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Abstract: Response Surface Methodology (RSM) is introduced to optimize the control rod positions 
in a pressurized water reactor (PWR) core. The widely used 3D-IAEA benchmark problem is 
selected as the typical PWR core and the neutron flux field is solved. Besides, some additional 
thermal parameters are assumed to obtain the temperature distribution. Then the total and local 
entropy production is calculated to evaluate the energy dissipation. Using RSM, three directions of 
optimization are taken, which aim to determine the minimum of power peak factor Pmax, peak 
temperature Tmax and total entropy production Stot. These parameters reflect the safety and energy 
dissipation in the core. Finally, an optimization scheme was obtained, which reduced Pmax, Tmax and 
Stot by 23%, 8.7% and 16%, respectively. The optimization results are satisfactory. 
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1. Introduction 

In China, energy consumption has grown rapidly driven by the improvement of the economic 
level. In order to balance economic development and environmental protection, China’s government 
has established a green development strategy. An important measure is to adjust the energy 
structure and promote the consumption of clean energy sources such as nuclear energy. Thus, the 
use of nuclear energy increased from 44.19 billion kWh in 2000 to 290.75 billion kWh in 2013 [1], and 
26 nuclear power units (28,528 MWe) are currently under construction in China [2,3]. 

The design of a nuclear reactor system includes shielding design, thermodynamics, fluid flow 
and heat transfer, fuel element design, radioactivity releases, etc. [4]. In nuclear physics calculations, 
the neutron flux density and its distribution are usually the primary target. The Neutron Transport 
Equation (NTE) is used to describe the variation of neutron flux density in a physical field. For 
simplification, the Neutron Diffusion Equation (NDE) is also used. These equations can be solved by 
the Finite Different Method (FDM) [5–7], the Finite Volume Method (FVM) [8–11], the Finite Element 
Method (FEM) [10,12–14], etc. Normally, the neutron flux density distribution matches the fission 
heat source distribution. 

Heat transfer is also an important physical process in nuclear reactor core. It is an irreversible 
process which increases the entropy of the whole system. The differences in heat transfer in different 
regions causes a distribution of local entropy production. In 1979, Bejan [15] presented the 
fundamental equations describing entropy production due to finite temperature gradients and fluid 
flow. Then Bejan [16–18] discussed the irreversibility in thermodynamic systems by entropy 
production analysis. Since then, many researchers have started to use the entropy production 
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method to evaluate heat transfer processes in various structures. For example, Ibáñez et al. [19] 
investigated the entropy production minimization of a solid slab with uniform internal heating and 
asymmetric convective cooling. Makinde and Aziz [20] analyzed the inherent irreversibility and 
thermal stability in the model of a long hollow cylinder with temperature-dependent internal 
heating and asymmetric convective cooling boundaries. Aziz and Khan [21] analyzed the entropy 
production of steady conduction in the model of a hollow sphere with temperature-dependent 
internal heating and asymmetric convective cooling boundaries. Malvandi et al. [22] studied the 
entropy production of steady two-dimensional boundary layer flow of nano-fluids over a flat plate. 
Torabi and Zhang [23] used classical entropy production analysis to investigate heat transfer in 
cooled homogenous and functionally graded material slabs with variation of internal heat 
generation with temperature, and convective-radiative boundaries. 

For coupling the neutronic and thermal-hydraulic calculation, the traditional technique is the 
Operator Splitting (OS) method [24,25]. By this method, different physical processes are solved 
separately. The output of neutronic calculation is the input of thermal-hydraulic part. Some other 
advanced multi-physics algorithms have also been developed. One of the most famous algorithms 
is the Jacobian-Free Newton-Krylov (JFNK) method [26,27]. By the JFNK method, several physical 
processes are treated together as an entire unit. The biggest advantage of the OS method is its ease 
of implementation, while JFNK is more suitable for nonlinear problems and has higher accuracy. 

Response Surface Methodology (RSM) is a collection of mathematical and statistical techniques 
used to explore the relationships between several independent variables and one or more response 
variables. This methodology was proposed by Box and Wilson in the 1950s [28,29]. Since then this 
methodology has been widely used in analytical chemistry [28], bioprocessing [29,30], structural 
reliability [31,32], food chemistry [33–35], etc. The biggest advantage of this methodology is that the 
RSM model is easy and convenient to establish, even when little information about the process can 
be obtained. 

This paper aimed to optimize the insertion positions of the control rods in a Pressurized Water 
Reactor (PWR). The neutron diffusion and heat transfer processes are coupled and both high safety 
and low energy dissipation are taken into consideration. The chosen safety factors are the power 
peak factor and maximum temperature in the core, and the energy dissipation is calculated by the 
entropy production method. RSM is utilized to find a more improved scheme. 

2. Description of Problem 

The International Atomic Energy Agency (IAEA) has published a three-dimensional PWR 
benchmark problem named the 3D-IAEA [36]. It is a typical PWR problem which is widely used in 
verification of neutron diffusion calculation codes. This PWR is taken as a study object in this paper 
to demonstrate the RSM optimization of control rod insertion positions. The nuclear data given in 
[36] are used to solve the neutron flux distribution. Some essential thermal parameters are also 
assumed to calculate the temperature field and local and total entropy production. 

There are 177 groups of Fuel Assemblies (FAs) arranged in the reactor core, and 13 groups of 
these FAs are have inserted control rods. Five kinds of materials are applied in this core. A quarter of 
horizontal and one half of vertical cross section of the 3D-IAEA problem are illustrated in Figures 1 
and 2, respectively. The multi-group neutron diffusion approximation that most widely used for 
commercial reactors is the two-energy groups approximation [37,38], which is also applied in 
3D-IAEA benchmark problem. The neutron energy spectrum is divided into two groups, which are 
called fast and thermal neutrons, respectively. The two-group nuclear data are given in Table 1. 
Some additional thermal parameters are given in Table 2. 



Entropy 2017, 19, 63  3 of 16 

 

 

Figure 1. Horizontal cross section of the 3D-IAEA problem. 

 

Figure 2. Vertical cross section of the 3D-IAEA problem. 

Table 1. Two-group nuclear data. 

Region D1 D2 Σs,1→2 Σa1 Σa2 υΣf Material
1 1.5 0.4 0.02 0.01 0.08 0.135 Fuel 1 
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 1 
3 1.5 0.4 0.02 0.01 0.13 0.135 Fuel 2 + Rod 
4 2.0 0.3 0.04 0 0.01 0 Reflector 
5 2.0 0.3 0.04 0 0.055 0 Refl. + Rod 

Table 2. Additional thermal parameters. 

Parameter Pcore/MW 
λ/W·m−1·K−1 

Tboundary/K 
λ1 λ2 λ3 λ4 λ5 

Value 10 5 5.25 5.25 5 5 400 
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3. Numerical Methodology 

3.1. Neutron Diffusion 

The NTE based on transport theory can describe the neutron behaviors in more details, but to 
balance of amount of calculation and perduring accuracy, in the engineering area the diffusion 
theory and NDE are always used to solve the neutron flux, which can be written as: 
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where g is the index of energy group, g = 1,2,…,G; G is the total number which the energy spectrum 
is divided into; v is the velocity of neutrons, cm·s−1; t is the time, s; D is the diffusion constant, cm; Σt 
is the total cross section, cm−1; Σs,g’→g is the scattering cross section from g’ energy group to g energy 
group, cm−1; Σf is the fission cross section, cm−1; r


 is the position, cm; φ is the neutron scalar flux 

density, neutrons·cm−2·s−1; υ is the average number of neutrons that are emitted from each fission 
process; χ is the fission spectrum function; keff is the multiplication factor; Se is the extra neutron 
source, neutrons·cm−3·s−1. 

When using in time independent problem with no extra neutron source and no upscattering 
neutrons, Equation (1) can be simplified as: 
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Thus, for the two-group diffusion problem, the governing equations can be written as: 
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where Σa is the absorb cross section, cm−1, and ,1 ,1 ,1 2( ) ( ) ( )t a sr r r→ =  + 
   , ,2 ,2( ) ( )t ar r = 

  . 
The local fission reaction rate per unit volume is: 
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where Rf is the fission reaction rate, reaction times·cm−3·s−1. 
It can be assumed that the total heat is generated at the position where the fission reaction 

occurs, therefore the power of local fission reaction can be defined as [39]: 

( ) ( )f fP r E R r=   (5) 

where Ef is the total heat generation in one fission reaction. 
According to the thermal parameters shown in Table 2, the reactor core is designed at the 

normal thermal power Pcore, which means that under the normal conditions, the summary of local 
powers is Pcore: 

core

core ( ) d
V

P P r V= 
  (6) 

Average subassembly power Pk is defined as: 

1 ( ) d
k

k
k V

P P r V
V

= 
  (7) 
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where k is the designated number of FA which can be seen in Figure 1. 
In order to compare our results with Ref. [36], a type of normalized neutron fluxes ( )g rϕ   is 

introduced. In the normalized form, the volumetrically weighted average of released fission 
neutron fluxes in the reactor core is set as 1, which can be written as: 

core

,
1core

1 ( ) ( ) d 1
G

f g g
gV

r r V
V

ν ϕ
=

 =
   (8) 

The aim of normalization is to eliminate the impact of initial conditions on the neutron flux 
distribution. 

3.2. Heat Transfer and Energy Dissipation 

The governing equation of conductive heat transfer can be written as: 

P
( , )( , ) ( , ) ( , ) ( , ) ( )T r t

r t c r t r t T r t P r
t

ρ λ∂ = ∇ ∇ +
∂

      (9) 

where ρ is the density, kg·m−3; cp is the specific heat capacity, J·kg−1·K−1; λ is the thermal conductivity, 
W·m−1·K−1; T is the temperature, K; Pcore is the total thermal power of the reactor core, W. 

For the time independent problem, Equation (7) can be simplified as: 

( ) ( ) ( ) 0r T r P rλ∇ ∇ + =    (10) 

The irreversible energy dissipation can be calculated by the entropy production. Normally, the 
local entropy production of conductive heat transfer can be written as [17,18]: 
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The total entropy production is: 
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tot gen ( )d
V

S S r V= 
  (12) 

3.3. Response Surface Methodology 

By RSM, if all the independent variables can be measured, the response surface can be 
expressed as: 

1 2( , ,..., )nY F X X X=  (13) 

where Xi represents the independent variable, Y is the response variable. 
It is assumed that the independent variables are continuous. The goal is to find a suitable 

approximate relationship between independent variables and the response variable. Usually, a 
second-order model is utilized [40,41], which can be written as: 

2
0

1 1

n n n

i i ii i ij i j
i i i j

Y X X X Xβ β β β ε
= = <

= + + + +    (14) 

where β  is the undetermined coefficient, ε  is a random error. 
Equation (14) can be written in matrix form: 

=Y bX + ε  (15) 

The solution of Equation (15) can be obtained by the matrix approach: 
−T 1 Tb = (X X) X Y  (16) 
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In Equation (16), the superscript T represents matrix transposition, the superscript −1 
represents matrix inversion. 

There are several two-order designs for RSM. The Central Composite Design (CCD) and 
Box-Behnken Design (BBD) are two typical ones. In this paper, BBD is adopted to get the coefficients 
of Equation (14). Based on the symmetry of the reactor core along x and y axis, only one-eighth of the 
whole core need to be designated, which can be seen in Figure 1. Thus, the insertion positions of four 
control rods can be chosen as independent variables, namely Z1, Z2, Z3 and Z4, which represent the 
positions of FA.1, FA.18, FA.5 and FA.31, respectively. 

4. Results and Discussion 

4.1. Standard Problem Solution 

The control rod insertion positions shown in Figure 2 were chosen as the standard and 
reference solution. This example solution is the basis of the optimization. The neutron diffusion 
equations and heat transfer equations are all solved by FVM. In each calculation, the considered 
domain is one quarter of the whole core with reflective and non-return external boundaries. The 
convergence criterion is set as maximum relative flux change on each inner iteration = 10−10, 
maximum keff change on outer iteration = 10−6. Four groups of regular hexahedral meshes are taken 
into consideration. The mesh quantities and calculation results are given in Table 3. The error in 
Table 3 represents the relative error between using a mesh group and its further refinement. 

Table 3. Results on different mesh quantity. 

No. Mesh Quantity keff Error 
1 17 × 17 × 19 (5491) 1.02904 - 
2 34 × 34 × 38 (43,928) 1.02855 0.048% 
3 51 × 51 × 57 (148,257) 1.02867 0.012% 
4 68 × 68 × 76 (351,424) 1.02873 0.006% 

Considering both of the calculation accuracy and time cost, mesh No. 2 was selected to be 
applied for the next optimization scheme. This quantity of mesh is also used in [36], thus our 
neutron diffusion calculation results can be checked. The calculated keff is 1.02855 and the reference 
at the same mesh quantity is 1.02864, with the difference of 0.0087%. The results of fast and thermal 
neutron flux at the diagonal line on the x-y plane at the level of z = 195 cm are plotted in Figures 3 
and 4. A good match between calculated results and references can be seen. 
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Figure 3. Fast neutron flux at the diagonal line at the level of z = 195 cm. 
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Figure 4. Thermal neutron flux at the diagonal line at the level of z = 195 cm. 

The calculation local power, temperature and entropy production results are plotted in Figures 
5–7. It can be seen in Figure 5 that the control rods have an obvious effect on the neutron fission 
power. Both the vertical and horizontal cross sections show significant decreases of local power 
depending on the control rod positions. The comparison of horizontal cross section at different z 
levels shows that the local power near the center of the core is higher than at the upper level, as 
expected. Figure 6 shows that the regular temperature distribution is not as complex as the fission 
power distribution. It shows a continuous reduce from the core center to the edge. The control rod 
positions cannot be seen clearly in these temperature cloud pictures. The regular local entropy 
production distribution is far from the temperature distribution.  
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Figure 5. Local power distribution of standard problem (left: vertical cross section cloud picture at y 
= 0; right-top: horizontal cross section cloud picture at z = 315 cm; right-bottom: horizontal cross 
section cloud picture at z = 195 cm. Pavg represents the average local power of standard problem). 
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Figure 6. Temperature distribution of standard problem (left: vertical cross section cloud picture at y 
= 0; right-top: horizontal cross section cloud picture at z = 315 cm; right-bottom: horizontal cross 
section cloud picture at z = 195 cm). 
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Figure 7. Local entropy production distribution of standard problem (left: vertical cross section 
cloud picture at y = 0; right-top: horizontal cross section cloud picture at z = 315 cm; right-bottom: 
horizontal cross section cloud picture at z = 195 cm. S0 represents the average local entropy 
production of standard problem). 
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Figure 7 shows that the boundary centers of the reactor core are the peaks of the local entropy 
production, and the volume center of the reactor core is the valley of the local entropy production. 
The reason is that this core is symmetric at the vertical middle cross section, thus the middle cross 
section is heat insulated and the temperature gradient there is zero. The rapid decrease of 
temperature near the boundary center causes the entropy production peak. 

In total, some lumped and feature parameters are selected to describe the thermal situation of 
the reactor core. These parameters are the power peak factor Pmax, the maximum temperature Tmax 
and the total entropy production Stot. These parameters’ values are shown in Table 4. 

Table 4. Calculation results of standard problem. 

Parameter Pmax Tmax Stot

Value 2.5107 657.4 0.8021 

4.2. Response Surface Design 

The BBD is introduced to apply the RSM. The insert positions of control rods Z1, Z2, Z3, Z4 are 
the input independent variables, and the feature parameters Pmax, Tmax, Stot are chosen as the response 
variables. The RSM can be written as follows: 

max 1 1

max 2 2

tot 3 3

P

T

S

     
     = =     
          

b ε

Y b X + ε

b ε

 (17) 

where: 

2 2 2 2
1 2 3 4 1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 41 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z =  X  (18) 

In order to establish the coefficient matrix b, several experiments should be performed. Section 
4.1 presents an example of a numerical experiment. The input variables are [Z1 Z2 Z3 Z4] = 
[202802020], and the response result Y is given in Table 4. Using BBD to design the RSM for this 
problem, 29 groups of numerical experiments must be executed. The input and response variables 
are shown in Table 5. The matrix b is obtained by Equation (17) and the fitting results are shown in 
Table 6. 

Table 5. Numerical experiments used to design response surface. 

No. 
Positions Calculation Results

No.
Positions Calculation Results

Z1 Z2 Z3 Z4 Pmax Tmax Stot Z1 Z2 Z3 Z4 Pmax Tmax Stot

1 360 190 20 190 3.258 681.4 0.8159 16 190 190 360 360 2.594 658 0.7794 
2 190 190 190 190 3.24 690.7 0.8615 17 360 190 360 190 2.808 673.1 0.8231 
3 20 190 190 360 2.445 641.4 0.7607 18 190 190 360 20 3.228 688.6 0.8565 
4 360 20 190 190 2.211 633 0.7141 19 190 190 20 360 2.889 658.6 0.7531 
5 190 20 190 20 2.696 649.8 0.7491 20 190 360 190 20 3.257 694.4 0.8805 
6 190 190 190 190 3.24 690.7 0.8615 21 190 190 20 20 3.919 703.4 0.8588 
7 190 20 20 190 2.052 610.4 0.6448 22 190 360 360 190 2.511 663.8 0.8186 
8 190 190 190 190 3.24 690.7 0.8615 23 20 190 360 190 2.328 639.5 0.7644 
9 190 360 190 360 2.624 663.7 0.7999 24 190 190 190 190 3.24 690.7 0.8615 
10 190 20 190 360 2.071 619.4 0.6795 25 360 190 190 360 2.938 676 0.8196 
11 20 190 190 20 2.919 668.8 0.8355 26 190 360 20 190 2.89 669.4 0.8045 
12 360 190 190 20 3.649 709.8 0.9074 27 360 360 190 190 2.839 680.2 0.8497 
13 190 20 360 190 2.026 622.4 0.7011 28 190 190 190 190 3.24 690.7 0.8615 
14 20 360 190 190 2.332 645.7 0.7842 29 20 20 190 190 2.041 595.6 0.6406 
15 20 190 20 190 2.486 637.9 0.7365 - - - - - - - - 
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Table 6. Coefficients in the response surface. 

Coefficient b1 b2 b3 Coefficient b1 b2 b3 
β0 1.825872 573.3465 0.564135 β23 −3.10 × 10−6 −1.50 × 10−4 −3.60 × 10−7 
β1 0.005768 0.374931 0.000685 β24 −7.00 × 10−8 −2.20 × 10−6 −9.50 × 10−8 
β2 0.010037 0.628899 0.001546 Β34 3.42 × 10−6 1.23 × 10−4 2.48 × 10−7 
β3 0.002126 0.207316 0.000692 β11 −1.00 × 10−5 −6.10 × 10−4 −1.10 × 10−6 
β4 −0.00324 −0.1222 −0.00021 β22 −2.20 × 10−5 −1.19 × 10−4 −2.80 × 10−6 
β12 2.91 × 10−6 −2.50 × 10−5 −6.90 × 10−8 β33 −7.10 × 10−6 −5.10 × 10−4 −1.50 × 10−6 
β13 −2.50 × 10−6 −8.60 × 10−5 −1.80 × 10−7 β44 2.59 × 10−6 3.41 × 10−5 −1.10 × 10−7 
β14 −2.10 × 10−6 −5.60 × 10−5 −1.10 × 10−7 - - - - 

The fitting results are usually evaluated by R-square. For this evaluation index, the closer to 1, 
the better result gained. The R-square value of the three response surface fitting is shown in Table 7. 

Table 7. R-square of response surface fitting. 

Response Pmax Tmax Stot

R-square 0.9495 0.9905 0.9892 

It can be seen in Table 7 that, although Tmax is a local feature, depending on its simple regular 
distribution, the R-square of its response surface is the highest. The second is Stot since it is a total 
summary of local entropy production. It has the both global and local parameter features, so its 
sensitivity to the input variables is weaker than that of the local parameter. The R-square of the Pmax 
response surface is not as fine as the others, due to the complex local power distribution. As these 
response surfaces are introduced to find out the direction of optimization, rather than obtain the 
exact solution, this level of fitting can also be applied. 

4.3. Rod Position Optimization 

In this section, a simple code is programmed to traverse all four input variable ranges in the 
definition domain, which is set as [30 cm, 300 cm]. The coefficients in Table 6 and Equation (18) are 
used in this code to obtain the approximate response results. The interval step of the input variables 
is set as 10 cm. In every traversal calculation, one evaluation index (Pmax, Tmax or Stot) is selected as the 
optimization direction. The aim of optimization is to promote safety or reduce entropy dissipation, 
that is to say, Pmax, Tmax or Stot should be reduced. 

Although these three indexes are key metrics for a reactor core, the importance rankings are 
not at the same level for each of them. For every nuclear energy system, safety is always a seriously 
concerned for the public [42], and its status is higher than economical efficiency. Tmax is the most 
obvious safety index, as the reactor materials may melt above a certain temperature limit, which 
would cause a serious accident. Pmax is also a type of safety index, which is associated with the level 
of power flattening. A more flattened power distribution means a smoother reactor operation is 
expected. The last is the economical index Stot, which represents the energy dissipation. 

Therefore, our optimization procedure is: (1) use RSM to traverse all the control rod positions 
to find N1 positions approaching the lowest Tmax. The selected positions are put in set Ω1; (2) Use 
RSM again to traverse all the positions in the definition domain to find N2 positions approaching 
the lowest Pmax and name the selected positions set as Ω2; (3) Use FVM to obtain accurate indexes of 
position elements in Ω3, Ω3 = Ω1 ∩ Ω2, and sort them by Stot. The best solution is chosen as the final 
optimization scheme. The flow diagram of this optimization procedure is shown in Figure 8. 
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Figure 8. Flow diagram of optimization procedure. 

In this scheme, a smaller N1 or N2 means a narrower search range, but the indexes may become 
closer to the limit. In this case, they are set as N1 = N2 = 10. Finally, eight groups of control rod 
positions are selected, which are listed in Table 8. 

Table 8. The selected control rod positions. 

No. Positions Stot Pmax Tmax

1 [30 30 300 300] 0.6703 1.9408 600.47 
2 [30 40 300 300] 0.6707 1.9418 600.58 
3 [50 30 300 300] 0.6709 1.9433 600.64 
4 [40 30 300 300] 0.6710 1.9439 600.66 
5 [30 30 290 300] 0.6724 1.9602 601.19 
6 [40 30 300 290] 0.6731 1.9550 601.25 
7 [30 30 300 290] 0.6733 1.9561 601.30 
8 [30 30 300 280] 0.6752 1.9674 601.86 

It can be seen in Table 8 that the safety and entropy index will reach optimization when the 
central control rods are inserted deeply and the peripheral control rods are inserted shallowly. In the 
calculation series, it can be found that when the input rod positions are [30 30 300 300], the Pmax, Tmax 
and Stot reach the minimum, which means that both the power and temperature are flatter, and the 
energy dissipation reaches the minimum. In order to observe the physical field in depth, the 
distributions of local power, temperature and local entropy production are illustrated in Figures 
9–11. 

The cloud pictures Figures 9 and 11 share the same colorbar scale as Figures 5–7, respectively. 
Thus the differences between these two groups can be clearly observed. Comparing Figure 9 with 
Figure 5, it can be found that the power flattening effect is better after the control rod adjustment. 
The central control rod has an obvious influence on the power distribution, which causes a power 
valley at the core center, so the temperature at the center line of x = y = 0, is not so high as the 
temperature in the standard problem, which can be seen in Figures 6 and 10. The distribution of local 
entropy production is similar between Figures 7 and 11, but the entropy production values are 
reduced after control rod adjustment. 
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Figure 9. Local power distribution of optimization scheme (left: vertical cross section cloud picture at 
y = 0; right-top: horizontal cross section cloud picture at z = 315 cm; right-bottom: horizontal cross 
section cloud picture at z = 195 cm. Pavg represents the average local power of standard problem). 
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Figure 11. Local entropy production distribution of optimization scheme (left: vertical cross section 
cloud picture at y = 0; right-top: horizontal cross section cloud picture at z = 315 cm; right-bottom: 
horizontal cross section cloud picture at z = 195 cm. S0 represents the average local entropy 
production of standard problem). 

In order to show some details of the optimization results, the local power, temperature and 
local entropy production at the diagonal line on midplane are shown in Figure 12. It can be seen in 
Figure 12a that the local power decreases near the core center and a power valley forms between 
the distance of 40 cm and 50 cm, as the control rods in FA.1 and FA.18 are inserted deeply. At the 
same time, with the control rods in FA.5 and FA.31 rise, the local power of the optimization scheme 
is higher than that of the standard problem in the distance range of [65 cm, 110 cm]. As a result, 
local power is flatter than in the standard problem and the power peak factor is reduced. For the 
temperature distribution, as shown in Figure 12b, the temperature and its gradient are reduced near 
the core center while a little increase is noted near the core boundary, which matches the local 
power distribution. The change of temperature gradient causes a lower local entropy production 
near the core center and the one higher near the core boundary, which is shown in Figure 12c. 
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Figure 12. Local power, temperature and local entropy production of the standard problem and 
optimization scheme at the diagonal line on the midplane (the level of z = 195 cm). 
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As a result, the evaluation indexes of the standard problem and optimization scheme are listed 
in Table 9. An obvious decrease can be seen, which is satisfactory for the optimization. 

Table 9. Comparison between calculation results. 

Parameter Standard Problem Optimization Scheme Decrease 
Pmax 2.5107 1.9408 23% 
Tmax 657.4 600.47 8.7% 
Stot 0.8021 0.6703 16% 

5. Conclusions 

In this paper, a typical PWR reactor core based on the 3D-IAEA problem is taken to be 
analysed. The neutron flux field, temperature and local entropy production distribution in this 
reactor core are calculated by FVM. The calculation results are illustrated in cloud pictures in order 
to observe them clearly. For evaluating the safety and energy dissipation, three characteristics are 
selected as evaluation indexes, which are the power peak factor Pmax, the maximum temperature 
Tmax, and the total entropy production Stot. Then the RSM is introduced to optimize the control rod 
insertion positions in order to get a lower Pmax, Tmax and Stot, which means higher safety and lower 
energy dissipation. Three directions of optimization are taken, and a final optimization scheme is 
obtained. The comparison of cloud pictures between the standard problem and optimization scheme 
shows that the central control rod has a great influence on the power distribution. In total, Pmax, Tmax 
and Stot are reduced by 23%, 8.7% and 16% after the adjustment of the control rod insert positions, 
which is satisfactory. RSM may be a quick and useful method in reactor optimization. 
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