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Abstract: Artificial neural networks are widely applied for prediction, function simulation, and data
classification. Among these applications, the wavelet neural network is widely used in image classification
problems due to its advantages of high approximation capabilities, fault-tolerant capabilities, learning
capacity, its ability to effectively overcome local minimization issues, and so on. The error function of
a network is critical to determine the convergence, stability, and classification accuracy of a neural
network. The selection of the error function directly determines the network’s performance. Different
error functions will correspond with different minimum error values in training samples. With the
decrease of network errors, the accuracy of the image classification is increased. However, if the
image classification accuracy is difficult to improve upon, or is even decreased with the decreasing of
the errors, then this indicates that the network has an “over-learning” phenomenon, which is closely
related to the selection of the function errors. With regards to remote sensing data, it has not yet been
reported whether there have been studies conducted regarding the “over-learning” phenomenon,
as well as the relationship between the “over-learning” phenomenon and error functions. This study
takes SAR, hyper-spectral, high-resolution, and multi-spectral images as data sources, in order to
comprehensively and systematically analyze the possibility of an “over-learning” phenomenon in the
remote sensing images from the aspects of image characteristics and neural network. Then, this study
discusses the impact of three typical entropy error functions (NB, CE, and SH) on the “over-learning”
phenomenon of a network. The experimental results show that the “over-learning” phenomenon
may be caused only when there is a strong separability between the ground features, a low image
complexity, a small image size, and a large number of hidden nodes. The SH entropy error function
in that case will show a good “over-learning” resistance ability. However, for remote sensing image
classification, the “over-learning” phenomenon will not be easily caused in most cases, due to the
complexity of the image itself, and the diversity of the ground features. In that case, the NB and CE
entropy error network mainly show a good stability. Therefore, a blind selection of a SH entropy error
function with a high “over-learning” resistance ability from the wavelet neural network classification
of the remote sensing image will only decrease the classification accuracy of the remote sensing image.
It is therefore recommended to use an NB or CE entropy error function with a stable learning effect.

Keywords: wavelet neural network; remote sensing image classification; over-learning; entropy
error function
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1. Introduction

Over the past several decades, artificial neural networks have become one of the hot study topics
of remote sensing image classification [1–4], due to their good self-organization [5,6], self-learning [7,8],
and self-adaptive abilities [9,10]. The back-propagation (BP) neural network is currently the most
widely used artificial neural network [11–14]. Rumelhart proposed the BP algorithm as early as
1986 [15]. Although this algorithm is simple, and easy to master and realize, it still has deficiencies
which include a slow convergence speed, a frequent non-convergence, a convergence to the local
minimum, and so on. Considering the disadvantages of the BP neural network, Zhang et al. officially
proposed the concept of a wavelet neural network in 1992 [16]. A wavelet neural network is constructed
on the basis of the BP neural network, and in combination with the wavelet analysis theory. Comparing
with the BP neural network, the wavelet neural network shows advantages in local information
extraction and analysis, and also can overcome the defect of a slow convergence speed which
characterizes the BP neural network. Currently, the most widely applied wavelet neural network is the
BP wavelet neural network, which replaces the hidden-layer excitation function (sigmoid function) of
the BP neural network with the wavelet function, and adopted the BP network ideology in order to
perform the network learning and training. Currently, it is widely applied in remote sensing image
classification [17–19].

An error function is the critical point in which to determine the convergence, stability,
and classification accuracy of a neural network. The supervised learning algorithm is the core of the
feed-forward neural network. This learning algorithm reversely changes the network’s weight and
threshold value, in accordance with the function (error function) between the actual output and the
anticipated output of a network, and minimizes the error value through repeated training in order to
obtain the output and input relationship of a network [20]. The most commonly supervised learning
method is the gradient descent method [15,21,22], and the most widely used error function in this
method is the mean square error function. However, the curved surface of a mean square error function
is the multi-dimensional hyper-surface with many flat zones and local minimum valleys. Therefore,
it affects the convergence speed of a neural network, and can even be trapped in the local minimum
point, which can easily cause a “false saturation” phenomenon [23]. The entropy error function
proposed by Karayiannis in 1992 can be used to solve the “false saturation” phenomenon existing in the
neural network training of a traditional mean square error function [24]. However, an “over-learning”
phenomenon is often caused due to the too strong error signal of the NB entropy error function.
In 1992, Ooyen et al. proposed the cross-entropy error function to improve the convergence of a neural
network [25]. However, it also causes the “over-learning” phenomenon. Therefore, the scholar Oh
SH modified the entropy error function in 1995, for the purpose of overcoming the “over-learning”
phenomenon [26,27]. The above mentioned NB, CE, and SH entropy error functions are the most
typical and widely used entropy error functions in neural networks.

Also, the above mentioned “over-learning” phenomenon usually occurs in circumstances which
include simple characteristics and small data processing, such as handwriting recognition. However,
for a remote sensing image classification with large calculation and processing, it is worthwhile to study
whether an “over-learning” phenomenon exists in the neural network, and also whether it is necessary
to use the SH entropy error function to resist the “over-learning” phenomenon. If the “over-learning”
phenomenon does not exist or does not easily occur in the remote sensing image classification, then
the blind use of the SH entropy error function resisting the “over-learning” phenomenon will sacrifice
the accuracy of the classification. Therefore, it is necessary to systematically discuss the performances
of the neural networks of the NB, CE, and SH entropy error functions in the remote sensing image
classification, in order to answer the above questions and provide a basis for the selection of an entropy
error function in a wavelet neural network.

In order to systematically study the performance of an entropy error function in remote sensing
image classification, the remote sensing image types selected in this study cover the hyper-spectral
image, multi-spectral image, high spatial resolution image, and Synthetic Aperture Radar (SAR),
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as well as other common remote sensing images. In this study, it is expected that the obtained
conclusions will have a universality for the instruction of the selection of the entropy error function
of the wavelet neural network in remote sensing image classifications. The characteristics of the
remote sensing images, structure of neural networks, and training processes can possibly affect the
performance of the “over-learning” phenomenon. Therefore, in order to comprehensively recognize
the existence or non-existence and performance of an “over-learning” phenomenon, experimental
studies of the above mentioned three influence factors were implemented in this study.

2. Method of Study

First, this paper introduces the wavelet neural network structure and entropy error function.
Then, the mechanism and process of the “over-learning” phenomenon are explained, and finally the
relationship between the three factors (characteristic of remote sensing image, structure of neural
network, and training process) and the “over-learning” phenomenon are illustrated. This study also
uses the experimental results to provide instructions for the selection of an entropy error function in a
wavelet neural network.

2.1. Structure and Training Process of the Wavelet Neural Network

The BP wavelet neural network applied in this study includes an input layer, hidden layer,
and output layer. A corresponding weight value is used for connecting the input layer with the hidden
layer, and the hidden layer with the output layer. The BP wavelet neural network structure of a single
hidden layer is as shown in Figure 1. The training process of a wavelet neural network adopts the
batch training method, with its flow process is as shown in Figure 2. It can be seen in this figure that P
is the total number of samples, p indicates the p-th sample, and q denotes the number of trainings.
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In which the excitation function of the hidden layer uses the Morlet wavelet function (see
Equation (1)):

ψ(t) = e(−
t2
2 ) cos(1.75t) (1)

The wavelet neural network model is obtained by Equations (2)–(5):

netp
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The meaning of the parameters is as shown in Table 1.

Table 1. Explanation of the parameter.

Parameter Explanation

p (p = 1, 2, . . . , P) number of input samples

k (k = 1, 2, . . . , M) number of nodes in the input layer

j (j = 1, 2, . . . , n) number of nodes in the hidden layer

i (i = 1, 2, . . . , N) number of nodes in the output layer

[wjk]n×M
weight matrix n ×M from the input layer to the hidden layer, with wjk as the weight connecting node
j of hidden layer with the node k of the input layer); (the initial value is a random value of [−1, 1])

[wij]N×n
weight matrix N × n from the hidden layer to the output layer, with wij as the weight connecting the
node i of the output layer and node j of the hidden layer; (the initial value is a random value of [−1, 1])

xp
k the kth input of the pth sample in the input layer

netp
j input of the jth node in the hidden layer of the pth sample

netp
i input of the ith node in the output layer of the pth sample

aj and bj scaling parameter and translation parameter of the jth node of the hidden layer, respectively

ψa,b

(
netp

j

)
output of the jth node of the hidden layer of the pth sample

βi threshold value at the ith node of the output layer, (the initial value is a random value of [−1, 1])

yp
i the ith actual output in the output layer of the pth sample
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The classification experiment process of the wavelet neural network is as follows:

(a) The preprocessing of the original image is implemented, the features are extracted, and the expert
interpretation chart is determined.

(b) The region of interest is selected.
(c) The wavelet neural network model is built, and the number of nodes in each layer is determined

(numbers of the input layer nodes equal to numbers of features; numbers of the hidden layer
nodes is determined by the testing; numbers of the output layer nodes equal to numbers of
classified types), as shown in Figure 1.

(d) The characteristic value of the pixels in the region of interest is used as the input, in order to
conduct the training of the wavelet neural network. Setting the number of times of iterations is
100. Setting the output minimum error Emin of the neural is 1 × 10−5. If the output error E < Emin,
then end the training. If the E > Emin, then repeat training the network.

(e) The classification result is simulated in order to obtain the classification results of the diagram,
and make an accuracy assessment of classification.

(f) The number of nodes of the hidden layer and the number of iterations are adjusted. Trainings
are conducted and classification results of the networks with different entropy error function
are compared.

2.2. Entropy Error Function

2.2.1. NB Entropy Error Function

The NB entropy error function of the wavelet neural network adopted the entropy error function
proposed by Karayiannis NB in 1992, as shown in Formula (6). The wavelet neural network of the NB
entropy error function requires 0 < yp

i < 1 Therefore in this study, the log-sigmoid function is selected
(as shown in Formula (7)) as the nerve cell excitation function of the output layer:

E = −∑P
p=1 ∑N

i=1

[
dp

i ln yp
i +

(
1− dp

i

)
ln
(

1− yp
i

)]
(6)

In which E is the network error; dp
i is the ith expected output of the pth sample in the output layer;

and yp
i is the ith actual output of the pth sample in the output layer:

f (t) =
1

1 + e−t (7)

2.2.2. CE Entropy Error Function

The CE entropy error function of the wavelet neural network adopted the cross-entropy error
function proposed by Ooyen et al. in 1992, as shown in Equation (8). The wavelet neural network of
the cross-entropy error function required −1 < yp

i < 1. Therefore, the tan-sigmoid function is selected
(as shown in Formula (10)) as the nerve cell excitation function of the output layer:

E = −
P

∑
p=1

N

∑
i=1

[(
1 + dp

i

)
ln
(

1 + yp
i

)
+
(

1− dp
i

)
ln
(

1− yp
i

)]
(8)

2.2.3. SH Entropy Error Function

The SH entropy error function of the wavelet neural network adopted the entropy error function
proposed by Oh in 1995, as shown in Equation (9). The wavelet neural network of the SH entropy
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error function required −1 < yp
i < 1. Therefore, the tan-sigmoid function is selected (as shown in

Formula (10)) as the nerve cell excitation function of the output layer of the output layer:

E = −
P

∑
p=1

N

∑
i=1

dp
i

[
− yp

i +
1 + dp

i
2

2
ln

1 + yp
i

1− yp
i
+ dp

i ln
(

1− yp
i

)(
1 + yp

i

)]
(9)

f (t) =
2

1 + e−2t − 1 (10)

The gradient information could be deduced by using the network model, and the entropy error
formula (as shown in Table 2).

Table 2. Gradient of error function.

Gradient NB Error Function CE Error Function SH Error Function
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Note: The meanings of the parameters in the formula correspond with the above content.

2.3. “Over-Learning” Phenomenon and Method of Study

2.3.1. “Over-Learning” Phenomenon

The “over-learning” of the network is relative to the normal learning. When the actual output
is close to the expected output during the network training process, then the network has a weak
“error signal”. Or when there is a large gap between the actual output and expected output, then the
network has strong “error signal”. Then the network is referred to as the “normal learning”. In contrast,
when the actual output is close to the expected output, and the network had a strong error signal,
then the network continues to learn, and two possibilities exist. The first possibility is that when the
network weight value is not close to the optimum value, the network weight value causes the network
simulation degree to increase in the case of continuous learning. The second possibility is that when
the network weight value has already been close to the optimum network weight value, then the
network weight value is disturbed in the case of continuous learning, and the network simulation
degree decreases. This is referred to as the “over-learning”.

The network error signal δi can be calculated using the error formula and the network model,
as shown in Equation (11), in which, η is the network learning rate:

δi = −
∂E

∂netp
i
= −η

∂E
∂yi
· ∂yi

∂netp
i

(11)

The error signal of the mean square error function, NB error function, CE error function and SH
error function, can be calculated using Equation (11) (see Equations (12)–(15)):

Mean square : δi = (di − yi)yi(1− yi) (12)

NB : δi = di − yi (13)

CE : δi = 2(di − yi) (14)

SH : δi = di(di − yi)
2 (15)
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Figure 3 shows the corresponding signal values of the three error entropy functions (NB, CE,
and SH) with the change of the actual output y from 0 to 1, when the expected output of the network
d = 1. In this study, the fiducial mark (1) area is focused on, and it is discovered that the “over-learning”
more easily occurs with the NB and CE. Meanwhile, with the SH the “over-learning” does not easily
occur, indicating that the SH has an “over-learning” resistance ability. This is due to the fact that
the SH gives a weak “error signal” when the actual output is close to the expected output, while
the entropy functions NB and CE give strong error signals, Therefore the network can continue to
learn. It is therefore determined that in the neural network of the entropy error functions NB and CE,
the “over-learning” phenomenon more easily occurs (see Figure 4 for its performance).
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In this study, during the learning process of network parameters, it cannot be guaranteed that the
network has a good prediction and generalization capacity to the unknown samples when the error
function reaches the minimum value [28]. The “over-learning” phenomenon shows that the image
classification accuracy is difficult to improve upon, or that the event decreases with the decreasing of
the error, when the network training error drops to a certain degree (as shown in Figure 4).

2.3.2. Study Method for the “Over-Learning” Phenomenon

In order to study whether there is an “over-learning” phenomenon in the wavelet neural network
(WNN) remote sensing image classification, as well as the existing conditions and performance of
the “over-learning” phenomenon, this study investigates from the following two aspects: on the one
hand, starting from the input information of the neural network, the relationship between the image
characteristics and the “over-learning” phenomenon are discussed; on the other hand, starting from
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the self-structure of the neural network, the relationship between the neural networks with different
numbers of nodes in the hidden layer (reflecting the differences in the neural network structure),
and the number of iterations of the neural network (reflecting the training process of the neural
network), along with the “over-learning” phenomenon are analyzed. A comparison is made between
the classification accuracy obtained from the experimental study, and the minimum error value. When
the corresponding minimum error value of the training sample is low and the image classification
accuracy is low, this shows that an “over-learning” phenomenon has occurred in the neural networks.

Remote Sensing Image Characteristics and the “Over-Learning” Phenomenon

In order to study the relationship between the image characteristics and the “over-learning”
phenomenon, it is necessary to establish a method of describing the image characteristics. For this
purpose, the factors of the image’s complexity, as well as the image size are considered. The phenomenon
of the “same object with different spectrums” commonly exists in remote sensing images, and its
differences of degree will increase the complexity of the classification, as well as affect the automatic
classification accuracy of the remote sensing images [29]. In order to quantitatively describe the
characteristics of the phenomenon of the “same object with different spectrums”, the index SP for
the phenomenon of “same object with different spectrums” is proposed. In addition, the information
entropy of the images represents the complexity of the images. The class numbers of the remote sensing
image classifications, image pixels (image size), and number of wave bands of the input images, are
related to the input of the neural network [30,31].

The image complexity index AI reflects the degree of complexity of the images in this paper.
The larger the AI value indicates more information is in the images or image is more complex. Computation
formula of AI is defined as follows:

AI = KN + SP + H× 0.1 + M + P× 0.0001 (16)

In which AI is the complexity index of the image; KN is the number of categories contained in the
image; SP is the index describing the “same object with different spectrums” of the image; H is the
information entropy describing the image information quantity; M is the number of wave bands of
effective characteristics of the image; and P is the total number of pixels of the image. The index SP
of the “same object with different spectrums” refers to the difference of the spectrum characteristic
values of the same type of ground feature, and reflects the degree of the “same object with different
spectrums” of the image. SP(t) is the spectral difference value of the tth type of ground feature; xi
is the characteristic value of the ith pixel point; and N is the total number of pixels of the tth type of
ground feature of the image as follows:

x =
∑N

i=1 xi

N
(17)

SP(t) =

(
∑N−1

i=1 (xi−xi+1)
2

N−1

)
+ (∑N

i=1(xi−x)2

N )

2
(18)

Shannon proposed the definition of information and information entropy in 1948 [32]. Within
the field of image processing, the information entropy indicates a type of characteristic parameter
used for the measurement of the gray-scale distribution randomness in the gray level co-occurrence
matrix, and reflects the size of the average information in an image. The larger the information entropy,
the larger the information size of an image, and the higher the degree of complexity.

Number of Hidden Nodes and “Over-Learning” Phenomenon in the Neural Network

The number of the hidden layer neural nodes of the neural network is one of the factors which
determine the neural network structure. In order to fully investigate the impact of the three types
of entropy error functions on the wavelet neural networks with different structures, a classification
experiment with a different number of hidden layer nodes is conducted, and the relationship with
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the “over-learning” phenomenon is discussed. Also, the number of hidden layer nodes is arranged
from small to large, in order to make a classification of the different images, provided that the other
parameters of the network remained unchanged. With the increase in the number of hidden layer nodes,
the network scale also gradually increases. It is then observed whether the network approximation
ability displays a surplus and “over-learning” phenomenon in the experimental results.

Investigation of “Over-Learning” Phenomenon through the Training Process of the Neural Network

The focus of this study is to investigate the “over-learning” phenomenon through the training process
of the neural network, which will be helpful for understanding the “over-learning” phenomenon. In this
study’s designed experiment, only the number of iterations of the neural network is changed, and the
other parameters are not changed. Then, the change process of the training error value, as well as the
classification accuracy of the three different entropy error function networks (NB, CE, and SH) with
the increase of the number of the iterations of the neural network are observed, for the purpose of
judging whether the network had an “over-learning” phenomenon, and also to judge its performance.
For one image with the same interest of region and initial weight condition, the number of hidden
layer nodes is set, the number of iterations is increased from small to large, and then the classification
of these three types of entropy error function networks is performed three times, in order to obtain
overall accuracy mean value of the classification and the minimum error value curve.

3. Experiment and Analysis

3.1. Experiment Images

3.1.1. Data of Experiment 1

Remote sensing image of sea-ice (as shown in Figure 5). This data contain seven characteristic
images extracted from the SAR image of the sea-ice. They are: the volume scattering image of the
LEE filtering of the C waveband; the volume scattering image of the LEE filtering of the L waveband;
the entropy image of the LEE filtering of the L waveband; the anisotropy image of the LEE filtering
of the C wave band; and the principal component analysis images of the 1st, 2nd, and 3rd principal
component wavebands.
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PCA1:PCA2:PCA3).

3.1.2. Data of Experiment 2

The Indian pines hyper-spectral data (as shown in Figure 6) is an image obtained from AVIRIS on
12 June 1992; with a wave length scope of 0.4 to 2.5 µm, a spectral resolution of 10 nm, and a spatial
resolution of 17 m; there are a total of 220 wave bands. 20th, 23rd, 29th, 32nd, 33rd, 35th, 54th,
56th, 87th and 116th wave bands (10 in total) are selected as the classification experiment input in
accordance with [33]. The ground features are divided into nine classes, in accordance with the actual
ground circumstances.

3.1.3. Data of Experiment 3

A high-resolution image of the snow mountain (as shown in Figure 7), obtained by using a Canon
5D Mark II digital camera with a spatial resolution of 0.2 m. This study uses three spectral characteristic
images, and 6 R-channel 3 × 3 window texture characteristic images, which are the mean value, mean
square, homogeneity, contrast ratio, non-similarity, and entropy, respectively.
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3.1.4. Data of Experiment 4

The TM data in Nanjing District (as shown in Figure 8), obtained on 5 July 1988. The with spatial
resolution of all of wave bands is 30 m, with the exception of the thermal infrared band, which is 120 m,
and there are a total of seven wave bands.
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Figure 8. TM Image in Nanjing (R:G:B = 1:6:3).

3.1.5. Data of Experiment 5

The high-resolution image of houses (as shown in Figure 9), obtained using a Canon 5D Mark II
digital camera carried by an unmanned aerial vehicle; spatial resolution is 5 cm.

3.1.6. Data of Experiment 6

The hyper-spectral data of Heihe (as shown in Figure 10) obtained from the comprehensive
remote sensing observation joint experiment of the ecological-hydrological process in the Heihe River
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Basin [34], which is an airborne hyper-spectral data of a flight lasting 12 h 26′ 42′′ on 29 June 2012.
The sensor is a Compact Airborne Spectrographic Imager CASI produced by ITRES Co. (Calgary, AB,
Canada), with a wavelength of 350 to 1050 nm, 48 spectral channels (7.2 nm, FWHM), and a spatial
resolution of 1 m.
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3.2. Result Analysis of “Over-Learning” Phenomenon

3.2.1. Investigation of “Over-Learning” Phenomenon through the Training Process of Neural Network

The focus of this study is to investigate the overall training process and simulation results of a
neural network, which will be helpful for understanding the “over-learning” phenomenon. Through
the analysis of the “over-learning” mechanism of a network (Figures 3 and 4), it is determined that
the SH entropy error function network has an “over-learning” resistance ability, while the NB and
CE entropy error function networks do not have such abilities. With the increase in the number
of iterations, the classification accuracy is compared with the minimum error value. When the
corresponding minimum error value of a training sample drops to the lowest level, and the image
classification accuracy is decreased, these results indicates that the neural networks exhibited an
“over-learning” phenomenon. In the same experiment, if the classification accuracy of the SH entropy
function network is higher than that of the NB or CE, but its minimum error value is larger than
that of the NB and CE, then it is believed that the NB and CE networks exhibits an “over-learning”
phenomenon, otherwise the networks never undergo the “over-learning” phenomenon. It can be
determined from Figures 11–13 that:

1. A network will exhibit an over-learning phenomenon only for a very small size of images with
a very low complexity degree. The lager the image size, the larger the AI index of an image,
the more complex an image. In the case of that, the “over-learning” phenomenon will not be
frequent. During the experiment, the “over-learning” phenomenon is obvious only in the 50 × 50
high-resolution image of houses, and hyper-spectral image of Heihe, which has the smallest AI
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index. At that time, the minimum error value of the SH entropy error function neural network
is larger than that of NB and CE. However, the classification accuracy of the SH entropy error
network is higher than that of the NB and CE. Therefore, the SH entropy error network shows a
good “over-learning” resistance ability, while the NB and SH entropy error function networks
exhibits the “over-learning” phenomenon.

2. In most experiments (SAR, multi-spectral, and hyper-spectral image), the classification accuracy
of the SH entropy error is lower than that of the NB and CE, and the classification accuracy of
the SH entropy error will be higher than NB and CE only when the image complexity degree
is very low. These results in fact show that the wavelet neural network for the remote sensing
image will not easily cause an “over-learning” phenomenon. Also, the NB and CE networks will
exhibit an “over-learning” phenomenon only when the image is small, such as merely containing
50 × 50 pixels (however, this is rare).
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3.2.2. Remote Sensing Image Characteristics and “Over-Learning” Phenomenon

In order to study the “over-learning” phenomenon in the WNN remote sensing image classification,
four rectangular subsets are created from the high-resolution images of houses, and the hyper-spectral
images of Heihe (as shown in Figures 14 and 15). The calculation results of their AI index values shows
the law of changing from small to large. These four rectangular zones represent the images whose
“same object with different spectra” phenomenon changed from less to more; the complexity degree
of ground features changed from low to high; and the separability changed from strong to weak,
respectively. The number of iterations is set at 100 with a different number of hidden layer nodes,
and the four rectangular zones are classified 30 times, using three types of entropy error function
neural networks, in order to obtain the image characteristic AI value of the four rectangular zones
(as shown in Figures 14 and 15), as well as the WNN classification result of the four rectangular zones
(as shown in Figures 16 and 17):

1. It is found in the classification experiment of high-resolution image of houses (as shown in
the Figures 14 and 16) that the SH entropy function network has a higher overall classification
accuracy than the NB and CE under the small pixel image (50 × 50 pixels), or when the image
characteristic is simple. This is more obvious when the number of hidden layer nodes is increased.
For example, in the 50 × 50 pixels image classification (AI index was 7.82), the classification
accuracy of the SH entropy error network with four hidden layer nodes (30, 40, 50, and 60) is
higher than the NB or CE. This indicates that the NB and CE entropy error function network
has a surplus learning ability, and experienced an “over-learning” phenomenon, while the SH
network has a moderate learning ability, and an “over-learning” resistance ability. Therefore,
the SH error function is the recommended selection.

2. In the large-pixel images, the classification accuracy of the NB and CE entropy error function
network is found to be higher than the SH, with the increase of the complexity degree of the
ground features. For example, in the 150 × 150 pixel image classification (AI index was 14.61,
and the complexity degree of image obviously rises compared with the 50 × 50 pixel), for the five
hidden layer nodes, the classification accuracy of the NB and CE entropy error function network
is higher than the SH. These results indicate that the network learning ability is not in surplus
and an “over-learning” phenomenon does not exist. Therefore in this study, the NB or CE entropy
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error functions are commended to be selected in order to guarantee the classification accuracy of
the network.

3. There was also a similar law in the hyper-spectral image of the Heihe River. For example,
the network easily has an “over-learning” phenomenon when the image complexity degree is
low with the small image condition. Meanwhile, with the large image condition, the network
does not easily have an “over-learning” phenomenon when the image complexity degree is high
(as shown in Figures 15 and 17).

3.2.3. Different Hidden Layer Nodes and “Over-Learning” Phenomenon in the Neural Network

In this study, in order to comprehensively investigate the relationship between the different hidden
layer nodes (reflecting the different neural network structures), and the “over-learning” phenomenon,
the number of iterations of the same image in the same interest of region were set at 100, and the hidden
layer nodes changes from small to large. Classifications are made of the three types of entropy error
function neural networks 30 times, in order to obtain the statistical result of the value of the overall
classification accuracy, standard deviation, and minimum error value, as well as the convergence
frequency (as shown in Figure 16). The following conclusions are obtained:

1. The possibility of “over-learning” increases with the increase in the number of hidden layer
nodes. This is due to the fact that the increase in the hidden layer nodes of the neural network is
helpful in improving the network learning ability. Not only does the classification of the 50× 50
small image exhibit an “over-learning” phenomenon, namely the classification accuracy of the
SH was higher than NB and CE (as shown in Figures 16 and 17), but also the larger 50 × 120
image also exhibits an “over-learning” phenomenon when the number of hidden layer nodes is
up to 50 (as shown in Table 3).

2. Therefore, the suitable number of hidden layer nodes should be set during the neural network
training, provided that the accuracy requirement is satisfied, in order to prevent an “over-learning”
phenomenon. In addition, the overall classification accuracy of the wavelet neural network in
the SH entropy error function shows an increasing trend with the increase in the number of
hidden layer nodes. This is due to the fact that the occurrence possibility of an “over-learning”
phenomenon rises. However, the classification accuracy of the SH entropy error in most of the
experiments is lower than the NB and CE, which makes clear that the wavelet neural network of
the NB and CE entropy error function was very robust (as shown in Table 3).
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Table 3. Comparison of the mean value and minimum error value of the overall classification accuracy in the network classification in different numbers of hidden
layer nodes.

Iteration 100 Hidden Nodes 30 Hidden Nodes 40 Hidden Nodes 50

Sorting of Overall Sorting of Error Sorting of Overall Sorting of Error Sorting of Overall Sorting of Error

Classification Accutacy Minimum Value Classification Accutacy Minimum Value Classification Accutacy Minimum Value

test data 1 Sea ice 93 × 2545 (SIR-C) NB > CE > SH SH > CE > NB NB > CE > SH SH > CE > NB NB > CE > SH SH > CE > NB
test data 2 Indian pines 145 × 145 (HSI) NB > CE > SH SH > CE > NB NB > SH > CE SH > CE > NB NB > SH > CE SH > CE > NB
test data 3 Snow mountain 300 × 300 (HRG) NB > CE > SH SH > CE > NB NB > CE > SH SH > CE > NB NB > CE > SH SH > CE > NB
test data 4 Nanjing 400 × 400 (TM) NB > CE > SH SH > CE > NB NB = CE > SH SH > CE > NB NB > CE > SH SH > CE > NB
test data 5 Building 50 × 50 (HRG) SH > NB > CE SH > CE = NB SH > CE > NB SH > CE = NB SH > NB > CE SH > CE = NB
test data 6 Building 50 × 120 (HRG) CE > NB > SH SH > CE = NB CE > NB > SH SH > CE = NB SH > CE > NB SH > NB > CE
test data 7 Heihe river 50 × 50 (HSI) CE > NB > SH SH > CE > NB SH > NB > CE SH > CE > NB SH > NB > CE SH > NB > CE
test data 8 Heihe river 100 × 90 (HSI) NB > CE > SH SH > CE > NB NB > CE > SH SH > CE > NB NB > CE > SH SH > CE > NB
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4. Conclusions

An “over-learning” phenomenon will easily occur under the circumstances with simple characteristics
and small data processing volume, such as handwriting recognition. It will be worthwhile to conduct
deeper studies into whether an “over-learning” phenomenon will occur in the remote sensing image
classifications with large data and processing volumes, and whether it is necessary to resist the
“over-learning” phenomenon by using an SH entropy error function. Therefore, it is necessary to
systematically discuss the performance of the NB, CE, and SH entropy error function neural network
in remote sensing image classification, in order to answer the above questions, and provide a basis for
the selection of an entropy error function in wavelet neural networks.

The remote sensing image types selected in this study cover hyper-spectral images, multi-spectral
images, high spatial resolution images, Synthetic Aperture Radar (SAR) and other common remote
sensing images, so that the obtained conclusions can possess universality. The characteristics of the
remote sensing images, structure of neural network, and training process are the three factors which
affect the performance of the “over-learning” phenomenon. In order to comprehensively understand
whether there is an “over-learning” phenomenon and how it behaves, this study begin from the
above three influence factors for the purpose of conducting research experiments, and to obtain the
following conclusions:

1. As far as the remote sensing images are concerned, the wavelet neural network will not easily cause
an “over-learning” phenomenon, and the NB and CE networks will experience “over-learning”
phenomenon only when the image is very small (however, this is rare). It will be more difficult to
exhibit an “over-learning” phenomenon when the image complexity degree become higher.

2. The number of hidden layer nodes is also one of the factors influencing the “over-learning”
phenomenon. With the increase in the number of hidden layer nodes, the simple and small
images with a low complexity degree will have a higher possibility of causing an “over-learning”
phenomenon. However, most of remote sensing images are complex, and have only a small
possibility of causing an “over-learning” phenomenon.

To summarize, for most remote sensing images, the “over-learning” phenomenon of a wavelet
neural network of entropy error function will not easily occur in the classification of remote sensing
images, due to the complexity of the image data, and the classification diversity of the ground features.
The “over-learning” phenomenon will occur only when the image is very small, the type of ground
features are very few in number, and the separability among the ground features is high. Therefore,
a blind selection of the SH entropy error function with a high “over-learning” resistance ability will
only sacrifice the classification accuracy of the remote sensing image, Thus SH is not recommended.
Instead we suggest to use NB or CE entropy error functions, in order to maintain a stable learning effect.
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