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1. Introduction

The notion of topological pressure for the potential was introduced by Ruelle [1] for expansive
dynamical systems. Walters [2] generalized it to the general case and established the classical variational
principle, which states that the topological pressure is the supremum of the measure-theoretic entropy
together with the integral of the potential over all invariant measures. In the special case that the
potential is zero, it reduces to the variational principle for topological entropy.

The entropy concepts can be localized by defining topological tail entropy to quantify the local
complexity of a system at arbitrary small scales [3]. A variational principle for topological tail entropy
was established in the case of homeomorphism from subtle results in the theory of entropy structure by
Downarowicz [4]. An elementary proof of this variational principle for continuous transformations was
obtained by Burguet [5] in term of essential partitions. Ledrappier [6] presented a variational principle
between the topological tail entropy and the defect of upper semi-continuity of the measure-theoretic
entropy on the cartesian square of the dynamical system involved, and proved that the tail entropy is
an invariant under any principal extension. Kifer and Weiss [7] introduced the relative tail entropy for
continuous bundle random dynamical systems (RDSs) by using the open covers and spanning subsets
and deduced the equivalence between the two notions.

A relative version of the variational principle for topological pressure was given by Ledrappier and
Walters [8] in the framework of the relativized ergodic theory, and it was extended by Bogenschütz [9]
to random transformations acting on one place. Later, Kifer [10] gave the variational principle for
random bundle transformations.

In this paper, we propose a relative variational principle for the relative tail pressure, which is
introduced for random bundle transformations by using open random sets. The notion defined
here enables us to treat the different open covers for different fibers. We deal with the product
RDS generated by a given RDS and any other RDS with the same base. We obtain a variational
inequality, which shows that the defect of the upper semi-continuity of the relative measure-theoretic
entropy of any invariant measure together with the integral of the random continuous potential in
the product RDS cannot exceed the relative tail pressure of the original RDS. In particular, when the
two continuous-bundle RDSs coincide, we construct a maximal invariant measure in the product
RDS to ensure that the relative tail pressure could be reached, and establish the variational principle.
For the trivial probability space and the zero potential, the relative tail pressure is the topological tail
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entropy defined in [3] and the variational principle reduces to the version deduced by Ledrappier [6]
in deterministic dynamical systems. As an application of the variational principle we show that the
relative tail pressure is conserved by any principal extension.

The paper is organized as follows. In Section 2, we recall some background in the ergodic theory.
In Section 3, we introduce the notion of the relative tail pressure with respect to open random covers
and give the power rule. Section 4 is devoted to the proof of the variational principle and shows that
the relative tail pressure is an invariant under principal extensions.

2. Relative Entropy

Let (Ω,F ,P) be a complete countably generated probability space together with a P-preserving
transformation ϑ and (X,B) be a compact metric space with the Borel σ-algebra B. Let E be a
measurable subset of Ω× X with respect to the product σ-algebra F × B and the fibers Eω = {x ∈ X :
(ω, x) ∈ E} be compact. A continuous bundle random dynamical system (RDS) T over (Ω,F ,P, ϑ)

is generated by the mappings Tω : Eω → Eϑω so that the map (ω, x) → Tωx is measurable and
the map x → Tωx is continuous for P-almost all (a.a.) ω. The family {Tω : ω ∈ Ω} is called a
random transformation and each Tω maps the fiber Eω to Eϑω. The map Θ : E → E defined by
Θ(ω, x) = (ϑω, Tωx) is called the skew product transformation. Observe that Θn(ω, x) = (ϑnω, Tn

ωx),
where Tn

ω = Tϑn−1ω ◦ · · · Tϑω ◦ Tω for n ≥ 0 and T0
ω = id.

Let PP(Ω× X) be the space of probability measures on Ω× X having the marginal P on Ω and
set PP(E) = {µ ∈ PP(Ω× X) : µ(E) = 1}. Denote by IP(E) the space of all Θ–invariant measures
in PP(E).

Let S be a sub-σ-algebra of F ×B restricted on E , andR = {Ri} be a finite or countable partition
of E into measurable sets. For µ ∈ PP(Ω × X) the conditional entropy of R given σ-algebra S is
defined as:

Hµ(R | S) = −
∫

∑
i

E(1Ri | S) log E(1Ri | S)dµ,

where E(1Ri | S) is the conditional expectation of 1Ri with respect to S .
Let µ ∈ IP(E) and let S be a sub-σ-algebra of F × B restricted on E satisfying Θ−1S ⊂ S .

For a given measurable partition R of E , the conditional entropy Hµ(R(n) | S) is a non-negative
sub-additive sequence, whereR(n) =

∨n−1
i = 0(Θ

i)−1R. The relative entropy hµ(R | S) of Θ with respect to
a partitionR is defined as:

hµ(R | S) = lim
n→∞

1
n

Hµ(R(n) | S) = inf
n

1
n

Hµ(R(n) | S).

The relative entropy of Θ is defined by the formula:

hµ(Θ | S) = sup
R

hµ(R | S),

where the supremum is taken over all finite or countable measurable partitions R of E with finite
conditional entropy Hµ(R | S) < ∞. The defect of upper semi-continuity of the relative entropy hµ(Θ | S)
is defined on IP(E ) as:

h∗m(Θ | S) =

lim sup
µ→m

hµ(Θ | S)− hm(Θ | S), if hm(Θ | S) < ∞,

∞, otherwise.

Any µ ∈ PP(E) on E disintegrates dµ(ω, x) = dµω(x)dP(ω) (see [11] (Section 10.2)), where
ω 7→ µω is the disintegration of µ with respect to the σ-algebra FE formed by all sets (F × X) ∩ E
with F ∈ F . This means that µω is a probability measure on Eω for P-almost all (a.a.) ω and for any
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measurable set R ∈ E , P-a.s. µω(R(ω)) = E(R | FE )(ω), where R(ω) = {x : (ω, x) ∈ R} and so
µ(R) =

∫
µω(R(ω))dP(ω). The conditional entropy ofR given the σ-algebra FE can be written as:

Hµ(R | FE ) = −
∫

∑
i

E(Ri | FE ) log E(Ri | FE )dP =
∫

Hµω (R(ω))dP,

whereR(ω) = {Ri(ω)}, Ri(ω) = {x ∈ Eω : (ω, x) ∈ Ri} is a partition of Eω.
Let (Y, C) be a compact metric space with the Borel σ-algebra C and G be a measurable,

with respect to the product σ-algebra F × C, subset of Ω × Y with the fibers Gω being compact.
The continuous bundle RDS S over (Ω,F ,P, ϑ) is generated by the mappings Sω : Gω → Gϑω so that
the map (ω, y) → Sωy is measurable and the map y → Sωy is continuous for P-almost all (a.a.) ω.
The skew product transformation Λ : G → G is defined as Λ(ω, y) = (ϑω, Sωy).

Definition 1. Let T, S be two continuous bundle RDSs over (Ω,F ,P, ϑ) on E and G, respectively. T is said to
be a factor of S, or S is an extension of T, if there exists a family of continuous surjective maps πω : Gω → Eω

such that the map (ω, y) → πωy is measurable and πϑωSω = Tωπω. The map π : G → E defined by
π(ω, y) = (ω, πωy) is called the factor or extension transformation from G to E . The skew product system
(E , Θ) is called a factor of (G, Λ) or (G, Λ) is an extension of (E , Θ).

Denote by A the restriction of F ×B on E and set AG = {π−1 A : A ∈ A}.

Definition 2. A continuous bundle RDS T on E is called a principal factor of S on G, or that S is a principal
extension of T, if for any Λ−invariant probability measure m in IP(G), the relative entropy of Λ with respect
to AG vanishes, i.e., hm(Λ | AG) = 0.

Let T and S be two continuous bundle RDSs over (Ω,F ,P, ϑ) on E and G, respectively. Let
H = {(ω, y, x) : y ∈ Gω, x ∈ Eω} and Hω = {(y, x) : (ω, y, x) ∈ H}. It is not hard to see that H is
a measurable subset of Ω× Y × X with respect to the product σ-algebra F × C × B (as a graph of
a measurable multifunction; see [12] (Proposition III.13)). The continuous bundle RDS S× T over
(Ω,F ,P, ϑ) is generated by the family of mappings (S× T)ω : Hω → Hϑω with (y, x)→ (Sωy, Tωx).
The map (ω, y, x)→ (Sωy, Tωx) is measurable and the map (y, x)→ (Sωy, Tωx) is continuous in (y, x)
for P-a.a. ω. The skew product transformation Γ generated by Θ and Λ fromH to itself is defined as
Γ(ω, y, x) = (ϑω, Sωy, Tωx).

Let πE : H → E be the natural projection with πE (ω, y, x) = (ω, x), and πG : H → G with
πG(ω, y, x) = (ω, y). Then, πE and πG are two factor transformations fromH to E and G, respectively.
Denote by D the restriction of F × C on G and set DH = π−1

G (D) = {(D × X) ∩ H : D ∈ D},
AH = π−1

E (A) = {(A×Y) ∩H : A ∈ A} and FH = {(F×Y× X) ∩H : F ∈ F}.
The relative entropy of Γ given the σ-algebra DH is defined by:

hµ(Γ | DH) = sup
R

hµ(R | DH),

where,

hµ(R | DH) = lim
n→∞

1
n

Hµ(
n−1∨
i = 0

(Γi)−1R | DH)

is the relative entropy of Γ with respect to a measurable partition R, and the supremum is taken over all
finite or countable measurable partitionsR ofH with finite conditional entropy Hµ(R | DH) < ∞.

Let E (2) = {(ω, x, y) : x, y ∈ Eω}, which is also a measurable subset of Ω × X2 with respect
to the product σ-algebra F × B2. Let Θ(2) : E (2) → E (2) be a skew-product transformation with
Θ(2)(ω, x, y) = (ϑω, Tωx, Tωy). The map (ω, x, y)→ (Tωx, Tωy) is measurable and the map (x, y)→
(Tωx, Tωy) is continuous in (x, y) for P-a.a. ω. Let E1, E2 be two copies of E , i.e., E1 = E2 = E ,
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and πEi be the natural projection from E (2) to Ei with πEi (ω, x1, x2) = (ω, xi), i = 1, 2. Denote by
AE (2) = {(A× X) ∩ E (2) : A ∈ F × B}. The relative entropy of Θ(2) given the σ-algebraAE (2) is defined by:

hµ(Θ(2) | AE (2)) = sup
R

hµ(R | AE (2)),

where,

hµ(R | AE (2)) = lim
n→∞

1
n

Hµ(
n−1∨
i = 0

((Θ(2))i)−1R | AE (2))

is the relative entropy of Θ(2) with respect to a measurable partitionR, and the supremum is taken over all
finite or countable measurable partitionsR of E (2) with finite conditional entropy Hµ(R | AE (2)) < ∞.

3. Relative Tail Pressure

A (closed) random set Q is a measurable set valued mapQ : Ω→ 2X, or the graph of Q denoted
by the same letter, taking values in the (closed) subsets of compact metric space X. An open random
set U is a set valued map U : Ω→ 2X whose complement Uc is a closed random set. A measurable set
Q is an open (closed) random set if the fiber Qω is an open (closed) subset of Eω in its induced topology
from X for P-almost all ω (see [13] (Lemma 2.7)). A random cover Q of E is a finite or countable
family of random sets {Q} , such that Eω =

⋃
Q∈QQ(ω) for all ω ∈ Ω, and it will be called an open

random cover if all Q ∈ Q are open random sets. Set Q(ω) = {Q(ω)}, Q(n) =
∨n−1

i = 0(Θ
i)−1Q and

Q(n)(ω) =
∨n−1

i = 0(T
i
ω)
−1Q(ϑiω). Denote by P(E) the set of random covers and U(E) the set of open

random covers. For R,Q ∈ P(E), R is said to be finer than Q, which we will write R � Q if each
element ofR is contained in some element ofQ.

For each measurable in (ω, x) and continuous in x ∈ Eω function f on E , let:

‖ f‖ =
∫
‖ f (ω)‖∞ dP, where ‖ f (ω)‖∞ = sup

x∈Eω

| f (ω, x) |,

and L1
E (Ω,C(X)) be the space of such functions f with ‖ f‖ < ∞ and identify f and g provided

‖ f − g‖ = 0; then L1
E (Ω,C(X)) is a Banach space with the norm ‖ · ‖. Any such f will be called a

random continuous function from E to R.
Let f ∈ L1

E (Ω,C(X)) and n ∈ N. Denote by:

Sn f (ω, x) =
n−1

∑
i = 0

f (ϑiω, Ti
ωx) =

n−1

∑
i = 0

f ◦Θi(ω, x).

For any non-empty set U ⊂ E and a random coverR ∈ P(E), set:

P f
Θ(ω, n,R, U) = inf{∑

S∈η

sup
x∈S(ω)∩U(ω)

eSn f (ω,x) : η is a random subcover of R(n)}.

ForR,Q ∈ P(E), let:
P f

Θ(ω, n,R,Q) = max
Q∈Q(n)

P f
Θ(ω, n,R, Q)}.

For an open random coverR, P f
Θ(ω, n,R,Q) is measurable in ω. The following proof is similar

to [10] (Proposition 1.6).

Lemma 1. LetR ∈ U(E) andQ ∈ P(E). The function ω→ P f
Θ(ω, n,R,Q) is measurable.
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Proof. Fix n ∈ N. Let Q ∈ Q(n) and R = {R1, . . . , Rl}. Notice that R(n)(ω) is the open cover of Eω

consisting of sets,

R(j0,...,jn−1)
(ω) =

n−1⋂
i = 0

(Ti
ω)
−1Rji(ϑ

iω)

Since each Rj is a random set, then the sets,

R(j0,...,jn−1)
= {(ω, x) : x ∈ R(j0,...,jn−1)

(ω)}

are measurable sets of E . It follows from Lemma III.39 in [12] that the function:

ψ(j0,...,jn−1)
(ω) = sup{eSn f (ω,x) : x ∈ R(j0,...,jn−1)

(ω)∩Q(ω)}

is measurable in ω, where ψ(j0,...,jn−1)
(ω) = 0 if R(j0,...,jn−1)

(ω)∩Q(ω) = ∅. Since Q ∈ F ×B, it follows
that (see [12] (Theorem III.30)) for any collection of n−strings ji = (ji0, . . . , jin−1), i = 1, . . . , k, the set:

Ωj1,...,jk = {ω : Q(ω) ⊂
k⋃

i = 1

Rji(ω)} = Ω \ {ω : (X \
k⋃

i = 1

Rji(ω))∩Q(ω) 6= ∅}

belongs to F . Since ln is finite, One obtains a finite partition of Ω into measurable sets ΩJ , where J is a
finite family of n—strings such that ΩJ =

⋂
(j1,...,jk)∈J Ωj1,...,jk . Thus for each ω ∈ ΩJ ,

P f
Θ(ω, n,R, Q) = min

(j1,...,jk)∈J,k∈N

k

∑
i = 1

ψji ,

and so this function is measurable in ω.
Since for each t ∈ R,

{ω : P f
Θ(ω, n,R,Q) > t} =

⋃
Q∈Q(n)

{ω : P f
Θ(ω, n,R, Q) > t},

Then the function P f
Θ(ω, n,R,Q) is measurable in ω.

For each ω, the sequence log P f
Θ(ω, n,R,Q) is subadditive. Indeed, if β is a random cover of∨n−1

i = 0(T
i
ω)
−1R(ϑiω) on Eω and γ is a random cover of

∨k−1
i = 0(T

i
ϑnω)

−1 R(ϑi + nω) on Eϑnω, then β ∨
(Tn

ω)
−1γ is a finite subcover of

∨n + k−1
i = 0 (Ti

ω)
−1R(ϑiω) on Eω, and for each Q ∈ Q(n + k),

∑
D∈β∨(Tn

ω)−1γ

sup
x∈D∩Q(ω)

eSn + k f (ω,x) ≤ ∑
B∈β

sup
x∈B∩Q(ω)

eSn f (ω,x) ∑
C∈γ

sup
x∈C∩Q(ϑnω)

eSk f (ϑnω,x),

which implies:

log P f
Θ(ω, n + k,R, Q) ≤ log P f

Θ(ω, n,R, Q) + log P f
Θ(ϑ

nω, k,R, Q),

and so P f
Θ(ω, n + k,R,Q) is also subadditive.

By the subadditive ergodic theorem (see [14,15]) the following limit:

P f
Θ(ω,R,Q) = lim

n→∞

1
n

log P f
Θ(ω, n,R,Q)

P-a.s. exists and,

π
f
Θ(R,Q) = lim

n→∞

1
n

∫
log P f

Θ(ω, n,R,Q)dP =
∫

P f
Θ(ω,R,Q)dP,
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which will be called relative topological conditional pressure of Θ of an open random coverR given a random
coverQ . IfQ is a trivial random cover, then π

f
Θ(R,Q) is called the relative topological pressure π

f
Θ(R) of

an open random coverR (under the action of Θ). Observe that π
f
Θ(R,Q) ≤ π

f
Θ(R) for allQ ∈ P(E).

Notice that π
f
Θ(R,Q) is increasing inR in the sense of the refinement. There exists a limit (finite

or infinite) over the directed set U(E),

π
f
Θ(Q) = lim

R∈U(E)
π

f
Θ(R,Q) = sup

R∈U(E)
π

f
Θ(R,Q),

which will be called the relative topological conditional pressure of Θ given a random coverQ. IfQ is trivial,
π

f
Θ(Q) will be abbreviated as πΘ( f ) and be called the relative topological pressure of Θ. Since π

f
Θ(Q) is

decreasing inQ, one can take the limit again:

π∗Θ( f ) = lim
Q∈P(E)

π
f
Θ(Q) = inf

Q∈P(E)
π

f
Θ(Q),

which is called the relative tail pressure of Θ. It is clear that π∗Θ( f ) ≤ πΘ( f ).

Remark 1. For each open cover ξ = {A1, . . . , Ak} of the compact space X, {(Ω× Ai)∩E}k
i = 1 naturally form

an open random cover of E . In this case, the above definition of relative topological pressure reduces to that
given in [10].

Proposition 1. Let T be a continuous bundle RDS on E , Q be a random cover of E and f ∈ L1
E (Ω,C(X)).

Then for each m ∈ N,
π

Sm f
Θm (Q(m)) = mπ

f
Θ(Q),

whereQ(m) =
∨m−1

i = 0(Θ
i)−1Q.

Proof. LetR be an open random cover of E . Since,

n−1∨
j = 0

(Θmj)−1( m−1∨
i = 0

(Θi)−1R
)
=

nm−1∨
i = 0

(Θi)−1R

and ∑n−1
j = 0(Sm f )(Θm)j(ω, x) = Snm f (ω, x), then,

PSm f
Θm (ω, n,R(m),Q(m)) = P f

Θ(ω, nm,R,Q).

By the definition of the relative topological conditional pressureof open random cover R(m) given
Q(m), under the action of Θm, we have:

π
Sm f
Θm (R(m),Q(m)) = lim

n→∞

1
n

∫
log PSm f

Θm (ω, n,R(m),Q(m))dP

= lim
n→∞

1
n

∫
log P f

Θ(ω, nm,R,Q)dP

= lim
n→∞

m
1

nm

∫
log P f

Θ(ω, nm,R,Q)dP

= mπ
f
Θ(R,Q).

Then,
mπ

f
Θ(Q) = sup

R
π

Sm f
Θm (R(m),Q(m)) ≤ π

Sm f
Θm (Q(m)),

where the supremum is taken over all open random coversR of E .
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SinceR ≺ R(m), then:

PSm f
Θm (ω, n,R,Q(m)) ≤ pSm f

Θm (ω, n,R(m),Q(m)),

and so,
π

Sm f
Θm (R,Q(m)) ≤ π

Sm f
Θm (R(m),Q(m)) = mπ

f
Θ(R,Q).

Thus, π
Sm f
Θm (Q(m)) ≤ mπ

f
Θ(Q) and the result follows.

The relative tail pressure has the following power rule.

Proposition 2. Let T be a continuous bundle RDS on E and f ∈ L1
E (Ω,C(X)). Then for each m ∈ N,

π∗Θm(Sm f ) = mπ∗Θ( f ).

Proof. By Proposition 1,
inf
Q

π
Sm f
Θm (Q(m)) = inf

Q
mπ

f
Θ(Q) = mπ∗Θ( f ),

where the infimum is taken over all random covers of E . Then, π∗Θm(Sm f ) ≤ mπ∗Θ( f ).
SinceQ ≺ Q(m), then,

π
Sm f
Θm (Q) ≥ π

Sm f
Θm (Q(m)) = mπ

f
Θ(Q).

By taking infimum on the inequality over all random covers of E , one gets π∗Θm(Sm f ) ≥ mπ∗Θ( f ) and
the equality holds.

We need the following lemma which shows the basic connection between the relative entropy
and relative tail pressure.

Lemma 2. Let T be a continuous bundle RDS on E and µ ∈ PP(E). Suppose that R, Q are two finite
measurable partitions of E and f ∈ L1

E (Ω,C(X)), then,

Hµ(R | Q∨FE ) +
∫

f dµ ≤
∫

max
Q∈Q

log ∑
R∈R

eα(R(ω))dP,

where α(R(ω)) = supx∈R(ω)∩Q(ω) f (ω, x) and Q is the sub-σ-algebra generated by the partitionQ.

Proof. A simple calculation (see for instance [16] (Section 14.2)) shows that,

E(1R | Q∨FE ) = ∑
Q∈Q

1Q
E(1R∩Q | FE )

E(1Q | FE )
.

Then,

Hµ(R | Q∨FE ) =
∫

∑R∈R∑Q∈Q−E(1R∩Q | FE ) log E(1R∩Q|FE )
E(1Q|FE )

dµ.

Let α(R(ω)) = supx∈R(ω)∩Q(ω) f (ω, x). Notice that µ can disintegrate dµ(ω, x) = dµω(x)dP(ω),
E(1R∩Q | FE ) = µω((R∩Q)(ω)) and E(1Q | FE ) = µω(Q(ω)) P−a.s. Then,

Hµ(R | Q∨FE ) +
∫

f dµ

≤
∫

∑
R∈R

∑
Q∈Q
−µω((R∩Q)(ω)) log

µω((R∩Q)(ω))

µω(Q(ω))
dP+

∫
∑

Q∈Q
∑

R∈R
α(R(ω))dP

=
∫

∑
Q∈Q

µω(Q(ω)) ∑
R∈R

µω((R∩Q)(ω))

µω(Q(ω))

(
− log

µω((R∩Q)(ω))

µω(Q(ω))
+ α(R(ω))

)
dP
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≤
∫

∑
Q∈Q

µω(Q(ω)) log ∑
R∈R

eα(R(ω))dP ≤
∫

max
Q∈Q

log ∑
R∈R

eα(R(ω))dP.

4. Variational Principle for Relative Tail Pressure

We now take up the consideration of the relationship between the relative entropy and relative tail
pressure on the measurable subsetH of Ω×Y×X with respect to the product σ-algebra F × C ×B.

Let µ ∈ PP(E). A partition P is called γ—contains a partitionQ if there exists a partitionR � P
such that inf ∑i µ(R∗i4Q∗i ) < γ, where the infimum is taken over all ordered partitionsR∗,Q∗ obtained
fromR andQ.

The following lemma comes essentially from the argument of Theorem 4.18 in [17] and Lemma 4.15
in [15]. We omit the proof.

Lemma 3. Given ε > 0 and k ∈ N. There exists γ = γ(ε, k) > 0, such that if the measurable partition P
γ—containsQ, whereQ is a finite measurable partition with k elements, then Hµ(Q | P) < ε.

We need the following result, which has appeared already at several places (see for instance [8,10]).

Lemma 4. Let R = {R1, . . . , Rk} be a finite measurable partition of H. Given m ∈ PP(H) satisfying
m(∂Ri) = 0 for each 1 ≤ i ≤ k, where ∂ denotes the boundary and m(∂R) =

∫
mω(∂R(ω))dP(ω), then m is a

upper semi-continuity point of the function µ→ Hµ(R | DH) defined on PP(H), i.e.,

lim sup
µ→m

Hµ(R | DH) ≤ Hm(R | DH).

Lemma 5. Let S × T be the continuous bundle RDSs on H and µ ∈ PP(H). Suppose that R = {R},
Q = {Q} are two finite measurable partitions of E and f ∈ L1

E (Ω,C(X)), then,

Hµ(π
−1
E R | DH) +

∫
f ◦πEdµ ≤ Hµ(π

−1
E Q | DH) +

∫
max
Q∈Q

log ∑
R∈R

eα(R(ω))dP.

where α(R(ω)) = supx∈R(ω)∩Q(ω) f (ω, x).

Proof. Let Q be the sub-σ-algebra generated by the partition Q. Since FH is a sub-σ-algebra of DH
and FH = π−1

E FE , then,

Hµ(π
−1
E R | DH) +

∫
f ◦πEdµ

≤Hµ(π
−1
E Q | DH) + Hµ(π

−1
E R | π

−1
E Q∨DH) +

∫
f ◦πEdµ

≤Hµ(π
−1
E Q | DH) + Hµ(π

−1
E R | π

−1
E Q∨FH) +

∫
f ◦πEdµ

=Hµ(π
−1
E Q | DH) + Hµ(π

−1
E R | π

−1
E Q∨π−1

E FE ) +
∫

f ◦πEdµ

≤Hµ(π
−1
E Q | DH) + HπEµ(R | Q∨FE ) +

∫
f dπEµ

Let ν = πEµ, then ν ∈ PP(E). By Lemma 2, one has,

Hµ(π
−1
E R | DH) +

∫
f ◦πEdµ ≤ Hµ(π

−1
E Q | DH) +

∫
max
Q∈Q

log ∑
R∈R

eα(R(ω))dP.
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Proposition 3. Let S× T be the continuous bundle RDS onH, µ ∈ IP(H) and f ∈ L1
E (Ω,C(X)). Then for

each finite measurable partitionQ of E ,

hµ(Γ | DH) +
∫

f ◦πEdµ ≤ hµ(π
−1
E Q | DH) + π

f
Θ(Q).

Proof. LetR = {R1, . . . , Rk} be a measurable partition of E and ν = πEµ.
Recall that (Ω,F ,P) can be viewed as a Borel subset of the unit interval [0, 1]. Then ν ∈ PP(E)

is also a probability measure on the compact space [0, 1]×X with the marginal P on [0, 1]. Let ε > 0
and γ > 0 as desired in Lemma 3. Since ν is regular, there exists a compact subset Pi ⊂ Ri with
ν(Ri \ Pi) < γ

2k for each 1 ≤ i ≤ k. Denote by P0 = E \ ⋃k
i = 1 Pi. Then P = {P0, P1, . . . , Pk} is a

measurable partition of E and ∑k
i = 1 ν(Ri \ Pi) + ν(P0) <

γ
2k · k +

γ
2 = γ. By Lemma 3, Hν(R | P) < ε.

Let τ(ω) = min1≤i 6=j≤k d(Pi(ω), Pj(ω)). Choose δ(ω) > 0 with δ(ω) < τ(ω)
2 such that d(x, y) <

δ(ω) implies | f (ω, x)− f (ω, y) |< ε. Fix n ∈ N. Since Eω is compact, for each Q(ω) ∈ Q(n)(ω), there
exists a finite (n, δ(ω))−separated subset EQ(ω) in Q(ω), which fails to be (n, δ(ω))−separated when
any point is added. Recall thatQ(n)(ω) =

∨n−1
i = 0(T

i
ω)
−1Q(ϑiω).

For each P(ω) ∈ P(n)(ω), let α(P(ω)) = supx∈P(ω)∩Q(ω) Sn f (ω, x). Choose some point x ∈
P(ω)∩Q(ω) with Sn f (ω, x) = α(P(ω)), and an element y(P(ω)) ∈ EQ(ω) with dn

ω(x, y(P(ω))) ≤
δ(ω), where dn

ω is the Bowen metric defined as dn
ω(x, y) = max0≤i<n d(Ti

ωx, Ti
ωy) for x, y ∈ X. Then,

α(P(ω)) ≤ Sn f (ω, y(P(ω))) + nε. Since each ball of radius δ(ω) meets at most the closure of two
members of P(ω), then for each y ∈ EQ(ω), the cardinality of the set {P(ω) ∈ P(n)(ω) | y(P(ω)) = y}
cannot exceed 2n. Therefore,

∑
P∈P(n)

eα(P(ω))−nε ≤ ∑
P∈P(n)

eSn f (ω,y(P(ω))) ≤ 2n ∑
y∈EQ(ω)

eSn f (ω,y)

and so,
log ∑

P∈P(n)

eα(P(ω)) ≤ log ∑
y∈EQ(ω)

eSn f (ω,y) + n log 2+ nε.

Hence by Lemma 5, one has,

1
n

Hµ(π
−1
E P

(n) | DH) +
∫

f ◦πEdµ

=
1
n

Hµ(π
−1
E P

(n) | DH) +
1
n

∫
Sn f ◦πEdµ

≤ 1
n

Hµ(π
−1
E Q

(n) | DH) +
1
n

∫
max

Q∈Q(n)
log ∑

y∈EQ(ω)

eSn f (ω,y)dP+ log 2+ ε. (1)

Let U = {U} be an open random cover with diam(U(ω)) < δ(ω), then each U(ω) ∈ U (n)(ω)

contains at most one element of EQ(ω). Thus,

max
Q∈Q(n)

∑
y∈EQ(ω)

eSn f (ω,y) ≤ P f
Θ(ω, n,U ,Q),

and by the inequality (1), one has,

1
n

Hµ(π
−1
E P

(n) | DH) +
∫

f ◦πEdµ

≤ 1
n

Hµ(π
−1
E Q

(n) | DH) +
1
n

∫
log P f

Θ(ω, n,U ,Q)dP+ log 2+ ε.
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Since ΘπE = πEΓ, then,

hµ(π
−1
E P | DH) +

∫
f ◦ πEdµ

≤hµ(π
−1
E Q | DH) + π

f
Θ(U ,Q) + log 2 + ε

≤hµ(π
−1
E Q | DH) + π

f
Θ(Q) + log 2 + ε. (2)

Since,

hµ(π
−1
E R | DH) ≤ hµ(π

−1
E P | DH) + hµ(π

−1
E R | π−1

E P)
≤ hµ(π

−1
E P | DH) + hν(R | P),

then by the inequality (2), one has,

hµ(π
−1
E R | DH) +

∫
f ◦ πEdµ ≤ hµ(π

−1
E Q | DH) + π

f
Θ(Q) + log 2 + 2ε.

Let R1 ≺ · · · ≺ Rn ≺ · · · be an increasing sequence of finite measurable partitions with∨∞
i = 1Rn = A, by Lemma 1.6 in [14], one has,

hµ(Γ | DH) +
∫

f ◦ πEdµ ≤ hµ(π
−1
E Q | DH) + π

f
Θ(Q) + log 2 + 2ε. (3)

Since,
n−1∨
j = 0

(Γmj)−1(
m−1∨
i = 0

(Γi)−1π−1
E Q) =

nm−1∨
i = 0

(Γi)−1π−1
E Q,

it is not hard to see that,

hµ,Γm (
m−1∨
i = 0

(Γi)−1π−1
E Q | DH) = mhµ(π

−1
E Q | DH), (4)

where hµ,Γm (ξ | DH) denotes the relative entropy of Γm with respect to the partition ξ.
By Lemma 1.4 in [14], for each m ∈ N,

hµ(Γm | DH) = mhµ(Γ | DH), (5)

where hµ(Γm | DH) is the relative entropy of Γm.
By the equality (4), (5) and Proposition 1, and applying Γm, Θm,Q(m) and Sm f to the inequality (3),

dividing by m and letting m go to infinity, one has:

hµ(Γ | DH) +
∫

f ◦ πEdµ ≤ hµ(π
−1
E Q | DH) + π

f
Θ(Q),

and we complete the proof.

Now, we can give the variational inequality between defect of upper semi-continuity of the
relative entropy function on invariant measures and the relative tail pressure.

Theorem 1. Let S × T be the continuous bundle RDS on H, m ∈ IP(H) and f ∈ L1
E (Ω, C(X)). Then

h∗m(Γ | DH) +
∫

f ◦ πEdm ≤ π∗Θ( f ).

Proof. Let Q be a finite random cover of E and ν = πEm. Choose a finite measurable partitionR of E
with Q ≺ R and ν(∂R) = 0 for each R ∈ R. By Proposition 3 and πEΓ = ΘπE , for each µ ∈ IP(H)
and n ∈ N,

hµ(Γ | DH) +
∫

f ◦ πEdµ ≤ hµ(π
−1
E R | DH) + π

f
Θ(R)

≤ 1
n

Hµ
( n−1∨

i = 0
(Γi)−1π−1

E R | DH
)
+ π

f
Θ(Q)
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Then by Lemma 4,

lim sup
µ→m

hµ(Γ | DH) +
∫

f ◦ πEdm

≤ lim sup
µ→m

1
n

Hµ(
n−1∨
i = 0

(Γi)−1π−1
E R | DH) + π

f
Θ(Q)

≤ 1
n

Hm(
n−1∨
i = 0

(Γi)−1π−1
E R | DH) + π

f
Θ(Q).

Thus,
lim sup

µ→m
hµ(Γ | DH) +

∫
f ◦ πEdm ≤ hm(Γ | DH) + π

f
Θ(Q).

Since the partition Q is arbitrary, then h∗m(Γ | DH) +
∫

f ◦ πEdm ≤ π∗Θ( f ).

Next, we are concerned with the variational principle relating the relative entropy of E (2) and
the relative tail pressure of Θ. Recall that E (2) = {(ω, x, y) : x, y ∈ Eω} is a measurable subset of
Ω× X2 with respect to the product σ−algebra F × B2 and AE (2) = {(A× X) ∩ E (2) : A ∈ F × B}.
The skew product transformation Θ(2) : E (2) → E (2) is given by Θ(2)(ω, x, y) = (ϑω, Tωx, Tωy). Let
E1, E2 be two copies of E , i.e., E1 = E2 = E , and πEi be the natural projection from E (2) to Ei with
πEi (ω, x1, x2) = (ω, xi), i = 1, 2.

The following important proposition relating the relative tail pressure and the relative entropy is
necessary for the proof of the variational principle.

Proposition 4. Let T be a continuous bundle RDS on E , Q = {Q1, . . . , Qk} be an open random cover of E
and f ∈ L1

E (Ω, C(X)). There exists a probability measure µQ ∈ IP(E (2)) such that,

hµQ(Θ
(2) | AE (2)) +

∫
f ◦ πEdµQ ≥ π

f
Θ(Q)−

1
k ,

µQ is supported on the set
k⋃

j = 1
{(ω, x, y) ∈ E (2) : x, y ∈ Qj(ω)}.

Proof. Choose an open random cover P = {P1, . . . , Pl} of E with P(ω) = {P1(ω), . . . , Pl(ω)} such
that, π

f
Θ(P ,Q) ≥ π

f
Θ(Q) −

1
k . Recall that U(E) is the collection of all open random covers on E ,

Q(n) =
∨n−1

i = 0(Θ
i)−1Q and Q(n)(ω) =

∨n−1
i = 0(T

i
ω)
−1Q(ϑiω)

Let n ∈ N and ω ∈ Ω. Choose one element Q(ω) ∈ Q(n)(ω) with P f
Θ(ω, n,P , Q) = P f

Θ(ω, n,P ,Q),
and a point x ∈ Q(ω). Since P is an open random cover of E , by the compactness of Eω, there exists a
Lebesgue number δ(ω) for the open cover {P1(ω), . . . , Pl(ω)} and a maximal (n, δ)−separated subset
En(ω) in Q(ω) such that,

Q(ω) ⊂
⋃

y∈En(ω)

By(ω, n, δ),

where By(ω, n, δ) denotes the open ball in Eω center at y of radius 1 with respect to the Bowen
metric dω

δ,n(x, y) = max0≤k<n{d(Tk
ωx, Tk

ωy)(δ(ϑkω))−1} for each x, y ∈ Eω, i.e., By(ω, n, δ(ω)) =⋂n−1
i = 0(T

i
ω)
−1B(Ti

ωy, δ(ϑiω)). Let,

τδ(ω) = sup{| f (ω, x)− f (ω, y) |: d(x, y) < δ(ω)}.

Notice that for each 0 ≤ i ≤ n− 1, the open ball B(Ti
ωy, δ(ϑiω)) is contained in some element of P(ϑiω),

then By(ω, n, δ) must be contained in some element of P(n)(ω). This means that,

∑
P∈P

sup
x∈P(ω)∩Q(ω)

exp(Sn f (ω, x)−
n−1

∑
i = 0

τδ(ϑ
iω)) ≤ ∑

y∈En(ω)

exp Sn f (ω, y),
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and so,

P f
Θ(ω, n,P ,Q) · exp(−

n−1

∑
i = 0

τδ(ϑ
iω)) ≤ ∑

y∈En(ω)

exp Sn f (ω, y).

Consider the probability measures σ(n) of E (2) via their disintegrations:

σ
(n)
ω =

∑z∈En(ω) exp(Sn f ◦πE2(ω, x, z))δ(ω,x,z)

∑y∈En(ω) exp(Sn f ◦πE2(ω, x, y))

so that dσ(n)(ω, x, y) = dσ
(n)
ω (x, y)dP(ω), and let,

µ(n) =
1
n

n−1

∑
i = 0

(Θ(2))iσ(n),

By the Krylov–Bogolyubov procedure for continuous RDS (see [18] (Theorem 1.5.8) or [10] (Lemma 2.1 (i))),
one can choose a subsequence {nj} such that µ(nj) convergence to some probability measure is
µQ ∈ IP(E (2)). Next we will verify that the measure µQ satisfies (i) and (ii).

Let ν = πE2µQ. Choose a finite measurable partitionR = {R1, . . . , Rq} of E with diamRi(ω) < δ(ω)

for each ω and ν(∂Ri) = 0, 0 ≤ i ≤ q, in the sense of ν(∂R) =
∫

νω(∂R(ω))dP(ω), where ∂ denotes
the boundary. Set ξ(n) =

∨n−1
i = 0(Θ

(2))−iπ−1
E2
R. Since πE2Θ(2) = ΘπE2 , then ξ(n) = π−1

E2

∨n−1
i = 0 Θ−iR =

π−1
E2
R(n). Denote by ξ(n) = {D}. For each ω, let π−1

X1
B(ω) = {(B× X2)∩ E

(2)
ω : B ∈ B}, where X1, X2

are two copies of the space X and πX1 is the natural projection from the product space X1×X2 to the
space X1. We abbreviate it as π−1

X1
B for convenience.

Since each element ofR(n)(ω) contains at most one element of En(ω), one has,

E(1D(ω) | π−1
X1
B)(x, y) = σ

(n)
ω (D(ω)). (6)

Then,

H
σ
(n)
ω
(ξ(n)(ω)) +

∫
Sn f ◦πE2dσ

(n)
ω

=
∫

∑
D(ω)∈ξ(n)(ω)

−E(1D(ω) | πX1B) log E(1D(ω) | πX1B)dσ
(n)
ω +

∫
Sn f ◦πE2dσ

(n)
ω

= ∑
D(ω)∈ξ(n)(ω)

−σ
(n)
ω (D(ω)) log σ

(n)
ω (D(ω)) + ∑

D(ω)∈ξ(n)(ω)

∫
D(ω)

Sn f ◦πE2dσ
(n)
ω

= log ∑
y∈En(ω)

exp Sn f ◦πE2(ω, x, y)

= log ∑
y∈En(ω)

exp Sn f (ω, y).

Since for each G ∈ AE (2) ,∫
G

E(1D | AE (2))dσ(n) =
∫

1G × E(1D | AE (2))dσ(n)

=
∫

E(1G × 1D | AE (2))dσ(n)

=
∫

1G∩D(ω, x, y)dσ(n)

=
∫∫

1(G∩D)(ω)(x, y)dσ
(n)
ω dP

=
∫∫

E(1(G∩D)(ω) | πX1B)(x, y)dσ
(n)
ω dP
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=
∫∫

1G(ω)(x, y)× E(1D(ω) | πX1B)(x, y))dσ
(n)
ω dP

=
∫∫

1G(ω, x, y)E(1D(ω) | πX1B)(x, y))dσ
(n)
ω dP

=
∫∫

G
E(1D(ω) | πX1B)(x, y))dσ

(n)
ω dP

=
∫

G
E(1D(ω) | πX1B)dσ(n).

Then,
E(1D | AE (2))(ω, x, y) = E(1D(ω) | πX1B)(x, y) P− a.s.

Therefore,

Hσ(n)(ξ
(n) | AE (2)) +

∫
Sn f ◦πE2dσ(n)

=
∫

∑
D∈ξ(n)

−E(1D | AE (2)) log E(1D | AE (2))dσ(n) +
∫

Sn f ◦πE2dσ(n)

=
∫∫

∑
D(ω)∈ξ(n)(ω)

−E(1D(ω) | πX1B) log E(1D(ω) | πX1B)dσ
(n)
ω dP

+
∫∫

Sn f ◦πE2dσ
(n)
ω dP

=
∫ (

H
σ
(n)
ω
(ξ(n)(ω)) +

∫
Sn f ◦πE2dσ

(n)
ω

)
dP

=
∫

log ∑
y∈En(ω)

exp Sn f (ω, y)dP ≥
∫

log P f
Θ(ω, n,P ,Q)−

n−1

∑
i = 0

τδ(ϑ
iω)dP. (7)

For 0 ≤ j < m < n, one can cut the segment (0, n − 1) into disjoint union of [ n
m ] − 2 segments

(j, j + m− 1), . . . , (j + km, j + (k + 1)m− 1), . . . and less than 3m other natural numbers. Then,

Hσ(n)(ξ
(n) | AE (2)) +

∫
Sn f ◦πE2dσ(n)

≤
[ n

m ]−2

∑
k = 0

Hσ(n)
( j + (k + 1)m−1∨

i = j+ km

(Θ(2))−iπ−1
E2
R | AE (2)

)
+
∫

Sn f ◦πE2dσ(n) + 3m log q

≤
[ n

m ]−2

∑
k = 0

H(Θ(2))j + kmσ(n)(ξ
(m) | AE (2)) +

∫
Sn f ◦πE2dσ(n) + 3m log q.

By summing over all j, 0 ≤ j < m and considering the concavity of the entropy function H(·), one has,

mHσ(n)(ξ
(n) | AE (2)) + m

∫
Sn f ◦πE2dσ(n)

≤
n−1

∑
k = 0

H(Θ(2))kσ(n)(ξ
(m) | AE (2)) + m

∫
Sn f ◦πE2dσ(n) + 3m2 log q

≤nHµ(n)(ξ
(m) | AE (2)) + m

∫
Sn f ◦πE2dσ(n) + 3m2 log q.

Then, by inequality (7),

1
m

Hµ(n)(ξ
(m) | AE (2)) +

∫
f ◦πE2dµ(n)

≥ 1
n

∫
log P f

Θ(ω, n,P ,Q)−
n−1

∑
i = 0

τδ(ϑ
iω)dP− 3m

n
log q.



Entropy 2017, 19, 120 14 of 17

Replacing the sequence {n} by the above selected subsequence {nj}, letting j → ∞ and δ → 0,
by Lemma 4, one has,

1
m

HµQ(ξ
(m) | AE (2)) +

∫
f ◦πE2dµQ ≥ π

f
Θ(P ,Q) ≥ π

f
Θ(Q)−

1
k

.

By letting m→ ∞, one gets,

hµQ(π
−1
E2
R | AE (2)) +

∫
f ◦πE2dµQ ≥ π

f
Θ(Q)−

1
k

.

LetR1 ≺ · · · ≺ Rn ≺ · · · be an increasing sequence of finite measurable partitions with
∨∞

i = 1 = A,
by Lemma l.6 in [14] one has,

hµQ(Θ
(2) | AE (2)) +

∫
f ◦πE2dµQ ≥ π

f
Θ(Q)−

1
k

,

which shows that the measure µQ satisfies property (i).
For the other part of this proposition, let n ∈ N. Recall that Q ∈ Q(n) and notice that Q(n) �

(Θj)−1Q for all 0 ≤ j < n. Let Q(2) = {(ω, x, y) ∈ E (2) : x, y ∈ Q(ω)} and Q(2)
i = {(ω, x, y) ∈ E (2) :

x, y ∈ Qi(ω)}, 1 ≤ i ≤ k. All of them are the measurable subsets of E (2) with the product σ−algebra
F ×B2, and Q(2) is contained in (Θ(2))−jQ(2)

i for some 1 ≤ i ≤ k and 0 ≤ j < n. It follows from the
construction of µ(n) that,

µ(n)(
k⋃

i = 1

Q(2)
i ) =

1
n

n−1

∑
j = 0

σ(n)((Θ(2))−j(
k⋃

i = 1

Q(2)
i )
)

≥ 1
n

n−1

∑
j = 0

σ(n)(Q(2)) = σ(n)(Q(2)) = 1.

Then,

µ(n)( k⋃
i = 1

{(ω, x, y) : x, y ∈ Qi(ω)} = 1
)
.

Therefore, the probability measure µQ satisfies the property (ii) and we complete the proof.

Proposition 5. Let T be a continuous bundle RDS on E and f ∈ Ł1
E (Ω,C(X)). There exists a probability

measure m ∈ IP(E (2)), which is supported on {(ω, x, x) ∈ E (2) : x ∈ Eω}, and satisfies h∗m(Θ(2) | AE (2)) +∫
f ◦πEdm = π∗Θ( f ).

Proof. Let Q1 ≺ · · · ≺ Qn ≺ · · · be an increasing sequence of open random covers of E . Denote
by Qn = {Q(n)

j }
kn
j = 1. By Property 4, for each n ∈ N, there exists a probability measure µn ∈ IP(E (2))

such that
hµn(Θ

(2) | AE (2)) +
∫

f ◦πEdµn ≥ π
f
Θ(Qn)−

1
kn

and µn is supported on
⋃kn

j = 1{(ω, x, y) : x, y ∈ Q(n)
j (ω)}. Let m be some limit point of the sequence of

µn, then m ∈ IP(E (2)) (see [10] (Lemma 2.1 (i))) and

lim sup
µ→m

(hµ(Θ(2) | AE (2)) +
∫

f ◦πEdµ)

≥ lim inf
n→∞

(hµn(Θ
(2) | AE (2)) +

∫
f ◦πEdµn)

≥ inf
n

π
f
Θ(Qn) = π∗Θ( f ).
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On the other hand, notice that the support of m,

suppm =
∞⋂

l = 1

knl⋃
j = 1

{(ω, x, y) : x, y ∈ Q(nl)
j (ω)},

where {nl} is the subsequence of {n} such that µnl convergence to m in the sense of the narrow topology.
Since {Qnl} is a refining sequence of measurable partition on E , then,

suppm = {(ω, x, x) ∈ E (2) : x ∈ Eω}.

Thus for every finite measurable partition ξ = {ξ1, · · · , ξk} on E ,

m(π−1
E1

ξi) = m(π−1
E1

ξi ∩ suppm) = m(π−1
E2

ξi), 1 ≤ i ≤ k,

This means that π−1
E1

ξ and π−1
E2

ξ coincide up to sets of m−measure zero. Observe that E(1
π−1
E1

ξi
|

AE (2)) = 1
π−1
E1

ξi
P−a.s. for all 1 ≤ i ≤ k. Then,

Hm(π
−1
E2

ξ | AE (2)) = Hm(π
−1
E1

ξ | AE (2)) = 0,

and hm(Θ(2) | AE (2)) = 0 by the definition of the relative entropy. Hence,

h∗m(Θ
(2) | AE (2)) +

∫
f ◦πEdm

= lim sup
µ→m

hµ(Θ(2) | AE (2))− hm(Θ(2) | AE (2)) +
∫

f ◦πEdm ≥ π∗Θ( f ).

By Theorem 1, h∗m(Θ(2) | AE (2)) +
∫

f ◦πEdm ≤ π∗Θ( f ) and we complete the proof.

The following variational principle comes directly from Theorem 1 and Proposition 5.

Theorem 2. Let T be a continuous bundle RDS on E and f ∈ L1
E (Ω,C(X)). Then,

max{h∗µ(Θ(2) | AE (2)) +
∫

f ◦πEdµ : µ ∈ IP(E (2))} = π∗Θ( f ).

We are now in a position to prove that the relative tail pressure of a continuous bundle RDS is
equal to that of its factor under the principal extension.

Theorem 3. Let T, S be two continuous bundle RDSs over (Ω,F ,P, ϑ) on E and G, respectively. Suppose that S is
a principal extension of T via the factor transformation π, then for each f ∈ L1

E (Ω,C(X)), π∗Λ( f ◦π) = π∗Θ( f ).

Proof. Denote by G(2) = {(ω, y, z) : y, z ∈ Gω}, which is a measurable subset of Ω×Y×Y with respect
to the product σ−algebra F × C2. Let φ : G(2) → E (2) be the map induced by the factor transformation
π as φ(ω, y, z) = (ω, πωy, πωz). Then φ is a factor transformation from G(2) to E (2).

Let m ∈ IP(G(2)) and α : G(2) → G be the natural projection defined as α(ω, y, z) = (ω, y). By the
equality 4.18 in [19], for each m ∈ IP(G(2)), hm(Λ(2) | DG(2)) = hαm(Λ,G), where hαm(Λ,G) is the usual
measure-theoretical entropy. Let β : E (2) → E be the natural projection defined as β(ω, x, u) = (ω, x).
Then φm ∈ IP(E (2)) and hφm(Θ(2) | AE (2)) = hβ(φm)(Θ,E).

Notice that πα = βφ. One obtains hβ(φm)(Θ,E) = hπαm(Θ,E). Since the continuous bundle RDS S
is a principal extension of the RDS T via the factor transformation π, by the Abramov-Rokhlin formula
(see [20,21]) one has hπαm(Θ,E) = hαm(Λ,G). It follows that hm(Λ(2) | DG(2)) = hφm(Θ(2) | AE (2)), and
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then h∗m(Λ(2) | DG(2)) = h∗φm(Θ
(2) | AE (2)). Observe that ππG = πEφ and

∫
f ◦π ◦πGdm=

∫
f ◦πEdφm,

then
h∗m(Λ

(2) | DG(2)) +
∫

f ◦π ◦πGdm = h∗φm(Θ
(2) | AE (2)) +

∫
f ◦πEdφm.

Thus by Theorem 2,

π∗Λ( f ◦π) = max
m∈IP(G(2))

{h∗m(Λ(2) | DG(2)) +
∫

f ◦π ◦πGdm}

≤ max
µ∈IP(E (2))

{h∗µ(Θ(2) | AE (2)) +
∫

f ◦πEdµ} = π∗Θ( f ).

For each µ ∈ IP(E (2)), there exists some m ∈ IP(G(2)) such that φm = µ. Therefore, the other part
of the above inequality holds and we complete the proof.
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