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Abstract: The measurement update stage in the nonlinear filtering is considered in the viewpoint of
information geometry, and the filtered state is considered as an optimization estimation in parameter
space has been corresponded with the iteration in the statistical manifold, then a recursive method
is proposed in this paper. This method is derived based on the natural gradient descent on the
statistical manifold, which constructed by the posterior probability density function (PDF) of state
conditional on the measurement. The derivation procedure is processing in the geometric viewpoint,
and gives a geometric interpretation for the iteration update. Besides, the proposed method can
be seen as an extended for the Kalman filter and its variants. For the one step in our proposed
method, it is identical to the Extended Kalman filter (EKF) in the nonlinear case, while traditional
Kalman filter in the linear case. Benefited from the natural gradient descent used in the update stage,
our proposed method performs better than the existing methods, and the results have showed in the
numerical experiments.

Keywords: information geometry; nonlinear filtering; Kalman filter; Bayesian filtering; natural
gradient descent

1. Introduction

Nonlinear filtering is a significant issue in the field of signal processing, such as target tracking,
navigation and audio signal processing. However, there is no close form solution for nonlinear
filtering similar to the Kalman filter for linear and Gaussian scenarios. How to deal with the nonlinear
state propagation or nonlinear measurement is crucial in the research of nonlinear filtering. Various
nonlinear filtering algorithms have been proposed and widely used in the practical applications, such as
Extended Kalman filter (EKF) [1], Unscented Kalman filter (UKF) [2], Cubature Kalman filter (CKF) [3],
and Particle filter (PF) [4]. Among these methods, EKF, UKF and CKF can be classified into the same
catalog, which also has been called as KF-type method that have the certain nonlinear approximation
to utilize the common frame of traditional Kalman filter to achieve the goal. Some relations among
these KF-type method are given in [5]. The EKF utilizes the Taylor Series Expansion to exploit the
analytical structure of nonlinear functions, which also be called as analytical linearization. Similarly,
the UKF or CKF which exploit the statistical properties of Gaussian variables that undergo nonlinear
transformations, which known as statistical linearization. While the PF is another catalog, which uses
the Monte Carlo technique to approximate the PDF. It obtains a weighted sample from the posterior
PDF, and provides an asymptotically exact approximation of the posterior PDF as the sample size
tends to infinity [6]. In particular, all of these methods can be unified in the framework of Bayesian
filtering [7] to induce the optimal estimation of state by means of computing the posterior PDF,
i.e., the density of state conditional on the corresponding measurements.
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As for the Bayesian filtering, the procedure can be split into two steps: time propagation
and measurement update, which also have been called prediction and correction steps in same
articles. In the nonlinear and non-Gaussian case, the state propagation step is relatively simple
as it can be obtained by approximating the first two moments of the state variable that undergoes
a transformation along the state transition function. But the measurement update is more difficult
and challenging. Firstly, the measurement is proceeded not easily in itself, with nonlinear and/or
non-Gaussian conditions. Secondly, the error which brings by the approximation of state propagation
becomes more seriously under the nonlinear measurements. Thirdly, the measurement update step
has associated state with measurement, and the posterior PDF of state has to be computed conditional
on the measurement with noisy. Therefore, the posterior PDF is the key way to tackle this issue,
and it attracted extensive attention in the research. Usually, Gaussian approximation to posterior
PDF is used in the measurement update because of the analytically intractable in non-Gaussian
scenario [8]. There are two most popular estimators being utilized in the estimation for posterior
PDF as the criterion. The one is the linear minimum mean square error (LMMSE) estimator, which
approximates the posterior mean and covariance matrix by its estimator and its mean square error
matrix, respectively. Based on the LMMSE, Zanetti [9,10] proposes a recursive update method for the
measurement update, which overcomes some of the limitations of the EKF. In addition, the famous
methods, such as EKF, UKF and CKF can be classified in this class [11]. Another is the maximum
a posteriori (MAP) estimator, which estimates the posterior mean and obtain the covariance matrix by
linearizing the measurement function around the MAP estimate. As the most well-known iterated
EKF (IEKF), which based on the Gauss-Newton optimization [12] or Levenberg-Marquardt (LM)
method [13], is categorized in this class. Usually, these iterative methods for nonlinear filter have the
better performance. As Lefebvre [14] has shown that IEKF outperform the EKF, unscented Kalman filter
(UKF) for implementing the measurement update of the covariance matrix. Besides, there are some
other methods to analysis and approximate the posterior PDF recently, such as the Kullback-Leibler
divergence (KLD) as metric to analysis the performance from the true joint posterior PDF of the state
conditional on the measurement to approximation posterior PDF [15]. This metric can be used to
devise new algorithms, such as the iterated posterior linearization filter (IPLF) [8] which can be seen as
an approximate recursive KLD minimization procedure.

In particular, when we consider the posterior PDF parameterized by the estimators in itself,
some natural characters may attract our attentions and provides a new viewpoints on the estimation.
During the posterior PDF approximated recursively by the MAP estimator, a family of the posterior
PDFs parameterized by the estimators can construct a statistical manifold, which a Riemannian
manifold of probability distributions. Thus, the better approximation of the true posterior PDF can be
viewed as the search for the optimum in the statistical manifold. Usually, the search along the direction
of conventional gradient can obtain the optimum with the faster speed and better convergence in
Euclidean space, but not for the statistical manifold. For the sake of utilizing gradient in statistical
manifold, Amari [16,17] has proposed the natural gradient descent for the search direction traditionally
motivated from the perspective of information geometry, and it has been proved that steps along
the direction of natural gradient descent is the steepest descent in the Riemannian manifold [18].
Based on the direction of steepest descent, the natural gradient descent can obtain the optimum in
manifold with faster speed and better convergence. Because of these properties, it has been acted
a new tool to analysis the nonlinear in the statistical problems with an optimization perspective.
Further, it provides some geometric information, such as Riemannian metrics, distances, curvature
and affine connections [19], which may be improve the performance of estimation. To characterize
this geometric information, there are two important elements should be considered. The one is that
considering the set of PDF as a statistical manifold, and another is the Fisher Information Matrix as
the metric of the statistical manifold. With the defining metric by information geometry, the natural
gradient descent can be constructed as the product of inverse of Fisher Matric and the conventional
steepest. After it has been proposed, natural gradient descent works well for many applications as
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an alternative to stochastic gradient descent, such as neural network [20,21], Blind Separation [22],
evolution strategy [23,24], and stochastic distribution control systems [25].

Motivated by the recursively estimation for nonlinear measurement update in the Bayesian
filtering, we propose a method by using the natural gradient descent method in the statistical manifold
constructed by the posterior PDF for measurement update in the nonlinear filtering. After the
procedure of the state propagation, the prediction state can be as a prior information in the Bayesian
framework. The statistical manifold will be constructed by the posterior PDF. We consider a geometric
structure of a this manifold equipped with the Fisher metric, and construct an alternate recursive
process on the manifold. Given an initial point in the manifold based on the prior information,
the iterated method to seek the optimum can been achieved along the natural gradient steepest
descent. At each iteration, the algorithm moves from the current estimate to a new estimate along
the geodesic in the direction of the natural gradient descent with a step size. Our method has the
better performance compared with the update of EKF, which occur an overshooting in some nonlinear
case. In addition, it has also given the theoretical justification for the nonlinear measurement update
in the filtering from the information geometry insight and a mathematical interpretation of this
method. There are two advantages in the estimation procedure benefitting from the natural gradient
descent method. Firstly, based on the fact that the Fisher information matrix (FIM) is the inverse of
Cramer-Rao Limit Bounds(CRLB) with respect to the estimation, the natural gradient descent, which
has used FIM as metric in the statistical manifold, may achieve the better performance of estimation.
Secondly, the natural gradient descent is asymptotically Fisher efficient and often converges faster than
the conventional gradient descent shown in [16]. With the better performance and fast convergence,
the measurement update with natural gradient descent may be achieved better and faster. Furthermore,
based on this measurement update stage, we can construct the different nonlinear filtering method
with different state prediction method.

The paper is organized as follows. In Section 2, we give a description for estimation in the
statistical manifold and derive the iteration estimation procedure in the viewpoint of information
geometry. Then the measurement update using natural gradient descent has deduced in the Section 3.
The differences between our proposed method and other existing methods have be discussed in the
Section 4. In Section 5, the numerical experiments are presented to illustrate the performance compared
with other existing methods. Finally, conclusions are made in Section 6.

2. Information Geometry and Natural Gradient Descent

Information geometry [17] is a new mathematical tool for the study of manifolds of probability
distributions. It opens a new prospective to study the geometric structure of information theory
and provides a new way to deal with existing statistical problems. It has the powerful ability to
handle the non-Gaussian PDF case, such as Weibull distributions [19,26], gamma distributions [27],
multivariate generalized Gaussian distribution [28], and non-Euclidean case, for example, the statistical
manifold [29], the morphogenetic system [30]. For the optimization problems in statistical signal
processing, the Natural gradient descent traditionally motivated from the perspective of information
geometry and gradient descent method, has become an alternative to recursive estimation in the
statistical manifold. It has a better performance and faster convergence.

Usually in the Euclidean space, the recursive method for estimation can be along the direction of
steepest descent in which is relatively straightforward, but it is not the straightforward direction in
the Riemannian geometry because of the curved coordinate system. In this case, the curvature of the
manifold should be considered, and the steepest gradient descent should follow the curvature of the
manifold. This is the important factor for estimation in the manifold, which has been considered in the
natural gradient descent method.

In the view of information geometry, the initial point and the target point in the Riemannian
manifold are corresponding with the initial and final estimation in the parameters space, respectively.
Thus the estimation of parameters can be converted to the recursive procedure seeking optimum in the
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manifold. With the direction provided by the natural gradient descent, the recursive in the Riemannian
manifold can obtain the optimization estimation of parameters.

In a Riemannian manifold, the Riemannian metric gp is used at every point p, which describes
the relationship between the tangent space and its neighborhood tangent space. If the tangent vectors
at point p base on the basis v1

p, . . . , vn
p , then the Riemannian metric can be obtained as gij

p = 〈vi
p, vj

p〉,
where 〈·, ·〉 denotes an inner product defined on the tangent space as the same as in the Euclidean
space. With these definitions, the inner product of tangent space at point p can be induced as
〈wp, wq〉g = wT

p gwq, where wp ∈ TpM and wq ∈ TpM . Given the description of tangent basis

wp = ∑n
i=1 αivi

p and wq = ∑n
j=1 β jv

j
p, their inner product will be 〈wp, wq〉g = ∑n

i,j=1 gij
p αiβ j.

Consider a family of probability distributions S on Rd parameterized by n real-valued variables
θ = [θ1 · · · θn]T as

S = {pθ = p (y; θ) |θ ∈ Θ} (1)

where y ∈ Rd is a random variable and Θ is a open subset of Rn. The mapping ϕ : S→ Rn defined by
ϕ (pθ) = θ can be viewed as a coordinate system of S . With the Fisher information matrix (FIM)

F (θ) =
∫

∂logp (y; θ)

∂θ

(
∂logp (y; θ)

∂θ

)T
p (y; θ) dy (2)

as the Riemannian metric G (θ) in the view of information geometry, which also termed Fisher metric,
the S can be considered as a Riemannian manifold. Thus the S can be called an n-dimensional statistical
manifold on Rd, which the parameter θ plays the role of the coordinate system for S . The element of
the Riemannian metric G (θ) = [gij (θ)] can be written as the follow formation

gij (θ) = E

[
∂logp (y; θ)

∂θi

∂logp (y; θ)

∂θj

]
(3)

where E denotes the expectation with respect to y. The Fisher metric is the only invariant metric to be
given to the statistical manifold [31]. Because of the fact that

E
[

∂ log p (y; θ)

∂θi

]
=
∫

∂ log p (y; θ)

∂θ
p (y; θ) dy

=
∂

∂θ

∫
p (y; θ) dy = 0

(4)

the FIM can also be expressed in terms of the expectation of Hessian matrix of log-likelihood through
algebraic manipulations, which may be easier to compute for certain problems.

E

[
∂logp (y; θ)

∂θi

∂logp (y; θ)

∂θj

]
= −E

[
∂2logp (y; θ)

∂θi∂θj

]
(5)

Consider the smooth mapping ` : S → R, then a set of basis of tangent space of S can be given as
{∂` (θ)/∂θi}i=1,...,n. For example, when the usual log-likelihood functions log : S→ R as the mapping,
the set of basis of tangent space of S is {∂logp (y; θ)/∂θi}i=1,...,n. This definition has established the
local coordinate systems of statistical manifold S . Let P and Q be two close points on statistical
manifold S corresponding to the coordinates ` (θp) and ` (θq) = ` (θp + ∆θ). Assume that the vector
−→
PQ ∈ TPS has a fixed length, namely

‖PQ‖2 = ε2 (6)
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where ε is a sufficiently small positive constant, and a neighborhood ball can be defined according to
the constant ε. Then one can obtain the relationship in the tangent space as

−→
PQ = εv (7)

where v = ∑n
i=1 ai

∂`(θ)
∂θi
|θ=θp ∈ TPS . This relationship can be considered as a tangent vector of TPS at

the point P in the view of geometry. For normalizing the tangent vector, the tangent vector satisfies
the constraint ‖v‖2 = 1. In the statistical manifold, the tangent vector is with respect to the random
variable y. As the description a = (a1, . . . , an)

T is denoted and the expectation is used in the constraint,
we can get the relationship

‖v‖2 = aTE


∂`(θ)
∂θ1

∂`(θ)
∂θ1

· · · ∂`(θ)
∂θ1

∂`(θ)
∂θn

...
. . .

...
∂`(θ)
∂θn

∂`(θ)
∂θ1

· · · ∂`(θ)
∂θn

∂`(θ)
∂θn

 a

= aTGa = 1

(8)

where G is the Fisher metric of the statistical manifold S .
Considering two points P and Q in S , which have been mapped into the Euclidean space as ` (θp)

and ` (θq), we can obtain the approximation formation as

` (θq)− ` (θp) = (θp + ∆θ − θp)T∇` (θp)

= ∆θT∇` (θp)
(9)

where

∇` (θp) =

(
∂` (θ)

∂θ1
, . . . ,

∂` (θ)

∂θn

)T
∣∣∣∣∣
θ=θp

(10)

For simplifying the description, the tangent vector v can be rewritten as

v =
n

∑
i=1

ai
∂` (θ)

∂θi
= aT∇` (θ) (11)

In the tangent space of the manifold S at the point P, the two points satisfy the relationship

−→
PQ = ` (θq)− ` (θp)

= ` (θp + ∆θ)− ` (θp)
(12)

Combining the Equations (7), (9) and (12), we can get the relationship between the parameter
space and the tangent space of manifold

∆θ = εa (13)

To obtain the parameter a in the tangent space under the constraint (8), we use the Lagrange
function method

F (a, λ) = ` (θp) + εaT∇` (θp) + λ(1− aTGa) (14)

where λ is the Lagrange multiplier. Then we have

∂

∂ai
{εaT∇` (θp) + λ(1− aTGa)} = 0 (15)
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Solving this equation, one obtains

a =
ε

2λ
G−1∇` (θp) (16)

Substituting the Equation (16) into (8), we obtain the conclusion in equation

1 = aTGa =
( ε

2λ
G−1∇` (θp)

)T
G
( ε

2λ
G−1∇` (θp)

)
=

ε2

4λ2∇` (θ
p)T G−1∇` (θp)

(17)

Since ∇` (θp)T G−1∇` (θp) is positive, the value of multiplier λ can be computed as

λ =
ε

2

√
∇` (θp)T G−1∇` (θp) (18)

Then, the relationship between point P and Q in the tangent space of manifold S can be obtained.

` (θp + ∆θ) = ` (θp) + εaT∇` (θp) (19)

Simultaneously, the correspondence relationship in the parameter space Θ ⊂ Rn is

θq = θp + ∆θ = θp + εa

= θp +
ε√

∇` (θp)T G−1∇` (θp)
G−1∇` (θp) (20)

where the G−1 is the inverse of the Fisher metric G. In particular, the representation G−1∇` (θ) is called
natural gradient of the mapping ` in the Riemannian manifold. Compared with the steepest direction
∇` (θ) in the Euclidean space, the natural gradient introduces the inverse of Fisher metric G to describe
the curvature of Riemannian manifold, and it is invariant under the choice of coordinate system.

As the simplification form of Amari suggested in the article [16], the Equation (20) can be written as

θq = θp + ηG−1 (θp)∇` (θp) (21)

where the parameter satisfies 0 < η ≤ 1 and it controls the convergence speed.
The geometric interpretation of this method is that the process path has moved from point P to

point Q in the manifold S along the steepest direction, while the parameter has moved from θp to θq

in parameter space. As the process path has been moving in the manifold S , the parameter has been
estimated recursively. The recursive formation as follow

θt+1 = θt + ηG−1 (θt)∇` (θt) (22)

where t denotes the times of iterative procedure in which correspond with the iterated points in the
statistical manifold. This iteration procedure has been illustrated in Figure 1.
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Figure 1. The iterative procedure for estimation in parameter space can be converted to the recursive
estimation in the statistical manifold from the information geometric viewpoint.

For the recursive process, we can use KLD, which is often used to show the discrepancy between
two probability distributions, as the stopping criterion. It is defended by

D[θp : θq] =
∫

p (y; θp) log
p (y; θp)

p (y; θq)
dy (23)

where p (y; θp) and p (y; θp) as the specification with respect to two parameters θp and θq, respectively.
When the two probability distributions are infinitesimally close, corresponding with θq = θp + dθ,
the KLD between two nearby distributions can be expanded as

D[θp : θp + dθ] =
1
2

dθTG (θ) dθ (24)

Motivated by the relationship between the statistical manifold and the parameter space,
the estimation of state conditional on the measurement in state parameter space can be converted to the
iteration procedure on the manifold in which constructed by the posterior PDF. This method provides
a new alternative for the measurement update in nonlinear filtering based on the Bayesian framework.

3. Filtering Based on Information Geometry

In this section, we present the ideas of measurement update based on the natural gradient descent.
In Bayesian framework, the predicted state acts as the prior information with respect to the state to
deduce the posterior distribution under the condition of measurements. Then the natural gradient
descent method has been used to estimation the final state recursively. Here, we consider the usual
scenario which discrete-time state space as follow

xk = f (xk−1) + wk (25)

yk = h (xk) + vk (26)

where xk ∈ Rn and yk ∈ Rm denote the system discrete-time state and measurement at the instant k
respectively, f and h denote the state transition and measurement functions. wk and vk are the noise
correspondence with state and measurement respectively. Generally the additive white Gaussian noise
(AWGN) has been studied for simplicity.
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In Bayesian filtering, the time propagation can be processed according to the state transition
function, and the prediction of state can be achieved in this step. Based on the Bayesian principle,
the prediction of state is considered as the prior information about the state.

p
(
x̂−k
)
= p (xk|yk−1)

=
∫

p (xk|xk−1) p (xk−1|yk−1)dxk−1 (27)

=
∫

p (xk|xk−1) p (xk−1|yk−1)dxk−1

where yk−1 = {yk−1, yk−2, . . . , y1}. The relationship p (xk−1|yk−1) = p (xk−1|yk−1) means that the
current state only depends on current measurement and is conditionally independent from all past
measurements. The PDF p (xk|xk−1) and p (xk−1|yk−1) denote the state transition PDF and posterior
PDF of state for last time, respectively. To aim at obtaining the posterior PDF of current time under the
condition of current measurement, we can use the Bayesian principle for deducing. The procedure of
the measurement update in the form of Bayesian filtering as

p
(

x̂+k
)
= p (xk|yk)

=
p (xk, yk|yk−1) p (yk−1)

p (yk|yk−1) p (yk−1)

=
p (yk|xk, yk−1) p (xk|yk−1)∫

p (yk|xk, yk−1) p (xk|yk−1) dxk

=
p (yk|xk) p (xk|yk−1)∫

p (yk|xk) p (xk|yk−1) dxk

(28)

since the likelihood p (yk|xk, yk−1) = p (yk|xk), i.e., the measurement yk is conditionally independent of
all past measurements. The denominator of the posterior PDF is the normalizing constant independent
of the state. Thus the posterior PDF can be rewrite as

p
(

x̂+k
)
= p (xk|yk)

∝ p (yk|xk) p (xk|yk−1) (29)

= p (yk|xk) p
(
x̂−k
)

where ∝ means “is proportional to”. p
(
x̂−k
)

and p (yk|xk) are the prior and the likelihood respectively.
In this paper, we assume that they are all Gaussian distribution for simplicity, which the Gaussian
approximation has been used for non-Gaussian distribution and beyond our paper. Based on the
procedure of state propagation, the prior distribution can be described as

p
(
x̂−k
)
=

exp
[
− 1

2
(
xk − x̂−k

)T P−1 (xk − x̂−k
)]√

(2π)n|P|
(30)

Usually, the likelihood with respect to the measurement is chosen as

p (yk|xk) =
exp

[
− 1

2 (yk − h(xk))
T R−1 (yk − h(xk))

]
√
(2π)m|R|

(31)

where | · | is the determinant, n and m are the number of dimension of state and measurement, respectively.
In the stage of measurement update, the goal is to obtain the optimal estimation of state under the

conditions of the corresponding measurement and the prior information of state. From the Bayesian
perspective, it is the maximum a posterior PDF of the prior and the likelihood. This MAP method has
been used in the estimation for statistical signal processing extensively. With the optimization view,
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the solution that maximizes p
(
x̂+k
)

is equivalent to minimizing its negative log likelihood function.
The negative log operation of posterior distribution is

L(xk) = −logp
(
x̂+k
)

=
1
2
(
xk − x̂−k

)T P−1 (xk − x̂−k
)
+

1
2
(yk − h(xk))

TR−1 (yk − h(xk)) + C
(32)

where C is a constant which not effect the estimation of state xk. Defining the negative log
likelihood function

`(xk) =
1
2
(
xk − x̂−k

)T P−1 (xk − x̂−k
)
+

1
2
(h(xk)− yk)

T R−1 (h(xk)− yk) (33)

thus the object function can be convert into

max
xk

p
(
x̂+k
)
= min

xk
`(xk) (34)

Based on the posterior PDF, the statistical manifold S can be defined as

S = {p (xk|yk)} (35)

Meanwhile, the negative log function as the mapping from S to R, i.e., ` : S→ R has constructed
the coordinate system.

Let `1 and `2 stand for the first and second part of the Equation (33), ey = h(xk) − yk and
ex = xk − x̂−k for the error of measurement and the state estimation respectively. Computing the first
derivative of `1 and `2 about the xk and xT

k respectively

∂`1

∂xk
= (∂h)T R−1ey (36)

∂`1

∂xT
k
= eT

y R−1 (∂h) (37)

∂`2

∂xk
= P−1ex (38)

∂`2

∂xT
k
= eT

x P−1 (39)

where ∂h = ∂h(xk)
∂xk
∈ Rm ×Rn denotes the Jacobian of h(xk) about xk. The covariance matrix R−1 and

P−1 are symmetry. Thus the gradient of the negative log likelihood is

∇` (xk) = (∂h)T R−1ey + P−1ex (40)

Then the Fisher metric G of manifold S can be obtained

G(xk) = E

[
∂`

∂xk

(
∂`

∂xk

)T
]
= −E

[
∂2`

∂xk∂xT
k

]

= −E
[

∂

∂xk

(
ey

TR−1 (∂h) + eT
x P−1

)]
= −E

[
eT

y R−1
(

∂2h
)
+ (∂h)T R−1 (∂h) + P−1

]
= − (∂h)T R−1 (∂h)− P−1

(41)
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where ∂2h = ∂2h(xk)

∂xk∂xT
k
∈ Rm ×Rn ×Rn and E denotes the expectation with respect to the measurement

yk. In the above deducing procedure, the follow principle has been used

Dx

(
f(x)TAg(x)

)
= g(x)TATDxf(x) + f(x)TADxg(x) (42)

With the computed gradient and Fisher metric, the natural gradient of manifold is

G (xk)
−1∇` (xk) = −

(
(∂h)T R−1 (∂h) + P−1

)−1 (
(∂h)T R−1ey + P−1ex

)
(43)

Meanwhile, considering the denominator of Equation (20), it can be computed as

∇`(xk)
TG(xk)

−1∇`(xk)

= tr
[
G(xk)

−1∇`(xk)∇`(xk)
T
]

= tr
[
(∂hTR−1∂h + P−1)−1(∂hTR−1ey + P−1ex)(∂hTR−1ey + P−1ex)

T
]

= tr
[
(∂hTR−1∂h + P−1)−1(∂hTR−1eyeT

y R−1∂h + ∂hTR−1eyeT
x P−1 + P−1exeT

y R−1∂h + P−1exeT
x P−1)

]
(44)

For simplicity, we use the expectation value to substitute the value which computed in each
iterative procedure. Thus

E
[
G(xk)

−1∇`(xk)∇`(xk)
T
]

=
(

∂hTR−1∂h + P−1
)−1 (

∂hTR−1RR−1∂h + P−1PP−1
)

=
(

∂hTR−1∂h + P−1
)−1 (

∂hTR−1∂h + P−1
)

= I

(45)

where ey and ex are independent, and I is the n-dimension square matrix which correspondence to the
n-dimension state. Based on the natural gradient descent, we can construct the recursive procedure to
get the optimal estimation in the measurement update step

xt
k = xt−1

k +
ε√

∇`(xt−1
k )TG−1∇`(xt−1

k )
G−1(xt−1

k )∇`(xt−1
k )

≈ xt−1
k +

ε√
tr(I)

G−1(xt−1
k )∇`

(
xt−1

k

)
(46)

≈ xt−1
k +

ε√
n

G−1(xt−1
k )∇`

(
xt−1

k

)
where n is the dimension of the state. Replacing the parameter as η = ε√

n , the natural gradient descent
method becomes the simplification form suggested by Amari. Given the above, the iterative procedure
for estimating the state can be constructed

xt
k = xt−1

k + ηG−1(xt−1
k )∇`(xt−1

k )

= xt−1
k + η

(
∂hTR−1∂h + P−1

t−1

)−1 (
∂hTR−1 (yk − h(xk)) + P−1

t−1(x
t−1
k − xk)

)∣∣∣
xk=xt−1

k

(47)

= xt−1
k + η

(
∂hT

t−1R−1∂ht−1 + P−1
t−1

)−1 (
∂hT

t−1R−1
)(

yk − h(xt−1
k )

)
where ∂ht−1 = ∂h(xk)

∂xk
|xk=xt−1

k
, and Pt−1 is the covariance matrix after the t− 1 iterative procedure.

For the iterative procedure, a stopping criterion should be set for final estimation. In the statistical
manifold, the KLD is a better criterion for measurement the distance between two PDF. Because of
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the estimated state corresponding with the posterior PDF, the convergence in statistical manifold also
means the better estimation in parameter space. Besides, Morelande [15] has shown that the lower KLD
value to select the optimum parameter for the approximation posterior PDF has better performance.
Thus, we choose the KLD as the stopping criterion in the iteration procedure of measurement update
following the statistical manifold.

D[xt−1
k : xk

k] =
1
2
(xk

k − xt−1
k )TG

(
xt−1

k

)
(xk

k − xt−1
k ) ≤ δ (48)

Also, we can choose a stopping criterion as the follow form from the view of parameter space in
which has been used in the IEKF or other iterated estimation problems

‖x̂t
k − x̂t−1

k ‖
2
2 ≤ γ (49)

Based on this measurement update method, we can construct nonlinear filtering by combining
the existing method for state propagation. Here, we use the Ensemble Kalman filter (EnKF) for state
propagation, which uses the Monte Carlo technique for integral operation in the Bayesian filtering.
For the last procedure ensemble has Ns elements as

Sk−1|k−1 = {x̂i
k−1|k−1, i = 1, . . . , Ns} (50)

We can get the prediction ensemble as

Sk|k−1 = {x̂i
k|k−1 = f (x̂i

k−1|k−1) + wi
k, i = 1, . . . , Ns} (51)

where wi
k is generated according the state process noise. Then, the mean and the covariance matrix can

be computed

x̄k|k−1 =
1

Ns

Ns

∑
i=1

x̂i
k|k−1 (52)

Pk|k−1 =
1

Ns − 1

Ns

∑
i=1

(x̂i
k|k−1 − x̄k|k−1)(x̂

i
k|k−1 − x̄k|k−1)

T (53)

In the Bayesian framework, these prediction means and covariance will be incorporated in the
procedure as prior information of state to propel the measurement update by the natural gradient
method. With the stopping criterion of iterative procedure, we can get the final estimation of state.
Meanwhile, the iterative estimation will converge to its final value because of the convergence of
the natural gradient descent, and the iterative procedure can process some iterative estimation value
of state. Here, we consider these values as the ensemble of measurement update for next period of
nonlinear filter in the EnKF.

Sk|k = {x̂i
k|k, i = 1, . . . , Ns} (54)

Thus, the complete nonlinear filter method has proposed based on state propagation by EnKF
and measurement update by natural gradient descent method, and has been shown in Algorithm 1.
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Algorithm 1 Natural Gradient Descent Method for Measurement Update in EnKF

Input: Measurement y = {y1, y2, . . . , yT}, ensemble Ns, parameter η ∈ (0, 1].
Initialize: x0, P0, x̂i

0 = x0 +
√

P0N (0, 1), ensemble S0|0 = {x̂i
0, i = 1, . . . , Ns}.

For k = 1 : T
% compute prediction ensemble
Sk|k−1 = {x̂i

k|k−1 = f (x̂i
k−1|k−1) + wi

k, i = 1, . . . , Ns};
% compute mean and covariance of prediction ensemble
x̄k|k−1 = 1

Ns
∑Ns

i=1 x̂i
k|k−1;

Pk|k−1 = 1
Ns−1 ∑Ns

i=1(x̂i
k|k−1 − x̄k|k−1)(x̂i

k|k−1 − x̄k|k−1)
T;

% natural gradient descent for measurement update
x0

k|k = x̄k|k−1, P0
k|k = Pk|k−1 , t = 1;

For t = 1 : Ns

Ht−1 = ∂h(xk)
∂xk

∣∣∣
xk=xt−1

k|k
;

G = HT
t−1R−1Ht−1 +

(
Pt−1

k|k

)−1
;

∇` =
(
HT

t−1R−1) (yk − h(xt−1
k )

)
;

xt
k|k = xt−1

k|k + ηG−1∇`;

Pt
k|k = 1

Ns−1 ∑Ns
i=1(x̂i

k|k−1 − xt
k|k)(x̂i

k|k−1 − xt
k|k)

T;

D[xt−1
k : xt

k] =
1
2 (xt

k|k − xt−1
k|k )TG(xt

k|k − xt−1
k|k );

End for
% Select final estimation
For t = 1 : Ns

If D[xt−1
k : xt

k] ≤ δ and ‖x̂t
k|k − x̂t−1

k|k ‖
2
2 ≤ γ

x̂k|k = xt
k|k;

Pk|k = Pt
k|k;

End if
End for
Sk|k = {xt

k|k, i = 1, . . . , Ns};
End for
Output: State x = {x̂k|k, k = 1, . . . , T}

4. Comparing with the Existing Methods

As the natural gradient descent method for measurement update, we can get some conclusions
comparing with the existing methods. When we choose the parameter as η = 1 with a single iteration,
the iterative procedure (47) will be simplified as

xk = xk−1+
(

∂hT
k−1R−1∂hk−1 + P−1

)−1 (
∂hT

k−1R−1
)
(yk − h(xk−1)) (55)

Thus, the update has deduced to the traditional Kalman filter and the EKF. When the measurement
function is linear, i.e., yk = h(xk) = Hxk, the Jacobian of h(xk) can be obtained easily as ∂h(xk)

∂xk
= H,

∂h(xk)

∂xT
k

= HT. As for the nonlinear measurement function, the first-order Taylor expansion has been

used as the same as the linear case. The procedure becomes

xk = xk−1 +
(

HTR−1H + P−1
)−1 (

HTR−1 (yk − h(xk−1))
)

= xk−1 +
(

PHT
) (

HPHT + R
)−1

(yk − h(xk−1))

(56)
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where the matrix inversion lemma

(HTR−1H + P−1)−1HTR−1 = PHT(HPHT + R)−1 (57)

has been used in the simplification. In comparison, this is the same as the measurement update in
traditional Kalman filter and EKF.

Besides, there are two iteration methods existing before. The one is IEKF [12,32], which also has
been derived based on the MAP method. Its update step has the form as

xt
k = x̂−k +

(
PHT

t−1

) (
Ht−1PHT

t−1 + R
)−1 (

yk − h(xt−1
k )−Ht−1(x̂−k − xt−1

k )
)

(58)

where Ht−1 = ∂h(xk)
∂xk

∣∣∣
xk=xt−1

k

.

Comparing with IEKF and our proposed method, there are some differences. Firstly, the initial
estimation value in each iteration is the same as the prior estimation in the IEKF, while our proposed
method bases on the last iterated estimation. Secondly, the parameter η of the natural gradient descent
controls the update step of state, but the IEKF has no parameters to control the update step. Thirdly,
the innovations are used in the natural gradient descent method, while the IEKF adds the prediction
error of current estimation state and the prior estimation state. Further from the formulation of the
IEKF update, the first step of IEKF is identified to the EKF, and later steps are from the direction of
overestimation convergence to the true state.

Another iteration method is RUF [9], which derived based on the LMMSE method. It defines the
cross-covariance between the measurement noise and the estimation error for each steps. Then the
LMMSE method has been used to deduce the update step. Also, it has considered the fraction of
update, which selected as the reciprocal of the number of iteration steps. In comparison with our
proposed method, the RUF uses the manual setting number of iteration steps, which also influences the
update step, and has no criterion for evaluation the estimation performance. In some case, the other
criterions may provide guarantee for convergence and performance in the procedure. Moreover
the detailed differences among these methods will be discussed in the numerical examples in the
next section.

5. Numerical Examples

In this section, we present three numerical examples to demonstrate the advantages of our
proposed method and illustrate the differences between the proposed method and the existing
method. The first scalar example provides a good geometrical interpretation in the convergence
speed and the iteration procedure. The second example, which has been used as the common test
platform for nonlinear filtering in scalar, is provided to validate the performance. The third example is
a multidimensional filtering problem in which has tracked a vehicle entering atmosphere.

5.1. Iteration and Convergence for Measurement Update

Consider a sample scalar nonlinear measurement as

y = x5 + v (59)

where x denotes the state, and y denotes the measurement with noise v ∼ N (0, 0.12). Only for the
measurement update step, we assume the mean and variance of prediction state, which as prior
information in the Bayesian framework, are x̂− = 2.5 and P = 0.52, and the true state value is set
at x = 4. With noisy measuring, the measurement y = 1024.4. We compare our proposed method
with EKF, IEKF, and RUF. The results are shown in the Figure 2. The EKF only has one step in the
procedure for estimation the posterior, while the other methods have more than one steps. For the
IEKF method, the results illustrate that the first step of IEKF is the same as the EKF, which also can be
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deduced from the expression of two methods. However, the more iteration steps in the IEKF make
the estimation converge to the true posterior state. In detail, the second and more iteration steps
in the IEKF have the same beginning state for estimation, but the ending state after estimation is
more close to true state. Completing the procedure, the more steps in the IEKF, the more accurate
estimation than the EKF. Considering the RUF, the error of estimation is incorporated in the to refine
the estimation. After some iterated steps, the error would be approximately reduced to zero. Thus the
final estimation is convergence to the true state. For our proposed method, the parameter η controls
the convergence behaviours to true state. When the parameter η = 0.8, the first step for estimation is
bigger than the true state as same as the EKF, then the later iteration steps convergence to true state in
the contrary direction of RUF. As the parameter η = 0.2, the convergence path of iteration steps is the
same direction of RUF, but has the fast convergence speed. Moreover, we consider the convergence of
the natural gradient descent method. We use the random technique to generate the initial state and
parameter η = 0.5. The results are show in Figure 3 after running 100 Monte Carlo. It has showed
that the iteration steps, which the natural gradient descent convergence to the true state, always need
less 30 times.

x
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Figure 2. Comparison of the iteration procedure.
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Figure 3. The convergence of the natural gradient descent method.
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5.2. Univariate Nonstationary Growth Model (UNGM)

This model has been used extensively to validate the performance of nonlinear filtering because
of its high nonlinearity. The model can be formulated as [33]

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos(1.2k) + uk (60)

yk =
x3

k
20

+ vk (61)

where uk and vk denote the additive white Gaussian noise corresponding with state and measurement,
as uk ∼ N (0, Q) and vk ∼ N (0, R). In this experiment, we set the variance as Q = 10 and R = 1,
respectively. We assume the initiate state as p(x0) = N (x0; 0, 1) before the filtering procedure. The true
state that we used in the simulations with 100 time steps has a severe fluctuation, which has showed in
the Figure 4. The state varies frequently, and the first order Taylor series expanded can not depict fitting
in the procedure. Thus, the EKF has the bad performance in the experiment. In addition, the state will
make the nonlinear measurement more difficult.

Time Steps
0 10 20 30 40 50 60 70 80 90 100

T
u

re
 S

ta
te

-20

-15

-10

-5

0

5

10

15

20

Figure 4. True state in the experiment. It varies in short time, and brings some difficult for the
measurement update.

As a performance metric, we use Root Mean Square Error (RMSE) in the example. Let x̂i
k and xi

k
denote the estimated state and true state at time k, respectively. Then the RMSE is defined as

RMSEk =

√√√√ 1
M

M

∑
i=1

(
x̂i

k − xi
k
)2

where M is the total number of Monte Carlo runs.
In our experiment, the RMSE is obtained by using 100 Monte Carlo runs, averaging over different

realizations of the measurements and the true states. The comparison is achieved between our
proposed method, which called natural gradient descent Kalman filter (NgdKF) here, and the four
existing methods, i.e., EnKF, IEKF, EKF, and RUF. In the EnKF and our proposed method, the number
of ensemble used each time is 200, and the initial ensemble generated randomly with p(x0). During
the procedure of IEKF, the stopping criterion is ‖x̂t

k|k − x̂t−1
k|k ‖

2
2 ≤ 10−4, while ‖x̂t

k|k − x̂t−1
k|k ‖

2
2 ≤ 10−4

and D[xt−1
k : xt

k] ≤ 10−5 in our proposed method. The number of iteration steps in the RUF is set
as 200. The parameter η = 0.5 is selected in our proposed method for the iterated step by natural
gradient descent method. The comparison results measured by the RMSE are showed in the Figure 5.
As we can see that our proposed method performs much better than EKF, EnKF, RUF, and IEKF.
As aforementioned in the Figure 4, the EKF becomes poor because of first order Taylor series expanded
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is not fit the measurement function. In comparing the iteration methods, i.e., IEKF, RUF and NgdKF,
with no iteration method, i.e., EKF and EnKF, the front class methods have the better performance than
the later. This conclusion also has been mentioned by Lefebvre [14]. However, the later is computed
faster than the front. In fact, from the update formulation of each method, the iteration methods have
more than one steps, while the no iteration only has one step. In the nonlinear filter, we have to take
more times or steps to improve the filtered precision. Based on the comparison results, our proposed
method has the better performance.

Time steps
0 10 20 30 40 50 60 70 80 90 100

10-1

100

101

102

103

104

NgdKF
EnKF
IEKF
EKF
RUF

Figure 5. RMSE Comparison. Our proposed method (NgdKF) is better perform than other existing methods.

5.3. Tracking of Vehicle Entering Atmosphere

In the previous example, we have shown the performance in scalar filtering problem. In this
example, we will study a multidimensional dynamic system. We analyze target tracking problem
of a vehicle entering atmosphere at high altitude with a high speed [34]. It has the continuous
state, which constructed by position (x1 and x2), velocity (x3 and x4) and drag coefficient (x5),
and the discrete measurement constructed by range (rk) and bearing (bk). This experiment is a better
platform to measure the filtering algorithms. Firstly, the number of dimension between the state
and the measurement is difference. Secondly, the noise is partial in the state propagation. Thirdly,
the measurement function is nonlinear. Fourthly, the drag coefficient is a constant but affected by the
noise, which can give a good criterion for measuring the filtering performance.

With the vector description of the continuous state as X(t) = [x1(t), x2(t), x3(t), x4(t), x5(t)]
T ∈ R5,

and the discrete-time measurement as Y(k) = [r(k), b(k)]T ∈ R2, the state equation of dynamic is
characterized as

Ẋ(t) = F(t)X(t) + W(t) (62)

where Ẋ(t) = [ẋ1(t), ẋ2(t), ẋ3(t), ẋ4(t), ẋ5(t)]
T is the the derivative of X(t), W(t) = [0, 0, w1, w2, w3]

T

denotes the random noise. In above equation, the state propagation function is formulated as

F(t) =


0 0 1 0 0
0 0 0 1 0

G(t) 0 D(t) 0 0
0 G(t) 0 D(t) 0
0 0 0 0 0

 (63)
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where the parameter G(t) = Gm0
R3(t) and D(t) = β(t)exp{ R0−R(t)

H0
}V(t) denote gravity-related force term

and drag-related force term, respectively. The R(t) =
√

x2
1(t) + x2

2(t) is the distance from the center

of the Earth, β(t) is the ballistic coefficient with β(t) = β0exp(x5(t)), and V(t) =
√

x2
3(t) + x2

4(t) is

the speed. The constant parameters in our experiment is set as Gm0 = 3.9860× 105, β0 = −0.59783,
H0 = 13.406, and R0 = 6347.

The measurement Y(k) = [rk, bk]
T is obtained by a radar located at [x1,r, x2,r]

T = [6374, 0]T with
a frequency of 10 Hz. The measurement equation as

Y(k) = h(X(k)) + u(k) (64)

where

h(X(k)) =

√(x1(tk)− x1,r)2 + (x2(tk)− x2,r)2

tan−1
(

x2(tk)−x2,r
x1(tk)−x1,r

)  (65)

and u(k) = [u1,k, u2,k]
T is the measurement noise. The parameter tk is the time instant of k-time

measurement.
In the experiment, the state noise w(t) = [w1(t), w2(t), w3(t)]T with E[w(t + τ)w(t)] =

diag([2.4064 × 10−5, 2.4064 × 10−5, 0])δ(t − τ), and the measurement random noise u(k) =

diag([10−6, 172 × 10−6]).
For the continuous time state propagation, we have to discrete as a discrete-time state model.

Here the Euler approximation method has been used to discrete the model

X(k + 1) = X(k) + τF(k)X(k) + W(k) (66)

where k and τ are the time instant and time interval correspondent with the measurement time,
respectively. With this discrete dynamic model, the usual filtering methods can be used. The initial
condition of state for filtering has been set as X(0) = [6500.4, 349.14,−1.8093,−6.7967, 0]T and
P(0) = [10−6, 10−6, 10−6, 10−6, 1]T.

In our experiment, we compare four methods, i.e., RUF, IEKF, EnKF and our proposed method
(NgdKF), with time interval τ = 0.1, time steps K = 100 and Monte Carlo M = 100. For the EnKF,
the number of ensemble is chose as Ns = 200. In our proposed method, the parameter η = 0.1,
δ = 10e− 2 and γ = 10e− 2. The position root mean square error (RMSE), velocity RMSE and drag
coefficient RMSE considered for measuring the performance. They are defined as

MSEpos
k =

√√√√ 1
M

M

∑
i=1

(
xi

1(k)−x̂i
1(k)

)2
+
(

xi
2(k)−x̂i

2(k)
)2 (67)

MSEvel
k =

√√√√ 1
M

M

∑
i=1

(
xi

3(k)−x̂i
3(k)

)2
+
(

xi
4(k)−x̂i

4(k)
)2 (68)

MSEDra
k =

√√√√ 1
M

M

∑
i=1

(
xi

5(k)−x̂i
5(k)

)2 (69)

where xi
1(k), xi

2(k), xi
3(k), xi

4(k), xi
5(k) and x̂i

1(k), x̂i
2(k), x̂i

3(k), x̂i
4(k), x̂i

5(k) are correspond with the true
state and filtered state of k-time instant in i-time simulation, respectively.

The results are showed in the Figures 6–8. In Figure 6, the position RMSE has been compared.
The performance can be divided into two levels. The better level constructs by the IEKF and our
proposed method, and the poor level contains the RUF and the EnKF. As for Figure 7 in which
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comparing the velocity RMSE, our proposed method and the IEKF have the better performance than
the RUF and the EnKF, while the EnKF performs better than the RUF. For the performance of estimation
the drag coefficient, our proposed method has the same performance with the IEKF, which better than
the other methods. The RUF has performed better than the EnKF.
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Figure 6. The position RMSE.
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Figure 7. The velocity RMSE.

In the experiment, the positions are affected directly by the measurement, but have no noise.
Thus, the better performance in dealing with nonlinear measurement, the better estimation for positions
is achieved. Comparing with the estimation of positions, we can make a conclude intuitively that
the better performance of our proposed method in dealing with nonlinear measurement. For the
estimation procedure of drag coefficient, the noise has affected the estimation primarily, which would
be the same level all the times. Thus the performance for estimating the drag coefficient may reflect
the robust of the filtering. Accordingly, the robust property of our proposed method and the IEKF
have been shown in the experiment. Comparing the three RMSE, our proposed method has the
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same performance with the IEKF. The reasons is that our proposed method and the IEKF all have
convergence to a stable estimation, and the iteration procedures have made the estimation close to the
true state. Also, it has verified the convergence of our proposed method. From Figure 8, we can see
the poor performance of the EnKF. This may be affected by the limit numbers of the ensemble used in
the filtering. Besides, the RUF is performance moderately may indicated that the convergence has not
achieved in the procedure. In all, our proposed method has converged a stable estimation and close to
the true state. The performance is the same as the IEKF in multidimensional signal processing, and
better than the other methods.
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Figure 8. The drag coefficient RMSE.

6. Conclusions

In this paper, we have derived a new method for measurement update of the nonlinear filtering.
In our proposed method, the measurement update has been considered as an optimization estimation
in the view of information geometry, and the estimation in the parameter space has been corresponded
with the iteration procedure in a statistical manifold. We have constructed the statistical manifold based
on the posterior PDF of state under the condition of measurement in the Bayesian framework. Along the
statistical manifold, the natural gradient descent method has been used for the optimization estimation.
In the iteration procedure, the Fisher information matrix has applied to influence the iteration direction
and convergence speed. Thus, it achieves the better performance and faster convergence. In addition,
our proposed method has also given the theoretical justification for the measurement update in
nonlinear filtering from the information geometric insight and a mathematical interpretation. We also
discuss that in some conditions our proposed method is identical to the existing Kalman filter and its
variants. In the procedure of deducing our method, the Bayesian framework is the bridge connecting
the traditional filtering problems with the statistical manifold, thus the information geometric approach
can be used in the nonlinear filtering. Also, the Bayesian framework provides a unifying framework
for the dynamical model regardless of discrete-time or continuous-time state functions. That is
means that the information geometric approach for nonlinear filtering will no limit to discrete-time
or continuous-time dynamical model. Because of the ability of information geometry for processing
non-Gaussian PDF, we can induce the filtering algorithms under the condition of non-Gaussian PDF
or noise. Furthermore, our method has only consider the measurement update stage in the nonlinear
filtering, and we can construct other nonlinear filtering combining with different state propagation
methods for some filtering problems. In reviewing our method, there are some points can be considered
thoroughly in the future. Firstly, the parameter of update steps η will be considered for selecting
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adaptively. Secondly, the covariance matrix of prior estimation of state may have other approaches to
obtain. Apart from the covariance matrix of our method which computed by the ensemble, there are
two other approaches for the estimation of covariance matrix. In some articles, the mean of estimation
is determined by the maximum likelihood estimates, while the covariance matrix can be approximated
by the inverse of the Fisher information matrix [35]. The other method for covariance is estimating
the mean and the covariance simultaneously, such as evolutionary algorithms [36]. The different
approaches have different effects in the filtering. Thus the influence will be analyzed and the suit
approach would be selected for the filtering. Thirdly, the number of steps for the convergence of
our method will be considered in the future work. The proper number of steps can guarantee the
convergence and spend less computation in the iteration procedure.
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