an invariant under principal extensions.

2. Relative Entropy

Let (Q), F,P) be a complete countably generated probability space together with a P-preserving
transformation ¢ and (X, B) be a compact metric space with the Borel c-algebra B. Let £ be a
measurable subset of Q) x X with respect to the product c-algebra F x B and the fibers £, = {x € X :
(w,x) € £} be compact. A continuous bundle random dynamical system (RDS) T over (Q), F, P, ¢)
is generated by the mappings Ty, : Ew — Egw so that the map (w,x) — Ty x is measurable and
the map x — T,x is continuous for P-almost all (a.a.) w. The family {T, : w € Q} is called a
random transformation and each T,, maps the fiber &, to Ey,,. The map © : £ — &£ defined by
O(w, x) = (dw, Tx) is called the skew product transformation. Observe that @" (w, x) = (¢"w, T} x),
where T/, = Tgu-1,,0 -+ Tp 0 Tp forn > 0 and T, = id.

Let Pp(Q x X) be the space of probability measures on Q2 x X having the marginal P on () and
set Pp(€) = {p € Pp(QA x X) : u(€) = 1}. Denote by Zp(&) the space of all ©-invariant measures
in Pp(&).

Let S be a sub-c-algebra of F x B restricted on £, and R = {R;} be a finite or countable partition
of £ into measurable sets. For y € Pp(Q x X) the conditional entropy of R given c-algebra S is
defined as:

Hy(R|8) =~ [ LE(ly, | S)logE(1x, | S)dp,

where E(1g, | S) is the conditional expectation of 1, with respect to S.

Let u € Zp(&) and let S be a sub-c-algebra of F x B restricted on & satisfying @ 'S C S.
For a given measurable partition R of £, the conditional entropy H), (R | S) is a non-negative
sub-additive sequence, where R(") = Vf;lo((@i)’lR. The relative entropy hy, (R | S) of © with respect to
a partition R is defined as:

1 !
Iy(R | 8) = lim = Hy(R™ | S) = infHy (R | S).
The relative entropy of © is defined by the formula:

hu(®S) :S%PhH(R|S),

where the supremum is taken over all finite or countable measurable partitions R of £ with finite
conditional entropy Hy, (R | S) < co. The defect of upper semi-continuity of the relative entropy h, (© | S)
is defined on Zp(£) as:

limsuph,(® |S) —hu(©]S), if hu(®|S) < oo,
B(O]8)=<( #—om

o, otherwise.

Any u € Pp(€) on & disintegrates du(w,x) = duy(x)dP(w) (see [11] (Section 10.2)), where
w — i is the disintegration of y with respect to the o-algebra F¢ formed by all sets (F x X)N &
with F € F. This means that j, is a probability measure on &, for P-almost all (a.a.) w and for any



Entropy 2017, 19, 120 30f17

measurable set R € &, P-a.s. pp(R(w)) = E(R | F¢)(w), where R(w) = {x : (w,x) € R} and so
#(R) = [ pw(R(w))dP(w). The conditional entropy of R given the o-algebra F¢ can be written as:

Hu(R | Fe) = = [ L E(R; | Fe)log E(R: | Fe)dP = [ Hy, (R(w))dP,

where R(w) = {Rj(w)}, Rij(w) = {x € &, : (w, x) € R;} is a partition of &,.

Let (Y,C) be a compact metric space with the Borel o-algebra C and G be a measurable,
with respect to the product o-algebra F x C, subset of () x Y with the fibers G, being compact.
The continuous bundle RDS S over (Q), F, P, 9) is generated by the mappings S, : G — Gy so that
the map (w,y) — Swy is measurable and the map y — S,y is continuous for P-almost all (a.a.) w.
The skew product transformation A : G — G is defined as A(w,y) = (dw, Swy).

Definition 1. Let T, S be two continuous bundle RDSs over (Q), F,P,®) on € and G, respectively. T is said to
be a factor of S, or S is an extension of T, if there exists a family of continuous surjective maps 7y : G — Ew
such that the map (w,y) — 7y is measurable and 19,,Sow = Tww. The map @ G — & defined by
n(w,y) = (w, mwy) is called the factor or extension transformation from G to . The skew product system
(€,0) is called a factor of (G, ) or (G, A) is an extension of (£,0).

Denote by A the restriction of 7 x Bon € and set Ag = {m 1A: A € A}.

Definition 2. A continuous bundle RDS T on € is called a principal factor of S on G, or that S is a principal
extension of T, if for any A—invariant probability measure m in Ip(G), the relative entropy of A with respect
to Ag vanishes, i.e., hy (A | Ag) = 0.

Let T and S be two continuous bundle RDSs over (Q), F,P,®) on £ and G, respectively. Let
H={(wyx):y€Guxec}and Hy = {(y,x) : (w,y,x) € H}. Itis not hard to see that H is
a measurable subset of () X Y x X with respect to the product c-algebra F x C x B (as a graph of
a measurable multifunction; see [12] (Proposition II1.13)). The continuous bundle RDS S x T over
(Q, F,P,0) is generated by the family of mappings (S X T) : Hew — Hew With (v, x) = (Swy, Twx).
The map (w,y, x) — (Swy, Twx) is measurable and the map (y, x) — (Swy, Twx) is continuous in (y, x)
for P-a.a. w. The skew product transformation I' generated by ® and A from H to itself is defined as
I'w,y,x) = (dw,Swy, Tyx).

Let t¢ : H — & be the natural projection with ¢ (w,y,x) = (w,x), and g : H — G with
ng(w,y,x) = (w,y). Then, ¢ and 7rg are two factor transformations from H to £ and G, respectively.
Denote by D the restriction of F x C on G and set Dy = 7'(971(7)) ={(DxX)NH :D e D},
Ay =m'(A) ={(AxY)NH: A€ Aland Fyy = {(Fx Y x X)NH : F € F}.

The relative entropy of T’ given the o-algebra Dy is defined by:

hy(T' | Dy) = s%phV(R | Dy),

where,
1 i\ —
h(R | Dyg) = lim - H,(\/ (') 'R | D)
i=0

is the relative entropy of T with respect to a measurable partition R, and the supremum is taken over all
finite or countable measurable partitions R of H with finite conditional entropy Hy (R | Dp) < co.

Let £ = {(w,x,y) : x,y € Ev}, which is also a measurable subset of Q) x X? with respect
to the product o-algebra F x B2. Let @2 : £2) — £ pe a skew-product transformation with
o2 (w,x,y) = (Vw, Twx, Tpy). The map (w, x,y) — (Twx, Twy) is measurable and the map (x,y) —
(Twx, Twy) is continuous in (x,y) for P-a.a. w. Let &, & be two copies of €, ie., & = & = €&,
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and g, be the natural projection from & 2) to & with g, (w, x1,%2) = (w,x;), i =1, 2. Denote by
Aco) = {(AxXX)NE (2) . A € F x B}. The relative entropy of ®2 given the o-algebra Ag () is defined by:

1y (0@ | Ag) = s%p hy(R | Ag),

where,
1. )
(R | Agey) = lim —Hy(\/ (©@*))7'R | Agw)
i=0
is the relative entropy of ®?) with respect to a measurable partition R, and the supremum is taken over all
finite or countable measurable partitions R of £?) with finite conditional entropy Hy(R | Ag)) < oo

3. Relative Tail Pressure

A (closed) random set Q is a measurable set valued map Q : Q3 — 2%, or the graph of Q denoted
by the same letter, taking values in the (closed) subsets of compact metric space X. An open random
set U is a set valued map U : Q — 2% whose complement U° is a closed random set. A measurable set
Q is an open (closed) random set if the fiber Q,, is an open (closed) subset of &, in its induced topology
from X for P-almost all w (see [13] (Lemma 2.7)). A random cover Q of £ is a finite or countable
family of random sets {Q} , such that &, = Ugcg Q(w) for all w € (), and it will be called an open
random cover if all Q € Q are open random sets. Set Q(w) = {Q(w)}, Q) = Vf;lo(@)’lQ and
QU (w) = V1! (L)1 Q(¢w). Denote by P(E) the set of random covers and 4(E) the set of open
random covers. For R, Q € PB(E), R is said to be finer than Q, which we will write R > Q if each
element of R is contained in some element of O.

For each measurable in (w, x) and continuous in x € &, function f on &, let:

£l = /Ilf )leodP,  where [|f(w)lleo = sup | f(w,x) |,

xe&y

and L}(Q,C(X)) be the space of such functions f with ||f|| < co and identify f and g provided
|f — gll = 0; then LL(Q),C(X)) is a Banach space with the norm || - ||. Any such f will be called a
random continuous function from &£ to R.

Let f € LL(Q,C(X)) and n € N. Denote by:

n—1 )
Snf(w,x) Zof iw, Th x 4;0]‘0@1((0,3().

For any non-empty set U C £ and a random cover R € P(&), set:

P({)(w, n,R,U)=inf{} sup 5f(@X) - 11 is a random subcover of R }.
Sen xeS(w)NU(w)

For R, Q € P(E), let:

Pé(w, nR,Q)= max, P olw,n,R,Q)}
QeQm

For an open random cover R, P({;(w, n,R, Q) is measurable in w. The following proof is similar
to [10] (Proposition 1.6).

Lemmal. Let R € U(E) and Q € P(E). The function w — P(J;(w, n, R, Q) is measurable.
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Proof. Fixn € N. Let Q € Q™ and R = {Ry,...,R;}. Notice that R(")(w) is the open cover of &,

consisting of sets,
n—1

Rjoyn ) (@) = () (Te) 'R (8'w)
i=0

Since each R;is a random set, then the sets,
R(j(]/"'/jﬂ—l) = {((U, x) X e R(jO/---rjiz—l)(w)}
are measurable sets of £. It follows from Lemma II1.39 in [12] that the function:
Pliorjn_1) (@) = sup{e*f () : x € Rijo,.in) (@) N Q(w)}

is measurable in w, where ¢(; . (w) =0if Rj; i (w)NQ(w) = D. Since Q € F x B, it follows
that (see [12] (Theorem II1.30)) for any collection of n—strings ji = (]6, .., j;—l)' i=1,...,k the set:
k k
Op, g = {w: Q) € U Ry(w)} = O\ fw: (X\ U Rj(w)) N Q(w) # 2}

i=1 i=1

belongs to F. Since [" is finite, One obtains a finite partition of () into measurable sets QJ, where Jis a
finite family of n—strings such that QO = Nir,...ier Q... i Thus for each w € o/,

k
f o .

Py(w,n,R,Q) = min > i,
© (i) e keN; =4 )

and so this function is measurable in w.
Since for each t € R,

{w:PlwnR Q) >ty = | {w:PlwnR Q) >t}
Qe

Then the function P(f; (w,n, R, Q) is measurable in w. [

For each w, the sequence log P({;(w, n,R, Q) is subadditive. Indeed, if B is a random cover of
V?;lo(Té,)’lR(ﬂiw) on &, and v is a random cover of V;‘;lo(Tl’;,,w)’l R(¥ T "w) on Epng,, then BV
(T")~lv is a finite subcover of V?;Ok_l(TZU)’lR(ﬂlw) on &, and for each Q € Q" + 1),

Sup esn + kf(w/x) S Z Sup esVlf(w/x) Z Sup eSkf(lQn(U,X)l
DepV(Ti)~1y x€DNQ(w) BeB x€BNQ(w) Cey xeCNQ(¥"w)

which implies:
log P/ (w,n +k R,Q) < log P (w,n,R,Q) +log Pl (8"w,k, R, Q),

and so Pé(w, n+k,R, Q) is also subadditive.
By the subadditive ergodic theorem (see [14,15]) the following limit:

f T f
Po(w,R, Q) = lim —log Pg(w,n,R, Q)
P-a.s. exists and,

(R, Q) = lim % / log P (w,n, R, Q)dP = / Pl (w, R, Q)dP,
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which will be called relative topological conditional pressure of © of an open random cover R given a random
cover Q . If Q is a trivial random cover, then né(R, Q) is called the relative topological pressure ng(R) of
an open random cover R (under the action of ®). Observe that né(R, Q)< 7[)(;(72) for all Q € PB(E).

Notice that njc;(R, Q) is increasing in R in the sense of the refinement. There exists a limit (finite
or infinite) over the directed set (&),

f(O)— lm (R O)— (R
60l Q)= 7R

which will be called the relative topological conditional pressure of ® given a random cover Q. If Q is trivial,

né(Q) will be abbreviated as 77 (f) and be called the relative topological pressure of ©. Since né(Q) is

decreasing in Q, one can take the limit again:

s = lim g Q)= inf o Q
(f) 961‘13(5) (Q) QeP(E) (Q),

which is called the relative tail pressure of ©. It is clear that 77§ (f) < me(f).

Remark 1. For each open cover & = { Ay, ..., A} of the compact space X, {(Q x A;) NEYE_ | naturally form
an open random cover of £. In this case, the above definition of relative topological pressure reduces to that
given in [10].

Proposition 1. Let T be a continuous bundle RDS on &, Q be a random cover of € and f € LL(Q,C(X)).
Then for each m € N,

g (M) = mrly(Q),
where QM) = \/"-L(@)~1Q.

Proof. Let R be an open random cover of £. Since,

n—1 m—1 nm—1
V@V (@)'R)=V (@)'R

j=0 i=0 i=0
and Z?;lo(smf)((am)f(w, x) = Sumf(w, x), then,

Pg’i,’,f(w, n, R, Qm)y = Pé(a), nm, R, Q).

By the definition of the relative topological conditional pressureof open random cover R") given
Q(’”), under the action of ®™", we have:

rl (R, QM) = tim - [ 1og B3 (w,n, RIM, QI )P

o1
= lim —
n—oo 1

/log P({)(w, nm, R, Q)dP
— lim f
— ’}grc}om% /logPG)(w,nm,R, Q)dP

= mrfg(R, Q).

Then,
mrhy(Q) = sup mgnd (R, @My < 7gnf (),
R

where the supremum is taken over all open random covers R of £.
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Since R < R(™), then:
P (w,n, R, QM) < pord (w,n, RU™, Q)

and so,

ol (R, @)y < mdnf (R0M, QM) = izl (R, Q).
Thus, ngz,f (Q(m)) < mné(Q) and the result follows. O

The relative tail pressure has the following power rule.

Proposition 2. Let T be a continuous bundle RDS on € and f € LL(Q,C(X)). Then for each m € N,
T (Suf) = M (f).

Proof. By Proposition 1,
o g Sm ; *
inf gy (Q) = inf mrf(Q) = mr(f),

where the infimum is taken over all random covers of £. Then, 71§, (Sinf) < mm§(f).
Since Q < Q") then,
Sm Sm
il (Q) > gyl (@) = mrly(Q).

By taking infimum on the inequality over all random covers of £, one gets 71§ (Spf) > mmg(f) and
the equality holds. [

We need the following lemma which shows the basic connection between the relative entropy
and relative tail pressure.

Lemma 2. Let T be a continuous bundle RDS on € and u € Pp(E). Suppose that R, Q are two finite
measurable partitions of € and f € LL(Q, C(X)), then,

Hy(R|QV Fe) +/fdy</maxlog2€ ))dP,
ReR

where a(R(w)) = SUP e (w)no(w) f (W, X) and Q is the sub-o-algebra generated by the partition Q.

Proof. A simple calculation (see for instance [16] (Section 14.2)) shows that,

(1rng | Fe)
Edg |QVFe)= Y 1 :
(x| Q;QQE1Q|]:5)

Then,
Hy(R|QV Fe) = —E(1 F+) log ElrnolFe) 4
}4( | \ 5) = IZRERZQEQ ( RNQ | 5) 0og E(1g|F) H.

Let a(R(w)) = SUP, ¢ R(w)NO(w) f(w, x). Notice that y can disintegrate du(w, x) = du,(x)dP(w),
E(1rng | Fe) = Ho((RNQ)(w)) and E(1g | F¢) = pw(Q(w)) P—a.s. Then,

H#(R|Q\/‘Fg)+/fd}l

<[ L ¥ -mlRnQ)ios M EEDEN s [ ¥ 7 a(riw)ar

RER QeQ QeQ ReR

_ .uw RQQ)( )) lo Vw((RmQ)( ))
-/ D (o) L S Ao (o117 R S
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S/ Z 1o (Q(w)) log Z e RW))gp < /maxlog Z HR(@)) gp. 0
QeQ RER QeQ "R

4. Variational Principle for Relative Tail Pressure

We now take up the consideration of the relationship between the relative entropy and relative tail
pressure on the measurable subset H of () x Y x X with respect to the product o-algebra F x C x B.

Let 4 € Pp(&). A partition P is called y—contains a partition Q if there exists a partition R < P
such that infy; u(R; AQ}) < <y, where the infimum is taken over all ordered partitions R*, Q* obtained
from R and Q.

The following lemma comes essentially from the argument of Theorem 4.18 in [17] and Lemma 4.15
in [15]. We omit the proof.

Lemma 3. Given € > 0and k € N. There exists v = y(€,k) > 0, such that if the measurable partition P
y—contains Q, where Q is a finite measurable partition with k elements, then H,(Q | P) < e.

We need the following result, which has appeared already at several places (see for instance [8,10]).

Lemma 4. Let R = {Ry,..., Ry} be a finite measurable partition of H. Given m € Pp(H) satisfying
m(dR;) = 0 for each 1 < i < k, where 0 denotes the boundary and m(dR) = [ me,(9R(w))dP(w), then m is a
upper semi-continuity point of the function y — Hy (R | Dy) defined on Pp(H), i.e.,

limsup H,(R | Dy) < Hu(R | Dy).

H—m

Lemma 5. Let S x T be the continuous bundle RDSs on H and y € Pp(H). Suppose that R = {R},
Q = {Q} are two finite measurable partitions of € and f € LL(Q, C(X)), then,

Hy(7g 'R | Dy) +/f0 medp < Hy (721 Q | Dy) + /maxlog ) A R@)gp,
Q€Q " Ren

where a(R(w)) = SUP, ¢ R (w)NO(w) f(w, x).

Proof. Let 9 be the sub-c-algebra generated by the partition Q. Since F is a sub-c-algebra of Dy
and Fy = ngl]:g, then,

H, (7R | D) + /fongiy
<H,(nz'Q | Dy) + Hu(mz'R | mz'QV Dy) + /fo Ttedu
<H,(n.'Q| Dy) + Hy(mz 'R | ma'Q Vv Fyy) + /fo Tedy
=Hyu(nz'Q | Dy) + Hu(mz 'R | mg'Q Vv ' Fe) + /fo medu

gHy(nglg | Dy) + Hrep(R | QV Fe) + /fdﬂ.'g‘u

Letv = mtgp, then v € Pp(€). By Lemma 2, one has,

Hy ('R | Dy) + / fomedu < Hy(mz'Q | Dy) + / maxlog Y e*(R€)gp,
QeQ ReR
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Proposition 3. Let S x T be the continuous bundle RDS on H, y € Ip(H) and f € LL(Q,C(X)). Then for
each finite measurable partition Q of €,

(T | Dy)+ [ fomedu < (51 Q| Dy) + Q)

Proof. Let R = {Ry,..., Ry} be a measurable partition of £ and v = rtgp.

Recall that (Q), F,P) can be viewed as a Borel subset of the unit interval [0,1]. Then v € Pp(€)
is also a probability measure on the compact space [0,1] x X with the marginal P on [0,1]. Lete > 0
and v > 0 as desired in Lemma 3. Since v is regular, there exists a compact subset P; C R; with
v(R;\ P;) < % foreach1 < i < k. Denote by Py = E\Uf_,P. Then P = {P,Py,..., P} isa
measurable partition of € and Y¥_ ; v(R; \ B) 4+ v(Py) < % k+% =7.ByLemma3, H,(R | P) <e.

Let T(w) = minj<;zj< d(Pi(w), Pj(w)). Choose é(w) > 0 with é(w) < @ such that d(x,y) <
(w) implies | f(w,x) — f(w,y) |< €. Fix n € N. Since &, is compact, for each Q(w) € Q" (w), there
exists a finite (1, 6(w)) —separated subset Eg(w) in Q(w), which fails to be (1, (w))—separated when
any point is added. Recall that Q) (w) = Vl’-l;lo(Ti,)’lQ(ﬁiw).

For each P(w) € P (w), let a(P(w)) = SUP,¢ p(w)nQ(w) nf (@, X). Choose some point x €
P(w) N Q(w) with S, f(w,x) = a(P(w)), and an element y(P(w)) € Eg(w) with d},,(x,y(P(w))) <
5(w), where d”, is the Bowen metric defined as d7,(x,y) = maxo<;—, d(T.,x, T.y) for x,y € X. Then,
a(P(w)) < Suf(w,y(P(w))) + ne. Since each ball of radius §(w) meets at most the closure of two
members of P(w), then for each y € Eg(w), the cardinality of the set {P(w) € P (w) | y(P(w)) =y}
cannot exceed 2". Therefore,

Y P < Y SfwyP@) <on YT Sfly)

pepn) pepm) y€Eg(w)
and so,

log Y P@W)<log Y eSfWD) 4 nlog2+ ne.
pep® y€Eq(w)

Hence by Lemma 5, one has,

%H},(nglP(") | Dy) + /fo Tedu
1. 1
= H, (7 PO | Dy) + - /Snfo edy

SlHy(ﬂng(”) |DH)+1 " max log ) S fON P 4 log2 + €. (1)
n n. Qeg(il) yeEQ(w)

Let U = {U} be an open random cover with diam(U(w)) < §(w), then each U(w) € U™ (w)
contains at most one element of Eg(w). Thus,

max eSnflwy) < Pé:)(w, nU,Q),
Qe yEEQ(w)

and by the inequality (1), one has,
le P | Do) + mted
n u(me | Dy) fomedu

g%HH(an(”) | Dy) + % /logPé(w,n,Z/{, Q)dP +log2 +e.
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Since Orte = el then,

(5P | Dyy) + /fo g dy
<hy(75'Q | Dy) + (U, Q) +1log2 + €
<hy(75'Q | Dyy) + 7 (Q) +log2 +e. )

Since,

hy(mz 'R | Dy) < (g 'P | Dy) + hy(mg 'R | m ' P)
< hy(mg'P | Dy) + (R | P),

then by the inequality (2), one has,
h (77 'R | Dy) + /fo redp < by (m71Q | Dyy) + 75 (Q) +log 2 + 2e.

Let R1 < -+ < Ry < --- be an increasing sequence of finite measurable partitions with
Vi 1 Rn = A, by Lemma 1.6 in [14], one has,

(T | Dyy) + /fONgdy < (51 Q | Dyy) + 7hy(Q) +log 2 + 2. 3)
Since,
n—1 ) m—1 ) nm—1 )
\/ (Fm])—l( \/ (Fl)‘lnglg) _ \/ (Fl)_lﬂglg,
j=0 i=0 i=0

it is not hard to see that,
m—=1
hy o () (0) gt Q | Dyy) = mhy (' Q | Dyy), 4)
i=0
where h, n (¢ | Dy) denotes the relative entropy of I'™" with respect to the partition ¢.
By Lemma 1.4 in [14], for each m € N,

hy (T | Dyy) = mhy (T | Dyy), ©)

where 1, (T"™ | Dy;) is the relative entropy of I'"™.
By the equality (4), (5) and Proposition 1, and applying I, ®", Q") and S, f to the inequality (3),
dividing by m and letting m go to infinity, one has:

(T | Dy) + [ fo medp < (' Q | Dy) + mh(Q),

and we complete the proof. [

Now, we can give the variational inequality between defect of upper semi-continuity of the
relative entropy function on invariant measures and the relative tail pressure.

Theorem 1. Let S x T be the continuous bundle RDS on H, m € Ip(H) and f € L3 (Q,C(X)). Then
H(T | Dyy) + [ f o medm < 7 (f).

Proof. Let Q be a finite random cover of £ and v = rgm. Choose a finite measurable partition R of £
with @ < R and v(dR) = 0 for each R € R. By Proposition 3 and 7sI' = Ortg, for each y € Zp(H)
andn € N,

hu(T' | Dy) +/fo Tedp < h},(T(E_lR | Dy) + 7'[{9(73)

n—1
Ly, (\/ (0) 'z 'R | Dy) + 7 (Q)

Sf
o
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Then by Lemma 4,
lim sup hy, (T | Dy) +/fo edm
‘u~>m
n-1
< limsup nHP,( \/ (M) ' 'R | Dy) + Q)
p—m i=0
1 "/ pie1 1 f
< —Hu(V ()7 'g 'R | Dyy) + 7o (Q).
i=0
Thus,

lim sup /(T | DH)+/fo7ngm < (T | Dyy) + 75(Q).

H—m

Since the partition Q is arbitrary, then hj, (I' | Dy) + [ f o medm < m§(f). O

Next, we are concerned with the Variational principle relating the relative entropy of £ and
the relative tail pressure of ®. Recall that £?) = {(w,x,y) : x,y € E,} is a measurable subset of
Q x X? with respect to the product c— algebra FxB?and Agp = {(Ax X)N E@ A c FxB}.
The skew product transformation ©?) : £2) — £(2) is given by @) (w, x,y) = (8w, Twx, Twy). Let
&1,& be two copies of £, i.e., &1 = & = &, and g, be the natural projection from & ) to &; with
g (w, x1,%2) = (w,%;),i=1,2.

The following important proposition relating the relative tail pressure and the relative entropy is
necessary for the proof of the variational principle.

Proposition 4. Let T be a continuous bundle RDS on €, Q = {Qy, ..., Qk} be an open random cover of £
and f € LL(Q, C(X)). There exists a probability measure jg € Ip(E )Y such that,

Mg (O | Agn) + [ fomedug > mh(Q) - 1,
1o is supported on the set |J {(w,x,y) € E@ :x,y € Qj(w)}.
j=1

Proof. Choose an open random cover P = {P,..., P} of £ with P(w) = {P;(w), ..., P/(w)} such
that, né)(P, Q) > né(Q) — 1. Recall that 4(€) is the collection of all open random covers on &,
M= VI (@)1 Qand QW (w) = Vi Z\(T,) 1 Q(8w)

Let n € Nand w € Q. Choose one element Q(w) € Q") (w) with Pé (w,n,P,Q) = Pé;(w, n,P,Q),
and a point x € Q(w). Since P is an open random cover of £, by the compactness of &, there exists a
Lebesgue number 6(w) for the open cover {P; (w), ..., Pj(w)} and a maximal (n,§) —separated subset
E,(w) in Q(w) such that,

Qw)c U Bylwnd),
YEEq(w)

where By, (w,n,6) denotes the open ball in &, center at y of radius 1 with respect to the Bowen
metric dy, (x,y) = maxo<<n{d(T5x, TEy) (6(0%w)) 71} for each x,y € &, ie, By(w,nd(w)) =
N =o(To) ' B(TLy, 6(9'w)). Let,

w(w) = sup{| f(w,x) = f(w,y) [: d(x,y) < 6(w)}.

Notice that for each 0 < i < 1 — 1, the open ball B(T},y,5(¢'w)) is contained in some element of P(¢w),
then By (w, n,6) must be contained in some element of P (w). This means that,

Y., sup  exp(Suf(w,x) 2 75 (Yw Y. expSuf(w,y),
PeP xeP(w)NQ(w) i=0 yeE,,(w)
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and so,
n—1 )
P(ﬂ;(w,n,P, Q)-exp(— ) (dw)) < Y expSuf(w,y).
i=0 yeE;(w)

Consider the probability measures ¢(") of £(?) via their disintegrations:

U(”) — ZZEEn(W) eXp(Snf O Ttg, ((U, X, Z))(S(a},x,z)
“ ek, () P (Suf 0 e, (w, x,y))

so that do'™ (w, x,y) = oV (x,y)dP(w), and let,

1 n-l
Y (©@)ign)

i=0

utm =

n

By the Krylov-Bogolyubov procedure for continuous RDS (see [18] (Theorem 1.5.8) or [10] (Lemma 2.1 (i))),
one can choose a subsequence {#;} such that y(”f) convergence to some probability measure is
1o € Ip(€ (2)). Next we will verify that the measure 1o satisfies (i) and (ii).

Let v = g, 11g. Choose a finite measurable partition R = {Ry, ..., R;} of £ with diamR;(w) < d(w)
for each w and v(dR;) = 0,0 < z < q, in the sense of V(0R) = [y (0R(w ))d]P’( ), where 9 denotes
the boundary. Set (") = \/;1:1 (@)~ ;R. Since 7tg, oS ) = Org,, then &) = 7'(51 Vi VOR =

7152172(”). Denote by ") = {D}. For each w, let nillB(w) ={(Bx Xz)N Sc(uz) : B € B}, where X1, X»
are two copies of the space X and 7y, is the natural projection from the product space X; x X» to the
space X;. We abbreviate it as 77)_(11[5’ for convenience.

Since each element of R(")(w) contains at most one element of E,,(w), one has,
E(lp() | 73 B)(x,y) = 04 (D(w)). ®)
Then,
H <n>(§( +/5 fomgda)

_/ Z E(lD(a}) | 7%, B)log E(1p () | 7x, B)do” +/Snf07fszd(7(§;")

= 2 —aé,”>< D(w)logel! D)+ ¥ [ Sufomsdol)’
D(w)&g" (w) D(w)eg" (w) D)

= log Z exp Suf o 1tg, (w, x,Y)
YEEq(w)

=log ) expSuf(wy).
YE€E,(w)

Since for each G € Ay
/c; E(lp | Age)do™) = /1G x E(1p | Az )do™
= /E(lc X 1D | .Ag(z))d(f(n)
= /1GQD w,x,y)da(”)
= //1(GQD x y dU(SJn)dP

= / / E(L(6rp)w) | 70, 8) (x, y)do ) dP
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N // Lo(w)(¥) X E(Lp() | 70 B)(x,y))doldP
- // 16(w, %, 9)E(Ip(y) | 7%, B)(x,))dol dP
- //G E(Ip() | 75, B) (x,y)doly P

— [ E(1p) | 7, Byt

Then,
E(lp | Agw)(w, x,y) = E(lD | tx, B)(x,y) P —a.s.

Therefore,
H (€ g | Acey +/Snfo7'(gzda(”)

—/ Y. —E(lp| Agwe)logE(1p | Age ))do" +/Sfo7‘[gzd(7)
Degn)

-/ Z —E(lpge) | 7, B)10g E(1p() | x, B)do P

+ [[ 0 o msydoltap
— [ (H 0 @ (@) + [ Suf o 7e,dol”)
—/log expSnf(w y)dP > /1ogpf w,n,P,Q) — Z (9o dP. @)
yEEy (w i=0

For 0 < j < m < n, one can cut the segment (0,7 — 1) into disjoint union of [2] — 2 segments
(G,j+m—=1),...,(j+km,j+ (k+1)m—1),... and less than 3m other natural numbers. Then,

Hyo € | Ag) + [ Suf 0 mgydo®”

n]_p j+ (k+1)m-1 ‘

<Y Ho( V(@) R Ag) +/5nf°7fezd‘7(") +3mlogyq
k=0 i = j+ km
[5]-2 ,

< Y. Hey + g (€™ | Age) + / Suf o 7e,do'™ + 3mlogg.
k=0 :

By summing over all j, 0 < j < m and considering the concavity of the entropy function H.), one has,

o

mH (60 | Age)) +m [ Suf o e,do®
2 H g 2))kom ( (&m |Ag(z))—km/snforcgzda(”)+3m210gq
<nH,) @™ | Agw) +m / Suf o 1tg,do™ + 3m? logg.
Then, by inequality (7),
1

—H,n @™ | Age) +/f0 e, du")

> — /longwnPQ ZT,, (Yw dIP’—B—logq
i=0
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Replacing the sequence {n} by the above selected subsequence {n;}, letting j — coand § — 0,
by Lemma 4, one has,

1
m

1
Hyo€" | Age) + [ fomedno = nh(P,Q) = wh(Q) - 1.

By letting m — oo, one gets,

_ 1
Mg (g R | Age) + [ fomedng > mh(Q) — 1.

Let Ry < --- < Ry < --- be an increasing sequence of finite measurable partitions with \/;>_ ; = A4,
by Lemma 1.6 in [14] one has,

1
Mg (0P | Age) + [ fomeydug > m(Q) — 1,

which shows that the measure g satisfies property (i).

For the other part of this proposition, let # € N. Recall that Q € Q™ and notice that Q") ~
(@) 1Q forall0 < j < n. Let Q@ = {(w,x,y) € E? : x,y € Q(w)} and QEZ) = {(w,x,y) € EV :
x,y € Qi(w)}, 1 <i<k. All of them are the measurable subsets of £ 2) with the product c—algebra
F x B2, and Q(Z) is contained in (®(2))’f ng) forsome 1l <i < kand 0 < j < n. It follows from the
construction of 1 that,

Then,
W U {w59) 55,y € Tieo)) = 1).
i=1

Therefore, the probability measure ¢ satisfies the property (ii) and we complete the proof. [

Proposition 5. Let T be a continuous bundle RDS on € and f € L1(Q,C(X)). There exists a probability
measure m € Ip(E®@), which is supported on {(w, x,x) € E® : x € &,}, and satisfies h%,(©?) | Ac) +
[ fomedm = m§(f).

Proof. Let Q; < -+ < @, < --- be an increasing sequence of open random covers of £. Denote
by O, = {Q](")}]-(” |- By Property 4, for each n € N, there exists a probability measure p,, € Zp(£®?)

] =
such that .

iy (O | Agen) + [ £ medpn > (i) —

and py is supported on ;" Hw,xy)xye Q](-n) (w)}. Let m be some limit point of the sequence of
1y, then m € Tp(£®@) (see [10] (Lemma 2.1 (i))) and

lim sup(F, (®(2) | Ag)) + /fo Tedp)

yﬁm
> liminf(hy, (0 | Age)) + [ fo medpn)

> inf 1t6(Qn) = 7 (f)-
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On the other hand, notice that the support of m,

(e k”]

suppm = (| U {(wxy):xye @(w}},

I=1j=1

where {1} is the subsequence of {1} such that j1,;, convergence to m in the sense of the narrow topology.
Since {Qy, } is a refining sequence of measurable partition on &, then,

suppm = {(w,x,x) € E? : x € &,}.
Thus for every finite measurable partition § = {&1,---, &} on &,
m(7g &) = m(rg G N suppm) = m(ng &), 1 <i <Kk,

This means that ngllg and 7(521(;‘ coincide up to sets of m—measure zero. Observe that E(1 g |
1 1
Ace) = 1”21151‘ P—a.s. forall1 <i < k. Then,
Hu(1g,¢ | Ag) = Hu(7g & | Agi) =0,
and 1, (@2 | A,@)) = 0by the definition of the relative entropy. Hence,

1@ | Age)) + [ fomedm

=limsup 1, (O | Ag) — hu(©P | Agp) + / fomedm > 7§ (f).

u—m

By Theorem 1, 115, (@2) | Ag)) + [ f o medm < 7§ (f) and we complete the proof. [

The following variational principle comes directly from Theorem 1 and Proposition 5.

Theorem 2. Let T be a continuous bundle RDS on € and f € LL(Q,C(X)). Then,

max {1 (0 | Age) + [ f o medy : p € Tp(€P)} = 15 (f)-

We are now in a position to prove that the relative tail pressure of a continuous bundle RDS is
equal to that of its factor under the principal extension.

Theorem 3. Let T, S be two continuous bundle RDSs over (Q), F,P,9) on € and G, respectively. Suppose that S is
a principal extension of T via the factor transformation 7z, then for each f € LL(Q, C(X)), 74 (f o ) = 7 (f).

Proof. Denote by G® = {(w,y,2) : v,z € G}, which is a measurable subset of ) x Y x Y with respect
to the product c—algebra F x C2. Let ¢ : G?) — £() be the map induced by the factor transformation
1 as p(w,y,z) = (w, Ty, Twz). Then ¢ is a factor transformation from G to £(2).

Let m € Zp(G®) and « : G® — G be the natural projection defined as a(w,y,z) = (w, y). By the
equality 4.18 in [19], for each m € Ip(g@)), hm(A(z) | Dg<2)) = ham (A, G), where hyy, (A, G) is the usual
measure-theoretical entropy. Let 8 : £?) — & be the natural projection defined as f(w, ¥, u) = (w, x).
Then ¢m € Tp(£?) and iy (©?) | Ag@)) = hgiem)(®, ).

Notice that e = B¢. One obtains hig(y) (©, &) = ham(®, E). Since the continuous bundle RDS S
is a principal extension of the RDS T via the factor transformation 7t, by the Abramov-Rokhlin formula
(see [20,21]) one has lam(®, €) = ham(A, G). It follows that 1 (AP | Dya)) = hym(@P) | Agp)), and
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then
then

1E(A) | Dg)) = h;‘)m((@(z) | Ag@2)). Observe that 17tg = e and [ f o o mgdm= [ f o wedgm,

h;(A(Z) | Dg(Z)) + /fo 7o mgdm = h;‘,m(@)@) | Ace) + /.fo edpm.

Thus by Theorem 2,

mi(for) = max_ {hy(A® | Dya) + / Fomomngdm
mEI[p(g(z))

<  max {h;}(@(z) | Agw)) + /fo medp} = 7o (f)-
peIp(ER)

For each jt € Zp(£®@), there exists some m € Zp(G?) such that ¢m = . Therefore, the other part

of the above inequality holds and we complete the proof. [
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