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Abstract: In this paper, we study a supply chain system which consists of one manufacturer and 
two retailers including a traditional retailer and an online retailer. In order to gain a larger market 
share, the retailers often take the sales as a decision-making variable in the competition game. We 
devote ourselves to analyze the bullwhip effect in the supply chain with sales game and consumer 
returns via the theory of entropy and complexity and take the delayed feedback control method to 
control the system’s chaotic state. The impact of a statutory 7-day no reason for return policy for 
online retailers is also investigated. The bounded rational expectation is adopt to forecast the future 
demand in the sales game system with weak noise. Our results show that high return rates will 
hurt the profits of both the retailers and the adjustment speed of the bounded rational sales 
expectation has an important impact on the bullwhip effect. There is a stable area for retailers 
where the bullwhip effect doesn’t appear. The supply chain system suffers a great bullwhip effect 
in the quasi-periodic state and the quasi-chaotic state. The purpose of chaos control on the sales 
game can be achieved and the bullwhip effect would be effectively mitigated by using the delayed 
feedback control method. 

Keywords: supply chain; bullwhip effect; sales game; nonlinear characteristics; chaos; consumer 
returns; entropy 

 

1. Introduction 

With the wide diffusion of e-commerce and the increasingly fierce competition all over the 
world, online retail channels have been developing rapidly. In China, as of December 2015, the 
number of netizens reached 688 million [1], including 413 million online shopping users, whose ratio 
had increased to 60% [2]. A number of online retail oligarchs have emerged with the rapid 
development of the internet sales platform and network direct sales. There are both distributors and 
retailers buying products directly from the manufacturer, and selling to consumers through the 
network platform. For example, many products are sold through WalMart and Jingdong Mall at the 
same time, where the former is a traditional super retail firm and the last is new online super retail 
platform. The prices at WalMart may be properly higher than the prices on Jingdong Mall, but most 
of the time they offer relatively stable prices, and both retailers take sales as the goal of the 
competition through service and reputation. Considering the supply chain system is a complex 
network system, these sales games between retailers often bring demand variability which leads to a 
common phenomenon called the bullwhip effect [3]. 

Many scholars have devoted time to the study of the bullwhip effect, including demand 
processes and forecasting techniques. In the research on the bullwhip effect in the supply chain, the 
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actual demand model is very important. Lee et al. [3] assumed that the actual demand is subject to a 
first-order autoregressive AR(1) time series, and established the direction for the quantitative of the 
bullwhip effect. Luong and Phien [4] were the first to deal with the second-order autoregressive 
AR(2) and the ݌ th-order autoregressive AR(݌ ) demand process and give the corresponding 
expression of the bullwhip effect. Gilbert [5] presented a multistage supply chain model based on 
Autoregressive Integrated Moving Average (ARIMA) time-series models. Duc et al. [6] investigated 
the effects of the autoregressive coefficient, the moving average parameter, and the lead time on the 
bullwhip effect, under the Autoregressive Moving Average model (ARMA(1,1)). Gaalman and 
Disney [7] investigated the behavior of the proportional order up to policy for ARMA(2,2) demand 
with arbitrary lead-times. Buchmeister et al. [8] experimented (by simulating) with a special case of a 
simple three-stage supply chain using seasonal and deseasonalized time series of the market 
demand data in order to identify, illustrate and discuss the impacts of different level constraints on 
bullwhip effect. Nepal et al. [9] presented an analysis of the bullwhip effect and net-stock 
amplification in a three-stage supply chain considering step-changes in the production rates during 
a product’s life-cycle demand. The simulation results showed that performance of a system as a 
whole deteriorates when there was a step-change in the life-cycle demand. Nagaraja et al. [10] 
measured the bullwhip measure for a two-stage supply chain with an order-up-to inventory policy 
and derived for a general, stationary SARMA demand process. Wang and Disney [11] investigated 
the amplification of order and inventory fluctuations in a supply chain model with stochastic 
lead-time, general auto-correlated demand and a proportional order-up-to replenishment policy. 
They gave conditions for the ability of proportional control mechanism to simultaneously reduce 
inventory and order variances. For AR(2) and ARMA(1,1) demand, both variances can be lowered 
under the proportional order-up-to policy. 

Because demand forecasting is one of the key causes of the bullwhip effect, many have scholars 
sought to develop many forecasting methods and inventory control systems to fulfill the demand 
within the lead time. Chen et al. [12,13] quantified the bullwhip effect in a simple, two-stage supply 
chain consisting of a single retailer and a single manufacturer by using a moving average (MA) 
method and an exponential smoothing (ES) method. Luong [14] proposed the minimum expected 
mean squares of error forecast method (MMSE) for lead-time demand to measure the bullwhip effect 
in supply chains with AR(1) processes. Wang et al. [15] gave a comparison of the bullwhip effect in a 
single-stage supply chain for series demand function modela (ARiMA(1,0,0), ARiMA(0,0,1), 
ARiMA(1,0,1)) by using the Correct, MA, and EWMA (Exponentially Weighted Moving Average) 
methods. Ma et al. [16] found and compared the analytic expressions of the bullwhip effect on 
product orders and inventory using minimum mean-squared error, moving average and 
exponential smoothing forecasting techniques. Bray and Mendelson [17] analyzed the bullwhip by 
information transmission lead time based on public companies’ data from years 1974–2008. Shorter 
reaction times cause significantly more trouble regarding bullwhip. Csik and Foldesi [18] tested the 
problem of bullwhip effect by adoption of an inventory replenishment policy involving a variable 
target level. Safety stock was proportional to the actual demand. They proposed a new production 
plan, which guarantees the stability of the entire supply chain. Costantino et al. [19,20] proposed a 
SPC (Statistical Process Control) forecasting system based on a statistical control chart approach to 
handle the trade-off between order variability amplification and inventory stability and compared 
with MA and ES methods in a four-echelon supply chain. Simulation comparisons showed that their 
system outperformed both the smoothing order-up-to policy and the Min-Max inventory policy in 
terms of bullwhip effect and inventory performances. 

A few scholars have applied the theory of entropy to the supply chain management. An 
entropy-based formulation was proposed by Martínez-Olvera [21], as the basis of a methodology for 
comparing different information sharing approaches in a supply chain environment. He also 
presented a step-by-step comparison of two different information sharing approaches. Durowoju et 
al. [22] proposed an approach to assess the impact of information disruption using entropy theory 
coupled with simulation methodology. 
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Most of the above researches considered only one retailer. Therefore, their demand models 
can’t include the impact of competition between retailers (Duc et al. [23]). Retailers in the supply 
chain system, in order to gain a greater market share, often adopt a strategy of increasing sales, i.e., 
they take the sales as the decision-making variable of the competition game. For the interaction 
behavior between customers and suppliers, the supply chain must exhibit deterministic chaos, and 
there will be attractors of the model moving with the environment and the initial states (Wu and 
Zhang [24]). The investigation of the supply chain dynamics from chaos perspective and quasi-chaos 
perspective is meaningful (Hwarng et al. [25,26]). Especially, when two supply chains take the 
Cournot competition affected by supply uncertainty, retailers should adopt corresponding order 
and inventory strategies (Fang and Shou [27]). 

To the authors’ knowledge, there is lack of an investigation about how the bullwhip effect and 
entropy are affected by retailers’ sales game based on the bounded rationality from a complex 
perspective. In particular, for online retailers there is a statutory policy called 7 days no reason 
return, which is not applicable to traditional retailers. The sales game of retail oligarchs and online 
retailers’ returned products will result in fluctuations of demand, orders, and inventory, therefore, it 
is necessary to study their profits and bullwhip effect under sales competition. In particular, when 
the retailers forecast the expected sales volume and the returns volume for the next period, they 
often consider whether they can achieve more profits, and don’t just consider the past demand 
information. Therefore, the objective of this paper is to investigate the case of sales competition and 
return rate with bounded rationality between retailers. 

This paper contributes to the existing literature regarding bullwhip effect in several ways. 
Firstly, this paper gives a framework for investigating the bullwhip effect on the basis of the sales 
game with weak noise between traditional retailers and online retailers. Secondly, this paper 
attempts to study the impacts of the sales adjustment speed on the bullwhip effect using the theory 
of complexity and entropy. Thirdly, this paper gives a new forecasting method (bounded rational 
expectation) for the bullwhip effect research. At the end, the impact of 7 days no reason for return 
policy statutory for online retailers is investigated regarding the profits of the both retailers. 

This paper is organized as follows: in Section 2 we describe the problem and construct the 
model of the supply chain system. Section 3 analyses the complexity of the system, then, in Section 4, 
we design experiments and compare the bullwhip effect under three states through numerical 
simulations. Section 5 proposes a time-delay feedback method to control the system and mitigate the 
bullwhip effect. Finally, Section 6 presents the conclusions and insights of this study. Three 
appendices which present the proofs of propositions are given after the conclusions. 

2. Problem Description and Model Construction 

In this paper, we establish a supply chain system that consists of one manufacturer and two 
retailers, one of which is a traditional retailer and the other is an online retailer. The two retailers sell 
similar products to a common market, and there is a competitive relationship between them as 
shown in Figure 1. 
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2,td2,tq
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Figure 1. Supply chain model. 
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Customers who purchase a product through online retailers can return it within 7 days without 
any reason because the 7 days no reason for return policy is statutory for online retailers and not 
applicable to traditional retailers. The returned products are assumed to satisfy the conditions to be 
sold again without any other costs. The products meeting the conditions will be returned to the 
online retailer, after a return cycle through its reverse logistics. In order to pursue greater profit and 
market share, retailers tend to adopt some strategy to increase sales. For example, they usually use 
advertising, promotions, and providing gifts and other ways to stimulate the desire of consumers to 
buy more, so as to achieve the purpose of improving the market demand for their products. We are 
working on the assumption that they both take the bounded rational decision to determine their 
sales volume. The retailers are both familiar with the market and can obtain the demand information 
of the current period for their products in a timely way. They use a sales game to forecast the sales 
volume (demand forecast) for the next period according to the bounded rationality expectation. The 
order-up-to inventory policy is assumed to be employed by the two retailers. Based on the current 
and the forecasted demand for the future, retailers estimate the order-up-to point and place their 
own orders. According to the orders submitted by retailers, the manufacturer delivers the products 
to the retailers and after a lead time, both retailers receive the products. Forecasting method, 
demand process, inventor-policy and some symbol notations are introduced in the following 
subsections. 

2.1. Notation 

Table 1 presents the operations management-related variables and parameters of the proposed 
supply chain model. 

Table 1. Notations. ܽ the price ceiling of the product for the online retailer തܽ the price gap between two retailers ߠ the impact factor of return rate on the price ߮ the return rate ത߮ the benchmark of the return rate ܾ௠௡ the impact of the sales volume on the price ݌௜ the price of retailer ݅	(݅ = ௥ܶ, ௥ܱ)  ݀௜,௧ demand (or sales) of retailer ݅ (݅ = ௥ܶ, ௥ܱ) at period ݐ ܿ௜  the unit wholesale price for retailer ݅ (݅ = ௥ܶ, ௥ܱ) ߝ௜,௧ Gaussian white noise for retailer i ߬ the intensity of the noise ݍ௜,௧ the order quantity of retailer i at period ݐ ௜ܵ,௧ the order-up-to point of retailer i at period ܦ ݐ෡௜,௧௅  the estimated demand of retailer i in the lead-time at period ݐ መ݀௜,௧ the prediction of retailer i’s demand at period ߨ ݐ௜,௧ the profit of retailer i at period ߙ ݐ the adjustment parameter of the traditional retailer in the game system ߚ the adjustment parameter of the online retailer in the game system ܮ௜ the lead-time of retailer i ߪො௧௅೔ an estimate of the standard deviation of the forecasting error of the lead-time ݖ retailers’ service level ߪ௤ଶ the variance of the order ߪௗଶ the variance of the demand ߤௗ the mean of the demand ߤ௤ the mean of the order 
T the time length of the numerical experiment 
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2.2. Demand Forecasting with Bounded Rationality 

Suppose that retailers determine the demand forecasting in the next period with bounded 
rationality (Li and Ma [28]), on the basis of the partial estimation of the marginal profit of their 
current period, i.e., the retailer will reduce its sales volume forecast for the next period if the current 
marginal profit is negative, the retailer will maintain its sales volume, if the current marginal profit is 
zero. Otherwise, the retailer will increase the sales volume in the next period. 

In the same market, sales volume of both retailers have negative effect on their prices because of 
the similarity of their products, so the inverse demand function can be written as: ݌ ೝ் = ܽ + തܽ − ܾଵଵ݀ ೝ் − ܾଵଶ݀ைೝ (1) ݌ைೝ = ܽ − ܾଶଵ݀ ೝ் − ܾଶଶ݀ைೝ + )ߠ ത߮ − ߮) (2) 

here, the parameter ܽ represents the acceptable price ceiling of the product for the online retailer. തܽ 
is the price gap between the traditional retailer and the online retailer and the physical traditional 
retail price is usually higher than that of online retailer, i.e., തܽ > 0. The parameters ܾ௠௡ determine 
the relationship between prices and sales, ܾ௠௠(݉ = 1, 2)	 determine the impact of sales on their 
own prices, and ܾ௠௡(݉ ≠ ݊)	 determines the impact of their rival’s sales on their own prices. The 
quotient ܾ௠௡/ܾ௠௠ϵ(0, 1),	  denotes the index of supply chain differentiation or supply chain 
substitution. The degree of supply chain differentiation will increase as 	ܾ௠௡/ܾ௠௠. The traditional 
retailer and online retailer are homogeneous when 	ܾ௠௡/ܾ௠௠ = 1. ߮ is the return rate and ത߮ is the 
benchmark of the return rate which is considered normal by most consumers. 	ߠ is the impact factor 
of return rate on the price. 

We assume that both retailers purchase goods from the manufacturer in accordance with the 
price of ܿ௜, so we can respectively obtain the profit functions of the retailers: ߨ ೝ் = ݀ ೝ்(ܽ + തܽ − ܾଵଵ݀ ೝ் − ܾଵଶ݀ைೝ௧ − ܿ ೝ்) (3) ߨைೝ = (1 − ߮)݀ைೝ(ܽ − ܾଶଵ݀ ೝ் − ܾଶଶ݀ைೝ + )ߠ ത߮ − ߮) − ܿைೝ) (4) 

The marginal profits of two retailers can be calculated using the following expressions: ߲ߨ ೝ்߲݀ ೝ் = ܽ + തܽ − ܿ ೝ் − 2ܾଵଵ݀ ೝ் − ܾଵଶ݀ைೝ (5) 

ைೝ߲݀ைೝߨ߲ = (ܽ − ܿைೝ − ܾଶଵ݀ ೝ் + )ߠ ത߮ − ߮) − 2ܾଶଶ݀ைೝ)(1 − ߮) (6) 

When the retailers adopt a sales game, they consider some existing sales information and their 
own marginal profit. If the marginal profit is greater than zero, the retailer can increase sales on the 
basis of the current sales volume. Retailers can give the forecast demand for the next period 
according to the bounded rational expectation:  

ቊ	 መ݀ ೝ்,௧ = ݀ ೝ்,௧ିଵ + ݀ߙ ೝ்,௧ିଵ(ܽ + തܽ − ܿ ೝ் − 2ܾଵଵ݀ ೝ்,௧ିଵ − ܾଵଶ݀ைೝ,௧ିଵ) 																	መ݀ைೝ,௧ = ݀ைೝ,௧ିଵ + ܽ)ைೝ,௧ିଵ݀ߚ − ܿைೝ + )ߠ ത߮ − ߮)−ܾଶଵ݀ ೝ்,௧ିଵ − 2ܾଶଶ݀ைೝ,௧ିଵ)(1 − ߮) (7) 

The parameters ߙ, <)ߚ 0) in Equation (7) represent the two retailers’ adjustment speed in each 
supply chain, respectively. The values of the adjustment speed (ߙ,  depend on the enthusiasm of (ߚ
the retailer’s pursuit of profit, and their ability to regulate and control the sales. The retailer who has 
a strong drive to increase profits can take a bigger adjustment parameter and needs to have a 
stronger ability to regulate and control his sales.  
  



Entropy 2017, 19, 64  6 of 19 

 

2.3. Demand Model 

In this paper, we consider the retailer sales volume is equal to the consumer demand for goods. ݀௧ is the whole demand of consumer (݀௧ = ݀ଵ,௧ + ݀ଶ,௧), and ݍ௧ is the total orders of the two retailers 
௧ݍ) = ଵ,௧ݍ +  .(ଶ,௧ݍ

Besides the retailers’ sales game, the demand for one product is also affected by some incidental 
and random factors. Therefore, a demand model with random disturbance term is more 
representative of the actual supply chain: ቊ݀ ೝ்,௧ = ݀ ೝ்,௧ିଵ + ݀ߙ ೝ்,௧ିଵ൫ܽ + തܽ − ܿ ೝ் − 2ܾଵଵ݀ ೝ்,௧ିଵ − ܾଵଶ݀ைೝ,௧ିଵ൯ + ଵ,௧ߝ߬ 																					݀ைೝ,௧ = ݀ைೝ,௧ିଵ + ܽ)ைೝ,௧ିଵ݀ߚ − ܿைೝ + )ߠ ത߮ − ߮)−ܾଶଵ݀ ೝ்,௧ିଵ − 2ܾଶଶ݀ைೝ,௧ିଵ)(1 − ߮) +  ଶ,௧ (8)ߝ߬

here, ߝ௜,௧ is Gaussian white noise with zero mean and ߬ is intensity of the noise. System (8) is a 
nonlinear demand process with random disturbance which has much more complex nonlinear 
characteristics. Its complexity will be analyzed in Section 3. 

2.4. Order-Up-To Inventory Policy 

We assume that both retailers employ an order-up-to policy as their inventory policy. At the 
start of period 	ݐ, retailer i knows its own demand of period ݐ − 1 denoted by ݀௜,௧ିଵ, and must 
estimate the order-up-to point ௜ܵ,௧, and send the order ݍଵ,௧ to the manufacturer. After the lead time ܮ௜, Retailer i receives the products from the manufacturer in the beginning of the period ݐ +  ௜. Aܮ
retailer’s expected inventory of the period ݐ, is determined by the demand prediction of the lead 
time and the returned products: 

௜ܵ,௧ = ෡௜,௧௅೔ܦ +  ො௜,௧௅೔ (9)ߪݖ

where ߪො௜,௧௅೔ = ටܸܽܦ)ݎ௜,௧௅೔ −  ෡௜,௧௅೔) represents the standard deviation between the actual demand andܦ

demand prediction of the lead time. 	ݖ	(≥ 0) is called safety factor, on behalf of the expected level of 
service. If ݖ = 0, the retailer is risk neutral. 	ܴ௜,௧ is the volume of returned products that the online retailer receives from consumers. The 
returned products are assumed to satisfy the conditions to be sold again without any other costs. The 
products meets the conditions will be returned to the online retailer, after a return cycle 	ܮ௜ through 
its reverse logistics.  

At the end of period ݐ − 1, the online retailer has gotten the information about the volume of 
the returned products in time ݐ:  ܴ௜,௧ = ߮݀௜,௧ି௅೔  

Retailer ݅ can make its order ݍ௜,௧ based on the demand of period ݐ and the desired inventory 
goal, and then send the order to the manufacturer at the beginning of the period ݐ. Retailer ݅ will 
receive the products at the start of period ݐ + ௜,௧ݍ :௜,௧ can be written asݍ ௜. The orderܮ = ௜ܵ,௧ − ௜ܵ,௧ିଵ − ܴ௜,௧ + ݀௜,௧ିଵ = ൫ܦ෡௜,௧௅೔ − ෡௜,௧ିଵ௅೔ܦ ൯ − ܴ௜,௧ + ො௜,௧௅ߪ൫ݖ − ො௜,௧ିଵ௅ߪ ൯ + ݀௜,௧ିଵ (10) 

In the beginning of the period 	ݐ, Retailer ݅ knew the actual demands of consumers for its 
products 	݀௜,௧ିଵ, but the actual demand of the lead time ݀௜,௧,	݀௜,௧ାଵ,…,	݀௜,௧ା௅೔ିଵ are unknown, where መ݀௜,௧,	෡݀ ௜,௧ାଵ,…,	 መ݀௜,௧ା௅೔ିଵ are the corresponding predicted values for ݀௜,௧,	݀௜,௧ାଵ,…,	݀௜,௧ା௅ିଵ. The whole 
demand predictions of the lead time can be written as: ܦ෡௜,௧௅ = መ݀௜,௧ + መ݀௜,௧ାଵ + ⋯+ መ݀௜,௧ା௅ିଵ (11) 

On the basis of the assumption that the retailers use the bounded rationality to estimate መ݀௜,௧ 
according to the demand observations from the previous period. The demand prediction in the lead 
time can be written as: ܦ෡௜,௧௅ = ௜ܮ መ݀௜,௧ (12) 

Substituting Equation (12) into (10), then we can get the orders of the two retailers: 
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۔ۖەۖ
ۓ ݍ ೝ்,௧ = ܮ ೝ்൫݀ߙ ೝ்,௧ିଵ൫ܽ + തܽ − ܿ ೝ் − 2ܾଵଵ݀ ೝ்,௧ିଵ − ܾଵଶ݀ைೝ,௧ିଵ൯ − መ݀ ೝ்,௧ିଵ൯	+൫ܮ ೝ் + 1൯݀ ೝ்,௧ିଵ + ොߪ൫ݖ ೝ்,௧௅ − ොߪ ೝ்,௧ିଵ௅ ൯	ݍைೝ,௧ = ܽ)ைೝ,௧ିଵ݀ߚைೝ൫ܮ − ܿைೝ + )ߠ ത߮ − ߮)−ܾଶଵ݀ ೝ்,௧ିଵ − 2ܾଶଶ݀ைೝ,௧ିଵ)(1 − ߮) − መ݀ைೝ,௧ିଵ൯−ܴைೝ,௧ + ൫ܮைೝ + 1൯݀ைೝ,௧ିଵ + ොைೝ,௧௅ߪ൫ݖ − ොைೝ,௧ିଵ௅ߪ ൯  (13) 

3. Complexity Analysis of the Demand System 

The nonlinear demand process with random disturbance shown in Equation (8) consists of a 
deterministic system and random items. When an attractor is disturbed by noises, the trajectories 
will deviate from this attractor temporarily, but most of them can be attracted back and form a cloud 
or bundle around the deterministic attractor, which is called stochastic attractor (Bashkirtseva and 
Ryashko [29]). For systems perturbed by weak noises, the response can be seen as stochastic 
attractors around the deterministic attractors and transitions between them (Guo et al. [30]). If ߬ is small 
enough compared with the value of di, the disturbance from the white noise doesn’t change the 
properties completely. The time-consuming direct numerical simulation is a basic tool for analyzing 
the effects of small random perturbations in the stochastic dynamics (Bashkirtseva and Ryashko 
[31]). 

In this paper, we investigate a nonlinear demand process with weak random disturbance. In the 
following subsection, we study the equilibrium and the local stability of the deterministic system 
firstly, and then analyze the complexity of the demand model. 

3.1. Equilibrium and the Local Stability 

Definition 1. (Equilibrium Point). An equilibrium point of the difference system ݀௜,௧ାଵ = ݂൫݀௜,௧൯,  is (݀ଵ∗, ݀ଶ∗)	 such that ݀௜∗ 	= ݂(݀௜∗	)	(	݅ = 1,2), (Galor [32]). 

Definition 2. (Nash Equilibrium Point). An equilibrium point (݀ଵ∗, ݀ଶ∗)	is a Nash equilibrium point of the 
difference system, if no retailer has anything to gain by changing only his or her own strategy. 

There are four equilibrium points in the deterministic system of Equation (8): ܧ଴(0,0), ଵܧ ൬ܽ + തܽ − ܿ ೝ்2ܾଵଵ , 0൰ , ,ଶ(0ܧ ܽ − ܿைೝ + )ߠ ത߮ − ߮)2ܾଶଶ )  

∗ܧ ቌܾଵଶ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ − 2ܾଶଶ൫ܽ + തܽ − ܿ ೝ்൯ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ , ܾଶଵ൫ܽ + തܽ − ܿ ೝ்൯ − 2ܾଵଵ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ ቍ  

where ܧ଴, ,ଵܧ	  .is the Nash equilibrium point ∗ܧ ଶ are boundary equilibrium points, onlyܧ

Proposition 1. In the deterministic system of Equation (8), the boundary equilibrium point ܧ଴,  ଶܧ ଵ andܧ	
are not stable. 

Proof. See Appendix A. 

At the equilibrium point ܧ∗, the Jacobian matrix has the form: (∗ܧ)ܬ = ݆଴ ൤݆ଵଵ ݆ଵଶ݆ଶଵ ݆ଶଶ൨ (14) 

here, 	݆଴ = 1/(ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ) , ݆ଵଵ = 4ܾଵଵܾଶଶ൫−1 + ܽ)ߙ + തܽ − ܿ ೝ்)൯ + ܾଵଶ൫ܾଶଵ − 2ܾଵଵߙ(ܽ − ܿைೝ )ߠ+ ത߮ − ߮))൯ , ݆ଵଶ = ܾଵଶ2ܾ)ߙଶଶ(ܽ + തܽ − ܿ ೝ்) − ܾଵଶ(ܽ − ܿைೝ + )ߠ ത߮ − ߮))) , ݆ଶଵ = ܾଶଵ1−)ߚ + ߮)(ܾଶଵ൫ܽ +തܽ − ܿ ೝ்൯ − ܾଶଵܿ ೝ் − 2ܾଵଵ(ܽ − ܿைೝ + )ߠ ത߮ − ߮))) , ݆ଶଶ = ݆଴ + ܾଶଵ1−)ߚ + ߮)(ܾଶଵ(ܽ + തܽ − ܿ ೝ்) − 2ܾଵଵ(ܽ −ܿைೝ + )ߠ ത߮ − ߮))). In order to guarantee the sales at the equilibrium point are positive, we can set: ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ < 0. 
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From the reality of the social economic activity perspective, the Nash equilibrium point ܧ∗ is 
more meaningful. At this point the two retailers’ sales volumes are not equal to zero. We can derive 
the sufficient and necessary condition for the stability by means of the Jury criterion: 

൞1 + ൯(∗ܧ)ܬ൫ݎܶ + ൯(∗ܧ)ܬ൫ݐ݁ܦ > 01 − ൯(∗ܧ)ܬ൫ݎܶ + ൯(∗ܧ)ܬ൫ݐ݁ܦ > 01 − ൯(∗ܧ)ܬ൫ݐ݁ܦ > 0  (15) 

In order to obtain a better understanding of the stability characteristics of the system, we assign 
fixed values to the parameters. Unless otherwise specified, the parameter values will be still used in 
the following article. Without loss of generality, we set the parameters for 	ܿைೝ = 0.2,	ܿ ೝ் = 0.2, ܽ =1 , 	 തܽ = 0.1, 	ܾଵଵ = 1.1 , 		ܾଶଶ = 1 , ܾଵଶ = 0.25 , ܾଶଵ = 0.3, 	ഥ߮ = 0.05, ߮ = 0.07 . At this moment, the 
stability region of the deterministic system of Equation (8) is shown as the green part in Figure 2a. 
The stability region of system is determined by both retailers’ adjustment speed parameter. For both 
retailers, when the speed of the sales adjustment is in the stable region, the system tends to a Nash 
equilibrium point after a finite game; otherwise, the system is unstable. 

Figure 2b shows the basin of attraction in a stable system. The x-axis represents the traditional 
retailer’s sales game decision and the y-axis represents the sales decision of the online retailer. The 
initial decision variables in the domain of attraction will converge to the same equilibrium point 
called an attractor. Here, the equilibrium attractor is 	ܧ∗ = (0.37, 0.34). 

(a) (b) 

Figure 2. (a) Stability region; and (b) basin of attraction of system. 

This means that the stable system is not sensitive to the initial decision values taken from the 
domain of attraction. However, not every initial sales volume can converge to that equilibrium 
point. Once the decision variables aren’t in the basin of attraction, the systems will not converge. 
Therefore, both retailers should be mindful of the initial sales volume and avoid making sales out of 
the green area to maintain the market stability. 

3.2. Complexity of the Demand Model 

In this subsection, we investigate the complexity of the demand system with weak noises. 
Disturbed by weak noises, the stable, periodic and chaotic states of the deterministic system of 
Equation (8) will evolve into the quasi-stable, quasi-periodic and quasi-chaotic states. We may 
investigate the properties of the demand model with the help of the deterministic system of Equation (8). 
Firstly, we want to find the impact of both retailers’ sales adjustment speeds on the system. 

Figure 3 shows parameter basin of the deterministic system of Equation (8), in which different 
colors represent different states. Besides the green stable state, the yellow area is cycles of period 2, 
purple for period 4, gray for chaos, and white for divergence. With the growth of α and β, green, 
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yellow, red and purple constitute the road from period doubling bifurcation to chaos. In the discrete 
system, it is also known as the flip bifurcation. It is worth noting that there are also some intermittent 
odd periodic points in the chaotic region of the deterministic system of Equation (8), and we call 
them topological chaos. In Figure 3, we can find that there are two roads leading to the chaos: 

1. When the adjustment speed of sales for retailers pass from the green area, sequentially through 
the yellow, red and purple areas to the gray area, the system enters into a chaotic state through 
the flip bifurcation. In the state of chaos, if retailers continue to increase the speed of 
adjustment, the system will overflow, which means one retailer will withdraw from the market.  

2. When the adjustment speed of sales for retailers from the green area sequentially pass the 
yellow and red area to the gray area, the system from 4 cycle period enters into a chaotic state 
through the Neimark-Sacker bifurcation. 

 
Figure 3. Parameter basin. 

Secondly, we investigate the change of two retailers’ sales volumes with respect to the 
adjustment speed parameter of online retailer via the bifurcation of the deterministic system. Figure 
4 shows the bifurcation diagram of the deterministic system with α = 1.5 and	ߚ varying from 2.7 to 
4.3. The small window in Figure 4 shows the whole bifurcation diagram when		ߚ ∈ (0,4.3). The red 
line is the sales volume of the online retailer and the blue line represents that of the traditional 
retailer. As shown in the diagram, when the value of ߚ is less than 3.03, the sales volumes of both 
retailers are stable and the traditional retailer sells much more products than the online retailer. 
Once the adjustment speed of the online retailer grows larger than 3.03, the system experiences the 
bifurcation and enters into the two-period state. After four-period and eight-period, the system will 
finally fall into chaos. Apparently, the online retailer will be affected much more by the growth of ߚ 
and the vibration amplitude of its sales volume is more than that of the traditional retailer. 

 
Figure 4. Bifurcation diagram of the deterministic system. 
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In the following section, we investigate the complexity of the system (8) considering the weak 
noise with the help of the largest Lyapunov exponent (LLE). The LLE is an effective means for 
determining and classifying nonlinear system behavior. If the LLE is less than zero, the deterministic 
system is in a quasi-stable state. With the growth of the adjustment parameter, once the LLE 
increases to zero, the system will lose its stability and enters into the stage of quasi-periodic 
bifurcation if the LLE becomes negative again. But if the LLE becomes positive after a zero value, the 
system will enter into chaos. Therefore, we can depend on the LLE diagram to determine the state of 
the demand model (quasi-stable, quasi-periodic, and quasi-chaotic). 

When the noise intensity 	߬ is set to 0.001, we can plot the quasi-bifurcation diagram of the 
demand model and LLE of system (7) in a figure. Figure 5a,b give the quasi-bifurcation diagram and 
the corresponding LLE, with 	ߙ = 1.5 and ߚ	 from 0 to 4.5. As shown in the figures, the LLE is less 
than zero when 	ߚ < 3.03. Therefore, the deterministic system of Equation (8) is in the stable state. 
However, system (8) is in a quasi-stable state rather than a pure stable state, i.e., the sales volumes of 
retailers are not determined at fixed values and fluctuate around their equilibriums slightly. The 
same phenomenon occurs in the period-doubling bifurcation stage, and the system is more chaotic 
in the quasi-chaos state. 

 
Figure 5. (a) Quasi-bifurcation; (b) Largest Lyapunov exponent; and (c) Entropy diagram. 

According to the theory of entropy (Han et al. [33]), we plot the entropy diagram to show the 
complexity of the system. Figure 5c gives the entropy diagram of the sales volume for the online 
retailer as ߚ varying from 0 to 4.5. Combining this with Figure 5b, we can find that the entropy is 
equal to zero when system is in the quasi-stable state	(ߚ < 3.03), simultaneously, the LLE is less than 
zero. Once the system enters into a period-doubling bifurcation stage or the quasi-chaos state (ߚ >3.03), the entropy will be positive. The larger the entropy is, the more chaotic the system is. 

Next, we study the complexity with the help of the system’s attractor. Figure 6 shows attractors 
of system (8) and its deterministic system when 	ߚ = 4.15. In Figure 6a, the blue line is the chaos 
attractor of the deterministic system, while the red points around the blue line is a quasi-chaos 
attractor with weak noise in Figure 6b. 
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(a) (b)

Figure 6. (a) The attractor of the deterministic system; and (b) the quasi-chaos attractor of the system 
with weak noise. 

3.3. Impact of the Return Rate 

In this subsection, the profits of two retailers will be analyzed in the stable state. The optimal 
sales volumes and profits of retailers can be derived via the first-order optimal condition. 

The optimal sales volumes can be expressed as: 

۔ۖەۖ
݀ۓ ೝ்∗ = ܾଵଶ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ − 2ܾଶଶ൫ܽ + തܽ − ܿ ೝ்൯ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ݀ைೝ∗ = ܾଶଵ൫ܽ + തܽ − ܿ ೝ்൯ − 2ܾଵଵ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ

 (16) 

Substituting Equation (16) into Equations (3) and (4), the optimal profits of two retailers can  
be derived: 

۔ۖۖەۖۖ
ۓ ߨ ೝ்∗ = ܾଵଵ ൬ܾଵଶ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ − 2ܾଶଶ൫ܽ + തܽ − ܿ ೝ்൯൰ଶ(ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ)ଶ 	
∗ைೝߨ = ܾଶଶ(1 − ߮) ൬ܾଶଵ൫ܽ + തܽ − ܿ ೝ்൯ − 2ܾଵଵ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ൰ଶ(ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ)ଶ

 (17) 

Proposition 2. When the online retailer employs a return policy, the sales of the traditional retailer increase, 
but those of the online retailer will be reduced by the growth of the return rate in the online channel. The optimal 
sales volume in the online channel will be affected by its return rate much more than that of a traditional 
retailer. 

Proof. See Appendix B.  

Proposition 3. When the online retailer employs a return policy, the profits of the traditional retailer and the 
online retailer are both decreasing functions with respect to the return rate. 

Proof. See Appendix C.  

Based on the above parameter hypothesis, a numerical simulation is proposed to investigate the 
impact of the return rate on profits. Figure 7 shows how the two retailers’ optimal profits are affected 
by the return rate. The red line is the profit of the online retailer and that blue line is that of the 
traditional retailer. It is clear that the profit of the online retailer will be reduced as the return rate 
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grows. However, it is interesting that the profit of the traditional retailer will be reduced by the growth 
of the online retailer’s return rate. 

 
Figure 7. The optimal profits with respect to the return rate. 

4. Analysis of Bullwhip Effect 

From the above analysis, we can find with the continuous growth of the sales adjustment speed 
of retailers, demand model enters into the quasi-periodic state from the quasi-stable state, and finally 
evolves into the quasi-chaotic state. In this section, we will design experiments to investigate the 
bullwhip effect, when the demand model is quasi-stable, quasi-periodic, and quasi-chaotic.  

4.1. Measure of Bullwhip Effect 

This experiment mainly inspects the order variance ratio (bullwhip effect). We take the 
common measure proposed by Chen et al. [12,13]. 

Order variance ratio (OVR):  ܱܸܴ = ௤ଶߪ ௗߤ/ௗଶߪ௤ߤ/  (18) 

We also set the parameters in the inventory policy and the demand prediction for the following 
experiments. Considering the online retailer has got the products sooner the traditional retailer, We 
let lead time ܮைೝ = 2	  and ܮ ೝ் = 3	 , and the whole time length ܶ = 52	  for every numerical 
simulation. Experiment 1 and Experiment 2 investigate how bullwhip effect is affected by the risk 
neutral retailers’ sales game strategies.  

4.2. Experiment 1: To Investigate the Dynamical Evolution of Bullwhip Effect over Time 

We design to calculate and compare the order variance ratio of each cycle (ܶ = 52) when the 
system is in the different state. As can be seen from Figure 5, when ߙ = 1.5, for the online retailer, 
with the increasing of the sales adjustment speed 	ߚ, system (8) from the quasi-stable, quasi-period 
enters into quasi-chaos. We set three different 	ߚ values, respectively, making the system (8) be in a 
quasi-stable, quasi-periodic and quasi-chaotic state, as follows: (1) Quasi-stable state: ߚ = 1.5; (2) 
Quasi-periodic state: ߚ = 3.5; (3) Quasi-chaos state: ߚ = 4.15. 

In the three different states, we can find some properties by calculating the order variance ratio. 
Figure 8a gives the order variance ratio diagram of the traditional retailer when the system is in the 
quasi-stable, quasi-periodic or quasi-chaotic states, respectively. The small window in the north-east 
corner of Figure 8a is the whole diagram, while the big figure is a magnified image when	ܱܸܴ	ϵ	[0,5]. 
In the quasi-stable state, with the passage of time, the order variance ratio will decrease rapidly close 
to 1 during the first ten periods, and be stable at 1 in the time later. While in the quasi-periodic and 
quasi-chaotic state, the order variance ratio will gradually increase after a rapid reduction, since time 	ݐ = 10. Figure 8b gives the order variance ratio diagram of the online retailer when the system is in 
the quasi-stable, quasi-periodic or quasi-chaotic states. The small window in the north-east corner of 
Figure 8b is the whole diagram, while the big figure is a magnified image when	ܱܸܴ	ϵ	[0,12]. There 
is the similar trend for the OVR of the online retailer in the quasi-stable state. Unlike the traditional 
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retailer, the ܱܸܴ of the online retailer is greater in the quasi-periodic and quasi-chaotic states. After 
time 	ݐ = 17 , the ܱܸܴ  of the online retailer in the quasi-periodic state is larger than that in 
quasi-chaotic state.  

(a) (b) 

Figure 8. (a) Timing diagram of the traditional retailer’s bullwhip effect; (b) Timing diagram of the 
online retailer’s bullwhip effect. 

4.3. Experiment 2: To Investigate the Impact of the Sales Adjustment Speed on the Bullwhip Effect 

We design to calculate the order variance ratio of the total 52 cycles and investigate the changes 
of the OVR as the sales adjustment speed of the online retailer changes. In order to further study how 
the adjustment speed of sales volume for retailers affects the bullwhip effect, we set 	ߙ = 1.5, and 
make 	ߚ increase. We turn to observe the change trends of bullwhip effect in the process of system 
evolution for two different retailers. 

Figure 9a gives the influence of adjustment speed on the bullwhip effect for the traditional 
retailer. From the figure, we can find that when the online retailer begins to adopt an adjustment 
mechanism in a quasi-stable state, there is a little bullwhip effect from the traditional retailer’s orders 
when 	ߚ <	1.6. There is no bullwhip effect when 	1.6 < ߚ <	3. When system (8) is beginning to enter 
into a quasi-periodic state, the bullwhip effect appears and increases rapidly, with some waving 
phenomena. Bullwhip effect will be in the high turbulence when the system is in a quasi-chaotic 
state. 

(a) (b)

Figure 9. (a) Effect of β on the traditional retailer’s OVR; (b) Effect of β on the online retailer’s OVR. 

As shown in Figure 9b, the order variance ratio will show a similar trend to that of the 
traditional retailer when the online retailer adopts an adjustment mechanism. There is a little 
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bullwhip effect from the online retailer’s orders when 	ߚ < 0.94 and no bullwhip effect when 	0.94 < ߚ < 2.9. There is a rapid increase once ߚ > 2.9,	with a high turbulence in a quasi-chaotic 
state.  

Through the comparison of the two maps, we find that both retailers will suffer little bullwhip 
effect when the system is in the quasi-stable state. Bullwhip effect can be mitigated completely for 
the two retailers when 	1.6 < ߚ < 2.9. The largest OVR of the traditional retailer is less than 2, while 
the OVR of the online retailer is larger than 2 in the vast majority of cases when the system is in a 
quasi-periodic state or a quasi-chaotic state. This system instability caused by the online retailer has 
a greater impact on itself, leading to greater bullwhip effect in its own channel. 

5. Chaos Control and Mitigation of Bullwhip Effect 

The above simulations suggest that the retailers’ sales adjustment speeds in the quasi-stable 
state would bring less bullwhip effect than the quasi-period doubling and quasi-chaotic states. 
From the supply management perspective, to keep the system away from chaos and weaken the 
bullwhip effect are helpful for the retailers and the manufacturer. Therefore, it is important to find a 
useful method of chaos control. Some literatures in the field of supply chain complexity have 
successfully used the delayed feedback control method to control the chaos of supply chain system 
[34,35]. 

Definition 3. (The Delayed Feedback Control (DFC) Method). For a general chaotic system with an additional 
feedback force: (ݐ)ݔ = ݐ)ݔܤ − 1) + ݂൫ݐ)ݔ − 1)൯ +  (19) (ݐ)ݑ

where (ݐ)ݔ ∈ ܴ௡  is the state vector, (ݐ)ݑ is feedback control input vector, ܤ  is constant system matrix 
representing the linear parts of the system, ݂	 is the nonlinear parts of the system. If the control input is 
presented as (ݐ)ݑ = ݐ)ݔ)ܭ − ∆ܶ) −  ܶ∆ the method is called the delayed feedback control method, where ,((ݐ)ݔ
is the length of the lag time, K is the control parameter (Guan [36]). 

We make the online retailer control the chaos when making decisions on the sales with the help 
of the control parameter K. With the controlling, the sales (demands) of the online retailer can be 
rewritten as: ݀ைೝ,௧ = ைೝ,௧ିଵ൫ܽ݀ߚ − ܿைೝ + )ߠ ത߮ − ߮)−ܾଶଵ݀ ೝ்,௧ିଵ − 2ܾଶଶ݀ைೝ,௧ିଵ൯(1 − ߮)	+ ݀ைೝ,௧ିଵ+ ்∆൫݀ைೝ,௧ିܭ − ݀ைೝ,௧൯ + ைೝ,௧ߝ߬ 																						 (20) 

We consider the control parameter in the system with 	∆ܶ = 1, and then we can obtain a new 
sales demand game system for the two retailers of the supply chain, under the control of the online 
retailer: 

۔ۖەۖ
ۓ ݀ ೝ்,௧ = ݀ߙ ೝ்,௧ିଵ൫ܽ + തܽ − ܿ ೝ் − 2ܾଵଵ݀ ೝ்,௧ିଵ − ܾଵଶ݀ைೝ,௧ିଵ൯+݀ ೝ்,௧ିଵ + ߝ߬ ೝ்,௧		݀ைೝ,௧ = ைೝ,௧ିଵ൫ܽ݀ߚ − ܿைೝ + )ߠ ത߮ − ߮)−ܾଶଵ݀ ೝ்,௧ିଵ − 2ܾଶଶ݀ைೝ,௧ିଵ൯(1 − ߮)+݀ைೝ,௧ିଵ + ைೝ,௧ିଵ݀)ܭ − ݀ைೝ,௧) + ைೝ,௧ߝ߬  (21) 

First, we make the control parameter ܭ = 0.5	 and the adjustment parameter ߙ	 = 1.5	 to 
investigate the effect of the DFC method. Figure 10a shows the demands quasi-bifurcation diagram 
of the two retailers as the adjustment parameter 	ߚ increasing from 4 to 6.5. The small window in 
Figure 10a shows the whole bifurcation diagram when 	ߚ ∈ (0,6.5). We can see that the quasi-stable 
state is extended due to the feedback parameter (ܭ = 0.5). Figure 11b shows the bullwhip effect of 
the online retailer as the sales adjustment speed 	ߚ varies from 0 to 6.5. We can see that the period 
with little bullwhip effect is extended obviously. 
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(a) (b)

Figure 10. (a) Quasi-bifurcation diagram; and (b) the online retailer’s bullwhip effect with ܭ ߙ	,0.5	= = 1.5 and 	ߚ ∈ [0, 6.5]. 
Secondly, we observe the control process of the system and the bullwhip effect, when the 

adjustment parameters 	ߙ = 1.5 and	ߚ = 4.15. According to the previous numerical simulation and 
analysis, we know that in this case the system is in a state of chaos. Next we will observe the 
bifurcation diagram and bullwhip effect of the online retailer in the controlled system after entering 
the control parameter K. 

Based on the numerical simulation results, we can find that the system (ߙ = 1.5, ߚ = 4.15) is in a 
quasi-chaotic state and the system is gradually changed from quasi-chaos to quasi-stable state under 
the action of the DFC parameter K. 

(a) (b)

Figure 11. (a) Quasi-bifurcation diagram; and (b) the online retailer’s bullwhip effect with 	ߙ =1.5	and	ߚ = 4.15, ܭ ∈ (0, 1). 
From Figure 11a, we can see that when 	ܭ > 0.13, the system is in a quasi-two-fold period state; 

when K > 0.4, the competition system is out of chaos and enters into a quasi-stable state. Figure 11b 
shows the impact of the control parameter K on OVR. As the control parameter grows from zero, the 
OVR of the online retailer remains high and volatile until K > 0.2. There is a rapid descent of OVR 
when the control parameter is in the interval [0.2, 0.4], especially, OVR is equal to one when K = 0.4, 
and less than one when K > 0.4, i.e., the bullwhip effect is mitigated thanks to K. 

The effect of the control parameter can also be found in Figure 12. As the growth of K, the 
entropy of the online retailer will decrease significantly until near to 0.4, then it will be stable at zero. 
The entropy characters of Figure 12 are consistent with the quasi-bifurcation diagram and bullwhip 
effect in Figure 11.  
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Figure 12. Entropy diagram of the online retailer with 	ߙ = 1.5	 and 	ߚ = 4.15, ܭ ∈ (0, 1). 

This shows that the DFC method has achieved a good effect, and effectively alleviated the 
supply chain bullwhip effect and entropy under a sales game demand model. 

6. Conclusions 

This paper constructs a supply chain model with a manufacturer and two retailers. In the sales 
game process, retailers forecast their sales volume based on their bounded rationality and 
information and replenish goods using the order-up-to inventory policy. We find the demand game 
system disturbed by weak noise will experience quasi-stable, quasi-periodic and quasi-chaotic state 
as retailers increase their sales adjustment speeds. This paper mainly analyzes these nonlinear 
characteristics of the supply chain with consumer returns under a sales game scenario and compares 
the bullwhip effect under different iteration states. The conclusions show that: the profit of the 
traditional retailer will be reduced with the growth of the online retailer’s return rate. As the online 
retailer’s adjusting parameter increase, the system enters a quasi-periodic state, and the bullwhip 
effect of both retailers increases rapidly with a slight shock. The bullwhip effect experiences intense 
shock when the system enters a quasi-chaotic state. The supply chain system suffers a great bullwhip 
effect in the quasi-periodic state and the quasi-chaotic state. For the online retailer, an adjustment 
parameter which maintains the system in the quasi-steady stage is an optimal sales adjustment 
strategy to make the supply chain avoid the greater bullwhip effect. With the help of the delayed 
feedback control method, the online retailer can control the system, expand the stable region and 
effectively mitigate the bullwhip effect. 

There are a number of implications for the manufacturer and the retailers: (1) the manufacturer 
should help the online retailer maintain a low return rate, otherwise, the profit of the traditional 
retailer will be reduced, too; (2) the retailers can adopt a suitably large sales adjustment speed to 
obtain greater profits, but they must keep the sales game system in the stable state and their sales 
volume in the basin of attraction; (3) the manufacturer should pay attention to the adjustment speeds 
of the two retailers. Once the system falls in to chaos, the delayed feedback control method can be 
adopted to control the chaotic system far away from the large bullwhip effect and large entropy. 

Limitations of this work include: (1) all the results are obtained from the simulations; (2) only 
one traditional retailer and one online retailer are considered in the supply chain model. The 
theoretical analysis of the bullwhip effect and multiple retailers in the game supply chain would be 
improvements and directions for future research. 
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Appendix A. Proof for Proposition 1 

According to the stability theory: the local stability of the equilibrium point can be determined 
by the eigenvalues of the Jacobian matrix of the system, the Jacobian matrix of the deterministic 
system of Equation (8) is as follows: 

(ܧ)ܬ = ቈ1 + ܽ)ߙ + തܽ − ܿ ೝ் − 4ܾଵଵ݀ ೝ் − ܾଵଶ݀ைೝ) −ܾଵଶ݀ ೝ்ߙ−ܾଶଵ݀ைೝ1)ߚ − ߮) 1 + 1)ߚ − ߮)(ܽ − ܿைೝ + )ߠ ത߮ − ߮) − ܾଶଵ݀ ೝ் − 4ܾଶଶ݀ைೝ)቉ (A1) 

At 0E , the Jacobian matrix has the form: 

(଴ܧ)ܬ = ቈ1 + ܽ)ߙ + തܽ − ܿ ೝ்) 00 1 + 1)ߚ − ߮)(ܽ − ܿைೝ + )ߠ ത߮ − ߮))቉ (A2) 

The eigenvalues of this matrix are ߣଵ = 1 + ܽ)ߙ + തܽ − ܿ ೝ்) and ߣଶ = 1 + 1)ߚ − ߮)(ܽ − ܿைೝ )ߠ+ ത߮ − ߮)). Since ߙ, ߚ > 0, when ܿ ೝ் , ܿைೝ are less than their price ceiling, it is easy to see that 	݅ߣ > 1,݅ = 1, 2, so that the boundary equilibrium point ܧ଴ is the source, and not stable. 
At ܧଵ, the Jacobian matrix has the form: 

(ଵܧ)ܬ = ێێۏ
1ۍ − ܽ)ߙ + തܽ − ܿ ೝ்) − ܾଵଶ2ܾଵଵ (ܽ + തܽ − ܿ ೝ்)0ߙ 1 + 1)ߚ − ߮)(ܽ − ܿைೝ + )ߠ ത߮ − ߮) − ܾଶଵ2ܾଵଵ (ܽ + തܽ − ܿ ೝ்))ۑۑے

ې
 (A3) 

At the moment, the eigenvalues of this matrix are ߣଵ = 1 − ܽ)ߙ + തܽ − ܿ ೝ்) and ߣଶ = 1 + 1)ߚ −߮)(ܽ − ܿைೝ + )ߠ ത߮ − ߮) − ௕మభଶ௕భభ (ܽ + തܽ − ܿ ೝ்)). It is easy to see that ߣଶ > 1, therefore, the boundary 

equilibrium point 	ܧଵ is unstable. We can also find ߣଵ < 1, thus, we can determine ܧଵ is a saddle 
point. 

At 	ܧଶ, the Jacobian matrix has the form: 

(ଶܧ)ܬ = ێێۏ
1ۍ + ܽ)ߙ + തܽ − ܿ ೝ் − ܾଵଶ2ܾଶଶ (ܽ − ܿைೝ + )ߠ ത߮ − ߮))) 0− ܾଶଵ2ܾଶଶ 1)ߚ − ߮)(ܽ − ܿைೝ + )ߠ ത߮ − ߮)) 1 − 1)ߚ − ߮)(ܽ − ܿைೝ + )ߠ ത߮ − ۑۑے((߮

ې
 (A4) 

The eigenvalues of this matrix are ߣଵ = 1 + ܽ)ߙ + തܽ − ܿ ೝ் − ௕భమଶ௕మమ (ܽ − ܿைೝ + )ߠ ത߮ − ଶߣ		,(((߮ = 1 1)ߚ− − ߮)(ܽ − ܿைೝ + )ߠ ത߮ − ߮)). There is ߣଵ > 1, so the equilibrium point 	ܧଶ is unstable. It can be 
found that ߣଶ < 1, so the boundary equilibrium 	ܧଶ is a saddle point of the deterministic system of 
Equation (8), too. 

Appendix B. Proof of Proposition 2 

The partial derivative of the sales volume with respect to the return rate can be derived via 
Equation (16): ߲݀ ೝ்∗߲߮ = − ܾଵଶܾߠଵଶܾଶଵ − 4ܾଵଵܾଶଶ, (A5) ߲݀ைೝ∗߲߮ = 2ܾଵଵܾߠଵଶܾଶଵ − 4ܾଵଵܾଶଶ. (A6) 

Considering ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ < 0, ܾ௜௝ > 0,  and ߠ > 0 , we can determine 
డௗ೅ೝ∗డఝ > 0  and  	డௗೀೝ∗డఝ < 0. Therefore, with respect to ߮ , ݀୘౨∗  is an increasing function, but ݀ைೝ∗  is a decreasing 

function. It is obvious that ܾଵଵ > ܾଵଶ, so 
ቚడകௗೀೝ∗ ቚቚడകௗ೅ೝ∗ ቚ > 2 can be derived. 

Appendix C. Proof of Proposition 3 

The partial derivative of profits with respect to the return rate can be derived via Equation (21): 
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ߨ߲ ೝ்∗߲߮ = 2ܾଵଵܾଵଶߠ ൬ܾଵଶ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ − 2ܾଶଶ൫ܽ + തܽ − ܿ ೝ்൯൰(ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ)ଶ , (A7) 

=߲߮∗ைೝߨ߲ ܾଶଶ ൬ܾଶଵ൫ܽ + തܽ − ܿ ೝ்൯ − 2ܾଵଵ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ൰ ൬4ܾଵଵ1)ߠ − ߮) − ܾଶଵ൫ܽ + തܽ − ܿ ೝ்൯ + 2ܾଵଵ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ൰(ܾଵଶܾଶଵ − 4ܾଵଵܾଶଶ)ଶ  
(A8) 

Considering the price gap between retailers’ ceiling and difference between retailers’ costs 
won’t be too huge, ௔ା௔തି௖೅ೝ௔ି௖ೀೝାఏ(ఝഥିఝ) < 2. Because 	ܾ௜௝ < ܾ௜௜,  and ܽ > max	{ܿ ೝ், ܿைೝ}, then we can get ܾ௜௝൫ܽ + തܽ − ܿ ೝ்൯ < 2ܾ௜௜ ቀܽ − ܿைೝ + )ߠ ത߮ − ߮)ቁ , 	(݅ ≠ ݆, ݅ = 1,2, ݆ = 1,2) . Therefore, 

డగ೅ೝ∗డఝ < 0	 and 
డగೀ౨∗డ஦ <0. 
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