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Abstract: In this paper, we study the existence of homoclinic solutions for the fractional Hamiltonian
systems with left and right Liouville–Weyl derivatives. We establish some new results concerning
the existence and multiplicity of homoclinic solutions for the given system by using Clark’s theorem
from critical point theory and fountain theorem.
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1. Introduction

In this paper, we consider the following fractional Hamiltonian system{
tDα

∞(−∞Dα
t u(t)) + L(t)u(t) = ∇W(t, u(t)), t ∈ R,

u ∈ Hα(R),
(1)

where −∞Dα
t and tDα

∞ are left and right Liouville–Weyl fractional derivatives of order α ∈ ( 1
2 , 1) on the

whole axis R respectively, u ∈ Rn, W(t, u) is of indefinite sign and subquadratic as |u| → +∞ and L(t)
is positive definite symmetric matrix for all t ∈ R.

As usual, we say that a solution u(t) of (1) is homoclinic (to 0) if u(t)→ 0 as t→ ±∞. In addition,
if u(t) 6= 0 then u(t) is called a nontrivial homoclinic solution.

In particular, if α = 1, (1) reduces to the standard second order Hamiltonian system of the
following form

u′′(t)− L(t)u(t) +∇W(t, u(t)) = 0, t ∈ R. (2)

The existence of homoclinic solutions for Hamiltonian systems and their importance in the study
of behavior of dynamical systems can be recognized from Poincaré [1]. Since then the investigation of
existence and multiplicity of homoclinic solutions has become one of most important areas of research
in dynamical systems. The existence of homoclinic orbits of (2) has been studied by several researchers
by using critical point theory. Examples and details can be found in a series of papers [2–14] and the
references cited therein.

It is important to study the multiplicity of homoclinic solutions for Hamiltonian systems.
Moreover, ones can show that Hamiltonian system has rich dynamics, in particular a positive entropy.
In [5,15] a more complete description of the dynamics is given. Precisely Séré proved the existence of a
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class of solutions, called multibump solutions. The existence of such a class of solutions implies that
the dynamics of the system is chaotic (in particular that its topological entropy is positive). Such a
result has been obtained under a nondegeneracy condition which is verified when the set of homoclinic
solutions is countable. Bolle and Buffoni [16] show that the existence of a homoclinic orbit that is the
transverse intersection of the stable and unstable manifolds, implies the existence of an infinite number
of ‘multibump’ homoclinic solutions. In particular the topological entropy of the system is positive.

On the other hand, fractional calculus is playing a very important role in various scientific fields in
the last years. In fact, fractional calculus has been recognized as an excellent instrument for description
of memory and hereditary properties of various physical and engineering processes. Fractional-order
models are interesting not only for engineers and physicists, but also for mathematicians. There is an
increasing interest in the generalization of the classical concepts of entropy. Tenreiro Machado [17]
studied several entropy definitions and types of particle dynamics with fractional behavior where
traditional Shannon entropy has presented limitations. These concepts allow a fruitful interplay in the
analysis of system dynamics. Indeed, applying fractional calculus theory to entropy theory has become
a significant research work [17–26], since the fractional entropy could be used in the formulation of
algorithms for image segmentation and in the analysis of anomalous diffusion processes and fractional
diffusion equations [22–26].

It should be noted that critical point theory has become an effective tool in studying the existence
of solutions to fractional differential equations by constructing fractional variational structures.
Hamiltonian systems driven by fractional Laplacian operators have been considered by Dipierro,
Patrizi and Valdinoci in [27]. In such paper, the fractional setting was motivated by problems atom
dislocation in crystals, according to the so-called Peierls-Nabarro model. A throughout discussion
on this motivation can be found in Section 2 of [28]. In this paper, we instead consider a fractional
framework due to memory effect in the time evolution of the system. For the first time, Jiao and
Zhou [29,30] showed that the critical point theory is an effective approach to tackle the existence of
solutions for the following fractional boundary value problem tDα

T(0Dα
t u(t)) = ∇F(t, u(t)), t ∈ [0, T],

u(0) = u(T) = 0.
(3)

Inspired by this work, Torres [31], Zhang and Yuan [32], Zhou [33], Nyamoradi and Zhou [34],
Zhou and Zhang [35] considered the fractional Hamiltonian system (1). The authors [31,32] recently
established the following results on the existence of solutions of system (1).

Theorem 1 ([31]). Suppose that L and W satisfy the following assumptions:

(L) L(t) is a positive definite symmetric matrix for all t ∈ R and there exists an l ∈ C(R, (0,+∞)) such
that l(t)→ +∞ as |t| → +∞ and

(L(t)u, u) ≥ l(t)|u|2, for all t ∈ R, u ∈ Rn.

(H1) W ∈ C1(R×Rn,R), and there is a constant µ > 2 such that

0 < µW(t, u) ≤ (∇W(t, u), u), ∀ t ∈ R, u ∈ Rn \ {0}.

(H2) |∇W(t, u)| = o(|u|) as |u| → 0 uniformly with respect to t ∈ R.
(H3) There exists W ∈ C(Rn,R) such that

|W(t, u)|+ |∇W(t, u)| ≤ |W(u)|, ∀ t ∈ R, u ∈ Rn.

Then system (1) possesses at least one nontrivial solution.



Entropy 2017, 19, 50 3 of 24

Theorem 2 ([32]). Suppose that (L) is satisfied. Moreover, assume that

(H4) W(t, 0) = 0 for t ∈ R and W(t, u) ≥ a(t)|u|ν, and |∇W(t, u)| ≤ b(t)|u|ν−1 for all (t, u) ∈ R×RN ,
where 1 < ν < 2 is constant, a : R → R+ is a bounded continuous function, and b : R → R+ is a
continuous function such that b ∈ L

2
2−ν (R,R).

(H5) There exist constants 1 < σ ≤ ν < 2 such that

(∇W(t, u), u) ≤ σW(t, u), ∀ t ∈ R, u ∈ RN \ {0}.

(H6) W(t,−u) = W(t, u), ∀ (t, u) ∈ R×RN .

Then system (1) has infinitely many nontrivial solutions {uj} such that

1
2

∫
R

(
|−∞Dα

t uj(t)|2 + (L(t)uj(t), uj(t))
)

dt−
∫
R

W(t, uj(t))dt→ 0−

as j→ +∞.

In [31,32], the authors worked on Xα which is compactly embedded in Lq(R,Rn) for q ∈ [2,+∞).
However, in this paper, Xα is compactly embedded in Lq(R,Rn) for 1 ≤ q ∈ (2/(3− ν), 2) or for
v ∈ [0, ν) and 1 ≤ q ∈ (2(1 + v)/(3− ν), 2), which is the novelty of the present work.

For the statement of our main results, also we suppose the following conditions for L(t) and
W(t, u):

(Lν) L(t) is n× n real symmetric positive definite matrix for all t ∈ R and there exists a constant
ν < 2 such that

lim inf
|t|→+∞

[
|t|ν−2 inf

|ξ|=1
(L(t)ξ, ξ)

]
> 0;

(W1) W(t, 0) = 0 for all t ∈ R and there exist constants max{1, 2/(3− ν)} < γi < 2 and ai ≥ 0
(i = 1, 2, . . . , m) such that

|W(t, u)| ≤
m

∑
i=1

ai|u|γi , ∀ (t, u) ∈ R×Rn;

(W2) There exists a function ϕ ∈ C([0,+∞), [0,+∞)) such that

|∇W(t, u)| ≤ ϕ(|u|), ∀ (t, u) ∈ R×Rn,

where ϕ(x) = O(xγm+1−1) as x → 0+, max{1, 2/(3− ν)} < γm+1 < 2;
(W3) There exists a constant δ0 > 0 such that

W(t, u) ≥
l

∑
k=1

bk(t)|u|νk , ∀ t ∈ Ω, u ∈ Rn, |u| ≤ δ0,

for some positive measure subset Ω of R, where max{1, 2/(3− ν)} < νk < 2 are constants,
bk : R→ R+ are bounded continuous functions for k = 1, 2, . . . , l;

(W4) There exist t0 ∈ R and max{1, 2/(3− ν)} < ϑ < 2 such that

lim
(t,u)→(t0,0)

W(t, u)
|u|ϑ

> 0;

(W5) W(t,−u) = W(t, u) for all t ∈ R and u ∈ Rn.

Now, we can state our main results.
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Theorem 3. Suppose that L and W satisfy (Lν) and (W1)–(W3). Then, (1) has at least one nontrivial
homoclinic solution.

Theorem 4. Suppose that L and W satisfy (Lν), (W1), (W2), (W4) and (W5). Then, (1) has at least d (∈ N)
distinct pairs of nontrivial homoclinic solutions.

Next, we replace the conditions (W1)–(W4) with the following conditions:

(W6) W(t, 0) = 0 for all t ∈ R, there exist constants vi ∈ [0, 2 − ν), gi ≥ 0 and
max{1, 2(1 + vi)/(3− ν)} < τi < 2 (i = 1, 2, . . . , r) such that

|W(t, u)| ≤
r

∑
i=1

gi(1 + |t|vi )|u|τi , ∀ (t, u) ∈ R×Rn;

(W7) There exist r functions χi ∈ C([0,+∞), [0,+∞)) such that

|∇W(t, u)| ≤
r

∑
i=1

(1 + |t|vi )χi(|u|), ∀ (t, u) ∈ R×Rn,

where χ(x) = O(xτr+i−1) as x → 0+, max{1, 2(1 + vi)/(3− ν)} < τr+i < 2 (i = 1, 2, . . . , r);
(W8) There exists a constant δ1

0 > 0 such that

W(t, u) ≥
l

∑
k=1

b1
k(t)|u|

ν1
k , ∀ t ∈ Ω, u ∈ Rn, |u| ≤ δ1

0 ,

for some positive measure subset Ω of R, and where max{1, 2(1 + vi)/(3− ν)} < ν1
k < 2 are

constants, b1
k : R→ R+ are bounded continuous functions for k = 1, 2, . . . , l;

(W9) There exist t0 ∈ R and max{1, 2(1 + vi)/(3− ν)} < ϑ < 2 such that

lim
(t,u)→(t0,0)

W(t, u)
|u|ϑ

> 0.

Then, we have the following results.

Theorem 5. Suppose that L and W satisfy (Lν) and (W6)–(W8). Then, (1) has at least one nontrivial
homoclinic solution.

Theorem 6. Suppose that L and W satisfy (Lν), (W5), (W6), (W7) and (W9). Then, (1) has at least d (∈ N)
distinct pairs of nontrivial homoclinic solutions.

We will use the following conditions on W(t, u) to fined infinitely many homoclinic solutions:

(W10) lim|u|→∞
W(t,u)
|u|2 = +∞ uniformly for all t ∈ R.

(W11) There exists $ > 0 such that W(t, u) ≥ −$|u|2 for all (t, u) ∈ R×Rn.
(W12) W(t, 0) = 0 and there exist D > 0 and γj > 2 (j = 1, . . . , l) such that

|∇W(t, u)| ≤ D
(
|u|+

l

∑
j=1
|u|γj−1

)
, ∀ (t, u) ∈ R×Rn;

(W13) There exist ρ > 0, pj, qj > 0, 0 ≤ ∑l
j=1 qj <

ρ−2
2 and 0 < θj < 2 (j = 1, . . . , l) such that

(∇W(t, u), u)− ρW(t, u) ≥ −
l

∑
j=1

[
pj|u|2 + qj(L(t)u, u) + Mj(t)|u|θj

]
, ∀ (t, u) ∈ R×Rn,
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where Mj ∈ L
2

2−θj (R,R+) (j = 1, . . . , l).
(W14) There exist ϑ ≥ γj − 1 (j = 1, . . . , l), c > 0 and R1 > 0 such that

(∇W(t, u), u)− 2W(t, u) ≥ c|u|ϑ, ∀ t ∈ R, ∀ |u| ≥ R1,

(∇W(t, u), u) ≥ 2W(t, u), ∀ t ∈ R, ∀ |u| ≤ R1.

Remark 1. In view of (W12), we have

W(t, u) =
∫ 1

0
(∇W(t, su), u)ds ≤ D

(1
2
|u|2 +

l

∑
j=1

1
γj
|u|γj

)
, ∀ (t, u) ∈ R×Rn.

Now, we can state our main results.

Theorem 7. Suppose that L and W satisfy (L), (W5) and (W10)–(W13). Then, system (1) possesses an
unbounded sequence of homoclinic solutions.

Theorem 8. Suppose that L and W satisfy (L), (W5), (W10)–(W12) and (W14). Then, system (1) possesses an
unbounded sequence of homoclinic solutions.

The paper is organized as follows. In Section 2, we give preliminary facts and provide some
basic properties which are needed later. Section 3 contains our results on existence and multiplicity of
homoclinic solutions.

2. Preliminaries

Here we present some basic concepts and lemmas that we need in the sequel.

Definition 1 ([36]). The left and right Liouville–Weyl fractional integrals of order 0 < α < 1 on the whole
axis R are defined by

−∞ Iα
x φ(x) =

1
Γ(α)

∫ x

−∞
(x− ξ)α−1φ(ξ)dξ, (4)

x Iα
∞φ(x) =

1
Γ(α)

∫ ∞

x
(ξ − x)α−1φ(ξ)dξ, (5)

respectively, where x ∈ R.
The left and right Liouville–Weyl fractional derivatives of order 0 < α < 1 on the whole axis R are

defined by

−∞Dα
xφ(x) =

d
dx−∞ I1−α

x φ(x), (6)

xDα
∞φ(x) = − d

dx x I1−α
∞ φ(x), (7)

respectively, where x ∈ R.
The Definitions (6) and (7) may be written in an alternative form as follows:

−∞Dα
xφ(x) =

α

Γ(1− α)

∫ ∞

0

φ(x)− φ(x− ξ)

ξα+1 dξ, (8)

xDα
∞φ(x) =

α

Γ(1− α)

∫ ∞

0

φ(x)− φ(x + ξ)

ξα+1 dξ. (9)

According to the results in [37,38], we note that solutions of equations with fractional derivatives
(differently from the classical setting) can approximate any smooth function.
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Also, we define the Fourier transform F (u)(ξ) of u(x) as

F (u)(ξ) =
∫ ∞

−∞
e−ix·ξ u(x)dx.

For any α > 0, we define the semi-norm and norm respectively as [31]

|u|Iα
−∞

= ||−∞Dα
xu||L2 ,

||u||Iα
−∞

=
(
||u||2L2 + |u|2Iα

−∞

) 1
2
, (10)

and let the space Iα
−∞(R) denote the completion of C∞

0 (R) with respect to the norm || · ||Iα
−∞

.
Next, for 0 < α < 1, we give the relationship between classical fractional Sobolev space Hα(R)

and Iα
−∞(R), where Hα(R) is defined by

Hα(R) = C∞
0 (R)‖·‖α ,

with the norm

||u||α =
(
||u||2L2 + |u|2α

) 1
2
, (11)

and semi-norm

|u|α = |||ξ|αF (u)||L2 .

Observe that the spaces Hα(R) and Iα
−∞(R) are isomorphic and have equivalent norms (see [31]).

Therefore, we define

Hα(R) =
{

u ∈ L2(R)| |ξ|αF (u) ∈ L2(R)
}

.

Now we recall the following results of critical point theory.

Lemma 1 ([39]). Let E be a real Banach space and I ∈ C1(E,R) satisfy Palais–Smale condition. If I is bounded
from below, then c = infE I is a critical value of I.

Lemma 2 (Clark Theorem [40]). Let E be a real Banach space and I ∈ C1(E,R) with I even, bounded
from below, and satisfy Palais–Smale condition. Suppose that I(0) = 0, there is a set K ⊂ E such that K is
homeomorphic to Sd−1 (unit sphere) by an odd map, and supK I < 0. Then I possesses at least d distinct pairs
of critical points.

3. Proofs of Theorems

In order to establish our results via variational methods and the critical point theory, we firstly
describe some properties of the space on which the variational associated with (1) is defined. Let

Xα =

{
u ∈ Hα(R)|

∫
R

(
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
)

dt < ∞
}

.

The space Xα is a Hilbert space with the inner product

〈u, v〉Xα =
∫
R

(
(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))

)
dt,
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and the corresponding norm

‖u‖2
Xα = 〈u, u〉Xα .

Lemma 3 (See Theorem 2.1 in [31]). Let α > 1
2 , then Hα(R,Rn) ⊂ C(R,Rn) and there is a constant

C = Cα such that

‖u‖∞ = sup
x∈R
|u(x)| ≤ C||u||α. (12)

So by Lemma 3, there exists a constant Cα > 0 such that

‖u‖∞ ≤ Cα||u||Xα . (13)

By (Lν), there exist integers T0 > 0 and M0 > 0 such that

|t|ν−2 inf
|ξ|=1

(L(t)ξ, ξ) ≥ M0, |t| > T0,

which implies that
|t|ν−2(L(t)ξ, ξ) ≥ M0|ξ|2, |t| > T0, ξ ∈ Rn. (14)

Lemma 4. Suppose that L satisfies (Lν). Then, for 1 ≤ q ∈ (2/(3− ν), 2), Xα is compactly embedded in
Lq(R,Rn). Moreover

∫
|t|>T

|u(t)|qdt ≤ ρ(q)

T
(3−ν)q−2

2

‖u‖q
Xα , ∀ u ∈ Xα, T ≥ T0. (15)

and

‖u‖q
q ≤

[(∫
|t|≤T

[l(t)]
−q

2−q dt
)1− q

2
+

ρ(q)

T
(3−ν)q−2

2

]
‖u‖q

Xα , ∀ u ∈ Xα, T ≥ T0, (16)

where

ρ(q) =
[

2(2− q)
(3− ν)q− 2

]1− q
2

M−
q
2

0 , (17)

and
l(t) = inf

x∈Rn , |x|=1
(L(t)x, x). (18)

Proof. Let ς = (3−ν)q−2
2−q . Then ς > 0. For u ∈ Xα and T ≥ T0, it follows from (14) and (17) together

with the Hölder inequality that

∫
|t|>T

|u(t)|qdt ≤
(∫
|t|>T

|t|−
(2−ν)q

2−q dt
)1− q

2
(∫
|t|>T

|t|2−ν|u(t)|2dt
) q

2

≤
(

2
ςTς

)1− q
2
(

1
M0

∫
|t|>T

(L(t)u(t), u(t))dt
) q

2

≤ 2
2−q

2

M
q
2
0 ς

2−q
2 T

(3−ν)q−2
2

‖u‖q
Xα

≤ ρ(q)

T
(3−ν)q−2

2

‖u‖q
Xα .
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This shows that (15) holds. Hence, from (15) and (18) and the Hölder inequality, one can get

‖u‖q
q =

∫
|t|≤T

|u(t)|qdt +
∫
|t|>T

|u(t)|qdt

≤
(∫
|t|≤T

[l(t)]−
q

2−q dt
)1− q

2
(∫
|t|≤T

l(t)|u(t)|2dt
) q

2
+

ρ(q)

T
(3−ν)q−2

2

‖u‖q
Xα

≤
(∫
|t|≤T

[l(t)]−
q

2−q dt
)1− q

2
‖u‖q

Xα +
ρ(q)

T
(3−ν)q−2

2

‖u‖q
Xα .

This shows that (16) holds.
Finally, we prove that Xα is compactly embedded in Lq(R,Rn). Let {uk} ⊂ Xα be a bounded

sequence. Then by (13), there exists a constant Λ > 0 such that

‖uk‖∞ ≤ Cα‖uk‖Xα ≤ Λ, k ∈ N. (19)

Since Xα is reflexive, {uk} possesses a weakly convergent subsequence in Xα. Passing to a
subsequence if necessary, we may assume that uk ⇀ u0 weakly in Xα. It is easy to verify that

lim
k→∞

uk(t) = u0(t), ∀ t ∈ R. (20)

For any given number ε > 0, we can choose Tε > 0 such that

2q−1ρ(q)

T
(3−ν)q−2

2
ε

[(
Λ
Cα

)q
+ ‖u0‖

q
Xα

]
< ε. (21)

It follows from (20) that there exists k0 ∈ N such that∫
|t|≤Tε

|uk(t)− u0(t)|qdt < ε, ∀ k ≥ k0. (22)

On the other hand, it follows from (15), (19) and (21) that∫
|t|>Tε

|uk(t)− u0(t)|qdt ≤ 2q−1
∫
|t|>Tε

(
|uk(t)|q + |u0(t)|q

)
dt

≤ 2q−1ρ(q)

T
(3−ν)q−2

2
ε

(
‖uk‖

q
Xα + ‖u0‖

q
Xα

)
≤ 2q−1ρ(q)

T
(3−ν)q−2

2
ε

[(
Λ
Cα

)q
+ ‖u0‖

q
Xα

]
< ε, k ∈ N. (23)

Since ε > 0 is arbitrary, we obtain by (22) and (23) that

‖uk − u0‖
q
q =

∫
R
|uk(t)− u0(t)|qdt→ 0, as k→ +∞.

This shows that {uk} possesses a convergent subsequence in Lq(R,Rn). Therefore, Xα is compactly
embedded in Lq(R,Rn) for 1 ≤ q ∈ (2/(3− ν), 2). Therefore, the proof is complete.

Also, by (L), since l ∈ C(R, (0, ∞)) and l is coercive, then lmin = mint∈R l(t) exists, then we have

(L(t)u(t), u(t)) ≥ l(t)|u(t)|2 ≥ lmin|u(t)|2, ∀ t ∈ R. (24)
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Lemma 5. Suppose that L satisfies (L). Then for 2 ≤ q < ∞, Xα is compactly embedded in Lq(R,Rn);
moreover ∫

|t|>T
|u(t)|qdt ≤ Cq−2

α

min|s|≥T l(s)
‖u‖q

Xα , ∀ u ∈ Xα, T ≥ 1, (25)

and
‖u‖q

Lq ≤ l−1
minCq−2

α ‖u‖q
Xα , ∀ u ∈ Xα. (26)

Proof. From (13) and (24), one can get∫
|t|>T

|u(t)|qdt ≤ ‖u‖q−2
∞

∫
|t|>T

|u(t)|2dt

≤ ‖u‖q−2
∞

∫
|t|>T

[l(t)]−1(L(t)u(t), u(t))dt

≤ ‖u‖q−2
∞

min|s|≥T l(s)
‖u‖2

Xα

≤ Cq−2
α

min|s|≥T l(s)
‖u‖q

Xα , (27)

and

‖u‖q
Lq ≤ ‖u‖q−2

∞

∫
t∈R
|u(t)|2dt

≤ l−1
min‖u‖

q−2
∞

∫
t∈R

(L(t)u(t), u(t))dt

≤ l−1
minCq−2

α ‖u‖q
Xα ,

which, together with (27), shows that (25) and (26) holds.
We now can prove that Xα is compactly embedded in Lq(R,Rn) for 2 ≤ q < ∞ by (L).

By Lemma 2.2 in [31], we know that the embedding of Xα in L2(R,Rn) is continuous and compact.
On the other hand, from Lemma 3, we know that if u ∈ Hα with 1

2 < α < 1, then u ∈ Lq(R,Rn) for all
q ∈ [2,+∞), because ∫

R
|u(x)|qdx ≤ ‖u‖q−2

∞ ‖u‖2
L2 .

So, it is easy to verify that the embedding of Xα in Lq(R,Rn) is also continuous and compact for
2 < q < ∞. Therefore, combining this with Lemma 2.2 in [31], we have the desired conclusion for
2 ≤ q < ∞. Therefore, the proof is complete. �

Now, we establish the corresponding variational framework to obtain solutions of (1). To this end,
define the functional I : Xα → R by

I(u) =
1
2

∫
R

(
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
)

dt−
∫
R

W(t, u(t))dt

=
1
2
‖u‖2

Xα −
∫
R

W(t, u(t))dt. (28)

Lemma 6. Assume that the conditions (Lν), (W1) and (W2) hold. Then the functional I is well defined and of
class C1(Xα,R) with

I′(u)v =
∫
R

(
(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))− (∇W(t, u(t)), v(t))

)
dt. (29)

Furthermore, the critical points of I in Xα are solutions of (1) with u(t)→ 0 as t→ ±∞.
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Proof. We firstly show that I : Xα → R. For T ≥ T0, in view of (W1) and (26), we have∣∣∣∣∫R W(t, u(t))dt
∣∣∣∣ ≤ m

∑
i=1

ai

∫
R
|u(t)|γi dt

≤
m

∑
i=1

ai

[(∫
|t|≤T

[l(t)]
−γi

2−γi dt
)1− γi

2
+

ρ(γi)

T
(3−ν)γi−2

2

]
‖u‖γi

Xα

≤
m

∑
i=1

φi(T)‖u‖
γi
Xα , (30)

where φi(T) := ai

[(∫
|t|≤T [l(t)]

−γi
2−γi dt

)1− γi
2
+ ρ(γi)

T
(3−ν)γi−2

2

]
. Combining this with (28), it follows that

I : Xα → R.
Next, we prove that I ∈ C1(Xα,R). Rewrite I as I = I1 − I2, where

I1(u) :=
1
2

∫
R

(
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
)

dt,

I2(u) :=
∫
R

W(t, u(t))dt. (31)

It is easy to check that I1 ∈ C1(Xα,R), and that

I′1(u)v =
∫
R

(
(−∞Dα

t u(t),−∞Dα
t v(t)) + (L(t)u(t), v(t))

)
dt.

Then, it is sufficient to show that I2 ∈ C1(Xα,R). So, we have

I′2(u)v =
∫
R
(∇W(t, u(t)), v(t))dt, ∀ u, v ∈ Xα. (32)

By (W2), one can choose a constant ϕ0 > 0 such that

ϕ(|u|) ≤ ϕ0|u|γm+1−1, ∀ u ∈ Rn, |u| ≤ 1. (33)

For any u, v ∈ Xα, there exists T1 > 0 such that |u(t)| + |v(t)| < 1 as |t| > T1. Then for any
function θ : R→ (0, 1) and any number h ∈ (0, 1), by (W2), (33) and Lemma 4, we have∫

R
|(∇W(t, u(t) + θ(t)hv(t)), v(t))|dt

≤
∫
|t|≤T1

|(∇W(t, u(t) + θ(t)hv(t))||v(t))|dt

+
∫
|t|>T1

|(∇W(t, u(t) + θ(t)hv(t))||v(t))|dt

≤
∫
|t|≤T1

max
|x|≤‖u‖∞+‖v‖∞

|(∇W(t, x)||v(t))|dt + ϕ0

∫
|t|>T1

(|u(t)|+ |v(t)|)γm+1−1|v(t))|dt

≤
∫
|t|≤T1

max
|x|≤‖u‖∞+‖v‖∞

|(∇W(t, x)||v(t))|dt + ϕ0

∫
|t|>T1

|v(t)|γm+1 dt

+ϕ0

(∫
|t|>T1

|u(t)|γm+1 dt
)1− 1

γm+1
(∫
|t|>T1

|v(t)|γm+1 dt
) 1

γm+1

≤
∫
|t|≤T1

max
|x|≤‖u‖∞+‖v‖∞

|(∇W(t, x)||v(t))|dt

+ϕ0
ρ(γm+1)

T
(3−ν)γm+1−2

2

(‖u‖γm+1−1
Xα + ‖v‖γm+1−1

Xα )‖v‖Xα < +∞. (34)
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Then by (28) and (34), the mean value theorem and Lebesgue’s dominated convergence theorem,
we get

I′2(u)v = lim
h→0+

I2(u + hv)− I2(u)
h

= lim
h→0+

[∫
R

W(t, u(t) + hv(t))−W(t, u(t))
h

dt
]

= lim
h→0+

[∫
R
(∇W(t, u(t) + θ(t)hv(t)), v(t))dt

]
=

∫
R
(∇W(t, u(t)), v(t))dt.

This shows that (32) holds.
It remains to prove that I′2 is continuous. Suppose that uk → u0 in Xα, then, by the

Banach-Steinhaus theorem, there exists a constant $ > 0 such that

‖u0‖Xα ≤ 1
Cα

$, sup
k∈N
‖uk‖Xα ≤ 1

Cα
$. (35)

In view of (13), we have

‖u0‖∞ ≤ $, sup
k∈N
‖uk‖∞ ≤ $. (36)

Now, by (W2), we can choose a constant ϕ1 > 0 such that

ϕ(|u|) ≤ ϕ1|u|γm+1−1, ∀ u ∈ Rn, |u| ≤ $. (37)

Thus by (15), (29), (35)–(37), (W2) and the Hölder inequality, we obtain

|I′2(uk)v− I′2(u0)v| =
∫
R
|(∇W(t, uk(t))−∇W(t, u0(t)), v(t))|dt

≤
∫
|t|≤T

|(∇W(t, uk(t))−∇W(t, u0(t))||v(t))|dt

+
∫
|t|>T

|(∇W(t, uk(t))−∇W(t, u0(t))||v(t))|dt

≤ o(1) + ϕ1

∫
|t|>T1

(
|uk(t)|γm+1−1 + |u0(t)|γm+1−1

)
|v(t))|dt

≤ o(1) + ϕ1

(∫
|t|>T

|uk(t)|γm+1 dt
)1− 1

γm+1
(∫
|t|>T1

|v(t)|γm+1 dt
) 1

γm+1

+ϕ1

(∫
|t|>T

|u0(t)|γm+1 dt
)1− 1

γm+1
(∫
|t|>T1

|v(t)|γm+1 dt
) 1

γm+1

≤ o(1) + ϕ1
ρ(γm+1)

T
(3−ν)γm+1−2

2

(‖uk‖
γm+1−1
Xα + ‖u0‖

γm+1−1
Xα )‖v‖Xα

= o(1), as k→ +∞, T → +∞, ∀ v ∈ Xα,

which shows the continuity of I′2.
Finally, by a standard argument, it is easy to show that the critical points of I in Xα are solutions

of (1) with u(±∞) = 0. Therefore, the proof is complete. �

Proof of Theorem 3. In view of Lemma 6, I ∈ C1(Xα,R). We show that I satisfies the hypotheses of
Lemma 1.
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Claim 1. We first show that I is bounded from below. Selecting T2 > T0, it follows from (30) that

∫
R

W(t, u(t))dt ≤
m

∑
i=1

φi(T2)‖u‖γi
Xα , ∀ u ∈ Xα. (38)

From (28) and (38), we get

I(u) =
1
2
‖u‖2

Xα −
∫
R

W(t, u(t))dt ≥ 1
2
‖u‖2

Xα −
m

∑
i=1

φi(T2)‖u‖γi
Xα . (39)

Since max{1, 2/(3− ν)} < γi < 2, (39) implies that I(u) → +∞ as ‖u‖Xα → +∞. Therefore, I is
bounded from below.

Claim 2. We show that I satisfies the Palais–Smale condition. Assume that {uk}k∈N ⊂ Xα is a sequence
such that {I(uk)}k∈N is bounded and I′(uk)→ 0 as k→ +∞. So by (13) and (39), there exists a constant
Λ1 > 0 such that

‖uk‖∞ ≤ Cα‖uk‖Xα ≤ Λ1, k ∈ N. (40)

Hence, passing to a subsequence if necessary, one may assume that uk ⇀ u weakly in Xα. It is
easy to verify that

lim
k→∞

uk(t) = u(t), ∀ t ∈ R. (41)

So,

(I′(uk)− I′(u))(uk − u)→ 0 as k→ ∞, (42)

it follows from (40) and (41) that
‖u‖Xα ≤ Λ1. (43)

By (W2), we can choose ϕ2 > 0 such that

ϕ(|u|) ≤ ϕ2|u|γm+1−1, ∀ u ∈ Rn, |u| ≤ Λ1. (44)

For any given number ε > 0, we can choose T3 > 0 such that

ρ(γm+1)

T
(3−ν)γm+1−2

2
3

[(
Λ1

Cα

)γm+1

+ ‖u‖γm+1
Xα

]
< ε. (45)

It follows from (41) and the continuity of ∇W(t, x) on x that there exists k1 ∈ N such that∫
|t|≤T3

|∇W(t, uk(t))−∇W(t, u(t))||uk(t)− u(t)|dt < ε, ∀ k ≥ k1. (46)

Therefore, in view of (15), (40), (43)–(45) and (W2), we obtain∫
|t|>T3

|∇W(t, uk(t))−∇W(t, u(t))||uk(t)− u(t)|dt

≤ ϕ2

∫
|t|>T3

(
|uk(t)|γm+1−1 + |u(t)|γm+1−1

) (
|uk(t)|+ |u(t)|

)
dt (47)

≤ 2ϕ2

∫
|t|>T3

(|uk(t)|γm+1 + |u(t)|γm+1) dt
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≤ 2ϕ2
ρ(γm+1)

T
(3−ν)γm+1−2

2
3

[
‖uk‖

γm+1
Xα + ‖u‖γm+1

Xα

]

≤ 2ϕ2
ρ(γm+1)

T
(3−ν)γm+1−2

2
3

[(
Λ1

Cα

)γm+1

+ ‖u‖γm+1
Xα

]
< 2ϕ2ε, k ∈ N.

Since ε > 0 is arbitrary, so by (46) and (47), we get∫
R
(∇W(t, uk(t))−∇W(t, u(t)), uk(t)− u(t))dt→ 0, as k→ +∞. (48)

On the other hand, we have

(I′(uk)− I′(u))(uk − u)

= ‖uk − u‖2
Xα −

∫
R
(∇W(t, uk(t))−∇W(t, u(t)), uk(t)− u(t))dt. (49)

Hence, it follows from (42), (48) and (49) that ‖uk − u‖Xα → 0 as k→ +∞. Therefore, I satisfies
Palais–Smale condition.

Then, by Lemma 1, c = infXα I(u) is a critical value of I, that is, there exists a critical point e such
that I(e) = c.

Finally, we show that e 6= 0. Take some u ∈ Xα such that ‖u‖Xα = 1. Then there exists a subset
Ω of positive measure |Ω| < ∞ of R such that u(t) 6= 0 for t ∈ Ω. Take σ > 0 small enough so that
σ|u(t)| ≤ δ0 for t ∈ Ω. By (W3), there exists a constant η > 0 such that

W(t, u) ≥ η
l

∑
k=1
|u|νk , ∀ t ∈ Ω, u ∈ Rn, |u| ≤ δ0. (50)

Then by (50), one can get

I(σu) =
σ2

2
‖u‖2

Xα −
∫
R

W(t, σu(t))dt

≤ σ2

2
− η

l

∑
k=1

σνk

∫
Ω
|u(t)|νk dt. (51)

Since max{1, 2/(3 − ν)} < νk < 2 (k = 1, 2, . . . , l) and
∫

Ω |u(t)|
µdt > 0, (51) implies that

I(σu) < 0 for some σ > 0 with σ|u(t)| ≤ δ0 for t ∈ Ω. Thus, I(e) = c = infXα I(u) < 0, therefore e
is a nontrivial critical point of I, and hence e = e(t) is a nontrivial homoclinic solution of system (1).
The proof is complete. �

Proof of Theorem 4. In view of Lemma 6 and the Proof of Theorem 3, I ∈ C1(Xα,R) is bounded from
below and satisfies the Palais–Smale condition. It is obvious that I is even and I(0) = 0. In order to
apply Lemma 2, we show that there is a set K ⊂ Xα such that K is homeomorphic to Sd−1 by an odd
map, and supK I < 0.

By (W4), there exist an open set D ⊂ R with t0 ∈ D, σ1 > 0 and η > 0 such that

W(t, u) ≥ η|u|ϑ, ∀ (t, u) ∈ D×Rn, |u| < σ1. (52)

For any d ∈ N, we take d disjoint open sets Di such that
⋃d

i=1 Di ⊂ D. For i = 1, 2, . . . , d,
let ui ∈

(
Hα

0 (Di)
⋂

Xα
)
\ {0} (for detail of Hα

0 (Di), see [41]) and ‖ui‖Xα = 1, and

Xd = span{u1, . . . , ud}, Sd = {u ∈ Xd : ‖u‖Xα = 1}. (53)
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For a u ∈ Xd, there exist λi ∈ R, i = 1, 2, . . . , d such that

u(t) =
d

∑
i=1

λiui(t) for t ∈ R. (54)

So

‖u‖ϑ =

(∫
R
|u(t)|ϑdt

) 1
ϑ

=

(
d

∑
i=1
|λi|ϑ

∫
Di

|ui(t)|ϑdt

) 1
ϑ

, (55)

and

‖u‖2
Xα =

∫
R

(
|−∞Dα

t u(t)|2 + (L(t)u(t), u(t))
)

dt

=
d

∑
i=1

λ2
i

∫
Di

(
|−∞Dα

t ui(t)|2 + (L(t)ui(t), ui(t))
)

dt

=
d

∑
i=1

λ2
i

∫
R

(
|−∞Dα

t ui(t)|2 + (L(t)ui(t), ui(t))
)

dt

=
d

∑
i=1

λ2
i ‖ui‖2

Xα =
d

∑
i=1

λ2
i . (56)

As all norms of a finite dimensional normed space are equivalent, there is a constant C′ > 0
such that

C′‖u‖Xα ≤ ‖u‖Lϑ for u ∈ Xd. (57)

Note that W(t, 0) = 0, and so according to (52), (54), (55)–(57), one can get

I(su) =
s2

2
‖u‖2

Xα −
∫
R

W(t, su(t))dt

=
s2

2
‖u‖2 −

d

∑
i=1

∫
Di

W(t, sλiui(t))

≤ s2

2
‖u‖2

Xα − ηsϑ
d

∑
i=1
|λi|ϑ

∫
Di

|ui(t)|ϑdt

≤ s2

2
‖u‖2

Xα − ηsϑ‖u‖ϑ
ϑ

≤ s2

2
‖u‖2

Xα − η(C′s)ϑ‖u‖ϑ
Xα , ∀ u ∈ Sd, (58)

and sufficiently small s > 0. In this case (52) is applicable, since u is continuous on D and so
|sλiui(t)| ≤ σ1 for any t ∈ D, i = 1, 2, . . . , d can be true for sufficiently small s. Hence, it follows
from (58) that there exist ε > 0 and σ2 > 0 such that

I(σ2u) < −ε ∀ u ∈ Sd. (59)

Let

Sσ2
d = {σ2u : u ∈ Sd}, Sd−1 =

{(
λ1

σ2
,

λ2

σ2
, . . . ,

λd
σ2

)T
∈ Rd :

d

∑
i=1

λ2
i

σ2
2
= 1

}
.
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Then it follows from (56) that

Sσ2
d =

{
d

∑
i=1

λiui :
d

∑
i=1

λ2
i = σ2

2

}
.

By (52), we define a map Ψ : Sσ2
d → Sd−1 as follows

Ψ(u) = σ−1
2

(
λ1

σ2
,

λ2

σ2
, . . . ,

λd
σ2

)T
, ∀ u ∈ Sσ

d .

It is easy to verify that Ψ : Sσ2
d → Sd−1 is an odd homeomorphic map. On the other hand, by (59),

we have

I(u) < −ε ∀ u ∈ Sσ2
d ,

and thus supSσ2
d

I < −ε < 0. By Lemma 2, I has at least d distinct pairs of critical points, and so

system (1) possesses at least d distinct pairs of nontrivial homoclinic solutions. The proof is complete.
�

Lemma 7. Suppose that L satisfies (Lν). Then for v ∈ [0, ν) and 1 ≤ q ∈ (2(1 + v)/(3− ν), 2), Xα is
compactly embedded in Lq(R,Rn); moreover

∫
|t|>T

(1 + |t|v)|u(t)|qdt ≤ ρ(v, q)

T
(3−ν)q−2(1+v)

2

‖u‖q
Xα , ∀ u ∈ Xα, T ≥ T0, (60)

and

∫
R
(1 + |t|v)|u(t)|qdt ≤

[(∫
|t|≤T

(1 + |t|v)
2

2−q [l(t)]
−q

2−q dt
)1− q

2
+

ρ(v, q)

T
(3−ν)q−2(1+v)

2

]
‖u‖q

Xα ,

∀ u ∈ Xα, T ≥ T0, (61)

where

ρ(v, q) = 2
[

2(2− q)
(3− ν)q− 2(1 + v)

]1− q
2

M−
q
2

0 , (62)

and l(t) is defined in (18).

Proof. Let ζ = (3−ν)q−2(1+v)
2−q . Then ζ > 0. For u ∈ Xα and T ≥ T0, it follows from (14) and (62) and

the Hölder inequality that

∫
|t|>T

(1 + |t|v)|u(t)|qdt ≤ 2
(∫
|t|>T

|t|−
(2−ν)q−2v

2−q dt
)1− q

2
(∫
|t|>T

|t|2−ν|u(t)|2dt
) q

2

= 2
(∫
|t|>T

|t|−(ζ+1)dt
)1− q

2
(∫
|t|>T

|t|2−ν|u(t)|2dt
) q

2

≤ 2
(

2
ζTζ

)1− q
2
(

1
M0

∫
|t|>T

(L(t)u(t), u(t))dt
) q

2

≤ 21+ 2−q
2

M
q
2
0 ζ

2−q
2 T

(3−ν)q−2(1+v)
2

‖u‖q
Xα

=
ρ(v, q)

T
(3−ν)q−2(1+v)

2

‖u‖q
Xα .
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This shows that (60) holds. Hence, from (60) and (18) and the Hölder inequality, one can get∫
R
(1 + |t|v)|u(t)|qdt =

∫
|t|≤T

(1 + |t|v)|u(t)|qdt +
∫
|t|>T

(1 + |t|v)|u(t)|qdt

≤
(∫
|t|≤T

(1 + |t|v)
2

2−q [l(t)]−
q

2−q dt
)1− q

2
(∫
|t|≤T

l(t)|u(t)|2dt
) q

2

+
ρ(v, q)

T
(3−ν)q−2(1+v)

2

‖u‖q
Xα

≤
(∫
|t|≤T

(1 + |t|v)
2

2−q [l(t)]−
q

2−q dt
)1− q

2
‖u‖q

Xα

+
ρ(v, q)

T
(3−ν)q−2(1+v)

2

‖u‖q
Xα .

This shows that (61) holds.
Finally, by similar argument in the proof of Lemma 4, it is easy to show that Xα is compactly

embedded in Lq(R,Rn). Therefore, the proof is complete. �

In this case Lemma 7 holds again with replacing (W1) and (W2) by (W6) and (W7), and in view of
(W6) and (61), we have∣∣∣∣∫R W(t, u(t))dt

∣∣∣∣ ≤ r

∑
i=1

gi

∫
R
(1 + |t|vi )|u(t)|τi dt

≤
r

∑
i=1

gi

[ (∫
|t|≤T

(1 + |t|vi )
2

2−τi [l(t)]
−τi

2−τi dt
)1− τi

2

+
ρ(vi, τi)

T
(3−ν)γi−2(1+vi)

2

]
‖u‖τi

Xα

≤
r

∑
i=1

Πi(T)‖u‖
τi
Xα , (63)

where Πi(T) := gi

[(∫
|t|≤T(1 + |t|

vi )
2

2−τi [l(t)]
−τi

2−τi dt
)1− τi

2
+ ρ(vi ,τi)

T
(3−ν)γi−2(1+vi)

2

]
.

Therefore, the proof of Theorems 5 and 6 are similar to Theorems 3 and 4, respectively,
and are omitted.

Let X be a Banach space with the norm ‖ · ‖ and X = ⊕j∈NXj, where Xj are finite-dimensional
subspace of X, for each k ∈ N, assume that Yk = ⊕k

j=0Xj and Zk = ⊕∞
j=kXj. The functional Φ is said to

satisfy the Palais–Smale condition if any sequence {uj}j∈N ⊂ X such that {Φ(uj)}n∈N is bounded and
Φ′(uj)→ 0 as j→ +∞ has a convergent subsequence.

Now, let us recall, for the reader’s convenience, a critical point result as follow:

Theorem 9 ([42,43]). Suppose that the functional Φ ∈ C1(X,R) is even. If, for every k ∈ N, there exist
$k > rk > 0 such that

(F1) ak := maxu∈Yk ,‖u‖=$k
Φ(u) ≤ 0.

(F2) bk := infu∈Zk ,‖u‖=rk
Φ(u)→ +∞ as k→ ∞.

(F3) Φ satisfies the Palais–Smale condition.

Then Φ possesses an unbounded sequence of critical values.
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Proof of Theorem 7. Let {ej}∞
j=1 be the standard orthogonal basis of Xα and define Xj := Rej, then Zk

and Yk can be defined as that in Theorem 9. From (29) and (W5), we can obtain that Φ ∈ C1(Xα,R) is
even. Let us prove that the functionals Φ satisfy the required conditions in Theorem 9.

We firstly verify condition (F2) in Theorem 9. Let

λk = sup
u∈Zk ,‖u‖Xα=1

‖u‖L2 ,

β
j
k = sup

u∈Zk ,‖u‖Xα=1
‖u‖Lγj , for any j = 1, . . . , l,

then λk → 0 and β
j
k → 0 as k→ +∞ for any j = 1, . . . , l. Clearly the sequence {λk} is nonnegative and

nonincreasing, so we assume that λk → λ ≥ 0, k → +∞. For every k ≥ 0, there exists uk ∈ Zk such
that ‖uk‖Xα = 1 and ‖uk‖L2 > λk

2 . Then, up to a subsequence, we may assume that uk ⇀ u weakly in
Xα. Noticing that Zk is a closed subspace of Xα, by Mazur’s theorem, we have u ∈ Zk, for all k > ñ.
Consequently, we get u ∈ ⋂∞

k=ñ Zk = {0}, which implies uk ⇀ 0 weakly in Xα. By Lemma 5, we have
uk → 0 in L2(R,Rn). Thus we have proved that λ = 0. Similarly, we can prove that β

j
k → 0 as k→ +∞

for any j = 1, . . . , l. In view of (28) and (W3), one can get

Φ(u) =
1
2
‖u‖2

Xα −
∫
R

W(t, u(t))dt

≥ 1
2
‖u‖2

Xα − D

(
1
2
‖u‖2

L2 +
l

∑
j=1

1
γj
‖u‖γj

Lγj

)

≥ 1
2
‖u‖2

Xα −
1
2

Dλ2
k‖u‖

2
Xα − D

l

∑
j=1

1
γj

β
γj
k ‖u‖

γj
Xα . (64)

Since λk → 0 as k→ +∞, there exists a positive constant N0 such that

Dλ2
k ≤

1
2

, ∀ k ≥ N0. (65)

By (64) and (65), we have

Φ(u) ≥ 1
4
‖u‖2

Xα − D
l

∑
j=1

1
γj

β
γj
k ‖u‖

γj
Xα , ∀ k ≥ N0. (66)

If we choose rk =
1
l max

{(
8 D

γ1
β

γ1
k

) 1
2−γ1 , . . . ,

(
8 D

γl
β

γl
k

) 1
2−γl

}
, then

bk = inf
u∈Zk ,‖u‖Xα=rk

Φ(u) ≥ 1
8

r2
k , ∀ k ≥ N0. (67)

Since βk → 0 as k→ ∞ and γj > 2 for any j = 1, . . . , l, we can obtain

bk → +∞, as k→ ∞.
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We now verify condition (F1) in Theorem 9. Since dim Yk < ∞ and all norms of a
finite-dimensional normed space are equivalent, there exists a constant M0 > 0 such that

‖u‖Xα ≤ M0‖u‖L2 , ∀ u ∈ Yk. (68)

By (W1), for ε1 =
(

1 + $l−1
min

)
M2

0 where $ is given in (W2), there exists δ = δ(ε1) > 0 such that

W(t, u) ≥ ε1|u|2, ∀ |u| ≥ δ, ∀ t ∈ R. (69)

Then, for any u ∈ Yk, in view of (26), (28) and (69), one has

Φ(u) =
1
2
‖u‖2

Xα −
∫
R

W(t, u(t))dt

=
1
2
‖u‖2

Xα −
∫
{t∈R; |u(t)≥δ}

W(t, u(t))dt−
∫
{t∈R; |u(t)<δ}

W(t, u(t))dt

≤ 1
2
‖u‖2

Xα − ε1‖u‖2
L2 + $‖u‖2

L2

≤ 1
2
‖u‖2

Xα −
ε1

M2
0
‖u‖2

Xα + $l−1
min‖u‖

2
Xα

=

(
1
2
− ε1

M2
0
+ $l−1

min

)
‖u‖2

Xα = −1
2
‖u‖2

Xα .

Hence, we can choose ‖u‖Xα = $k large enough ($k > rk > 0) such that

ak = max
u∈Yk ,‖u‖=$k

Φ(u) ≤ 0.

Finally, We prove that Φ satisfies the Palais–Smale condition. Let {ui}i∈N ⊂ Xα be a Palais–Smale
sequence, that is, {Φ(ui)}n∈N is bounded and Φ′(ui) → 0 as i → +∞. Then there exists a constant
M1 > 0 such that

|Φ(ui)| ≤ M1, ‖Φ′(ui)‖(Xα)∗ ≤ M1 (70)

for every i ∈ N, where (Xα)∗ is the dual space of Xα.
We now prove that {ui} is bounded in Xα. In fact, if not, we may assume that by contradiction

that ‖ui‖Xα → ∞ as i→ +∞. Set vi =
ui

‖ui‖Xα
. Clearly, ‖vi‖Xα = 1 and there is v0 ∈ Xα such that, up to

a subsequence {
vi ⇀ v0, weakly in Xα,

vi → v0, strongly in Lq(R,Rn), 2 ≤ q < +∞,
(71)

as i→ +∞. Since vi ⇀ v0 in Xα, it is easy to verify that

lim
i→+∞

vi(t) = v0(t) ∀ t ∈ R. (72)

Now, we consider the following two cases:
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Case 1. v0 = 0. From (26), (70), (W13) and the Hölder’s inequality, we can obtain

ρM1 + M1‖ui‖Xα ≥ ρΦ(ui)−Φ′(ui)ui

=
(ρ

2
− 1
)
‖ui‖2

Xα +
∫
R
[(∇W(t, ui(t)), ui(t))− ρW(t, ui(t))]dt

≥
(ρ

2
− 1
)
‖ui‖2

Xα −
l

∑
j=1

∫
R

[
pj|ui(t)|2 + qj(L(t)ui(t), ui(t)) + Mj(t)|ui(t)|θj

]
dt

≥
(

ρ− 2
2
−

l

∑
j=1

qj

)
‖ui‖2

Xα −
l

∑
j=1

pj‖ui‖2
L2 −

l

∑
j=1
‖Mj‖

L
2

2−θj
‖ui‖

θj

L2

≥
(

ρ− 2
2
−

l

∑
j=1

qj

)
‖ui‖2

Xα −
l

∑
j=1

pj‖ui‖2
L2 −

l

∑
j=1
‖Mj‖

L
2

2−θj
(l−1

min)
θj
2 ‖ui‖

θj
Xα . (73)

Divided by ‖ui‖2
Xα on both sides of (73), noting that 0 ≤ ∑l

j=1 qj < ρ−2
2 and 0 < θj < 2

(j = 1, . . . , l), one has

‖vi‖2
L2 ≥

ρ−2
2 −∑l

j=1 qj

∑l
j=1 pj

> 0, as i→ ∞. (74)

It follows from (71) and (74) that v0 6= 0. This is a contradiction.

Case 2. v0 6= 0. Since {Φ(ui)}n∈N is bounded, then by (70), we have

Φ(ui) =
1
2
‖ui‖2

Xα −
∫
R

W(t, ui(t))dt ≥ −M1. (75)

Divided by ‖ui‖2
Xα on both sides of (75), we have

∫
R

W(t, ui(t))
‖ui‖2

Xα

dt ≤ 1
2
+

M1

‖ui‖2
Xα

< +∞. (76)

Let Λ := {t ∈ R : v0(t) 6= 0}, then Λ 6= ∅. Hence, by (72), we can obtain

lim
i→+∞

ui(t) = lim
i→+∞

vi(t)‖ui‖Xα = +∞ ∀ t ∈ Λ.

Combining (W10) and (W11), one has

lim
i→+∞

(
W(t, ui(t))
|ui(t)|2

+ $

)
|vi(t)|2 = +∞ ∀ t ∈ Λ. (77)

So, by (W11), (71), (77) and Fatou’s lemma, one can get

∫
R

W(t, ui(t))
‖ui‖2

Xα

dt =
∫

t∈Λ

W(t, ui(t))
‖ui‖2

Xα

dt +
∫

t∈R\Λ

W(t, ui(t))
‖ui‖2

Xα

dt

≥
∫

t∈Λ

W(t, ui(t))
‖ui‖2

Xα

dt− $
∫

t∈R\Λ
|vi(t)|2dt

=
∫

t∈Λ

W(t, ui(t)) + $|ui(t)|2
|ui(t)|2

|vi(t)|2dt− $
∫
R
|vi(t)|2dt→ +∞

as i→ +∞. This contradicts (76). Therefore, {ui} is bounded in Xα, that is, there exists ξ1 > 0 such that

‖ui‖Xα ≤ ξ1. (78)
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Then the sequence {ui} has a subsequence, again denoted by {ui}, and there exists u ∈ Xα such
that ui ⇀ u in Xα. Hence we will prove that ui → u in Xα. By (W13), (26) and (78), we have∫

R
(∇W(t, ui(t))−∇W(t, u(t)), ui(t)− u(t))dt

≤
∫
R
(|∇W(t, ui(t))|+ |∇W(t, u(t))|)|ui(t)− u(t)|dt

≤ D
∫
R

(
|ui(t)|+

l

∑
j=1
|ui(t)|γj−1

)
|ui(t)− u(t)|dt

+D
∫
R

(
(|u(t)|+

l

∑
j=1
|u(t)|γj−1

)
|ui(t)− u(t)|dt

≤ D
(
‖ui‖L2 +

l

∑
j=1
‖ui‖

γj−1

L2(γj−1)

)
‖ui − u‖L2

+D
(
‖u‖L2 +

l

∑
j=1
‖u‖γj−1

L2(γj−1)

)
‖ui − u‖L2

≤ D
(√

l−1
min‖ui‖Xα +

l

∑
j=1

√
l−1
minC

γj−2
α ‖ui‖

γj−1
Xα

)
‖ui − u‖L2

+D
(
‖u‖L2 +

l

∑
j=1
‖u‖γj−1

L2(γj−1)

)
‖ui − u‖L2

≤ D
(√

l−1
minξ1 +

l

∑
j=1

√
l−1
minC

γj−2
α ξ

γj−1
1

)
‖ui − u‖L2 → 0, as i→ +∞. (79)

It follows from ui ⇀ u weakly in Xα and (79) that

(Φ′(ui)−Φ′(u), ui − u) = ‖ui − u‖2
Xα −

∫
R
(∇W(t, ui(t))−∇W(t, u(t)), ui(t)− u(t))dt,

it is easy to deduce that ‖ui − u‖Xα → 0 as i = +∞. Therefore, Φ satisfies the Palais–Smale condition.
Therefore, it follows from Theorem 9 that Φ possesses an unbounded sequence {di} of critical

values with di = Φ(ui), where ui is such that Φ′(ui) = 0 for i = 1, 2, . . .. If ‖ui‖Xα is bounded, then
there exists R > 0 such that

‖ui‖Xα ≤ R, for i ∈ N. (80)

Hence, by virtue of (26) and (W12), we have

1
2
‖ui‖2

Xα = di +
∫
R

W(t, ui(t))dt

≥ di − D
∫
R

(1
2
|ui(t)|2 +

l

∑
j=1

1
γj
|ui(t)|γj

)
dt

≥ di − D
(1

2
l−1
min‖ui‖2

Xα +
l

∑
j=1

1
γj

l−1
minC

γj−2
α ‖ui‖

γj
Xα

)
Thus, this follows that

di ≤
1
2
‖ui‖2

Xα + D
(1

2
l−1
min‖ui‖2

Xα +
l

∑
j=1

1
γj

l−1
minC

γj−2
α ‖ui‖

γj
Xα

)
< +∞.
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This contradicts the fact that {di} is unbounded, and so ‖ui‖Xα is unbounded. The proof is
completed. �

Proof of Theorem 8. By a similar argument as that in Theorem 4, we can prove Theorem 8. In fact, we
only need to prove that Φ satisfies the Palais–Smale condition. Let {ui}i∈N ⊂ Xα be a Palais–Smale
sequence, that is, {Φ(ui)}n∈N is bounded and Φ′(ui) → 0 as i → +∞. We now prove that {ui} is
bounded in Xα. In fact, if not, we may assume that by contradiction that ‖ui‖Xα → ∞ as i → +∞.
We take vi as in the proof of Theorem 4.

Case 1. v0 = 0. From (W14), one has

2Φ(ui)−Φ′(ui)ui =
∫
R
[(∇W(t, ui(t)), ui(t))− 2W(t, ui(t))]dt

≥
∫
{t∈R,|ui(t)|≥R1}

[(∇W(t, ui(t)), ui(t))− 2W(t, ui(t))]dt

≥ c
∫
{t∈R,|ui(t)|≥R1}

|ui(t)|ϑdt, (81)

which implies that ∫
t∈R,|ui(t)|≥R1

|ui(t)|ϑdt

‖ui‖Xα
→ 0, as i→ ∞. (82)

It follows from (13), (W12), (W14) and Remark 1 that

M2 ≥ Φ(ui) =
1
2
‖ui‖2

Xα −
∫
R

W(t, ui(t))dt

≥ 1
2
‖ui‖2

Xα − D
∫
R

(1
2
|ui(t)|2 +

l

∑
j=1

1
γj
|ui(t)|γj

)
dt

≥ 1
2
‖ui‖2

Xα −
1
2

D‖ui‖2
L2 − D

l

∑
j=1

1
γj

∫
{t∈R,|ui(t)|≥R1}

|ui(t)|γj dt

−D
l

∑
j=1

1
γj

∫
{t∈R,|ui(t)|<R1}

|ui(t)|γj dt

≥ 1
2
‖ui‖2

Xα −
1
2

D‖ui‖2
L2 − D‖ui‖∞

l

∑
j=1

1
γj

∫
{t∈R,|ui(t)|≥R1}

|ui(t)|γj−1dt

−D
l

∑
j=1

1
γj

R
γj−2
1

∫
{t∈R,|ui(t)|<R1}

|ui(t)|2dt

≥ 1
2
‖ui‖2

Xα −
1
2

D‖ui‖2
L2 − D‖ui‖∞

l

∑
j=1

1
γj

R
γj−ϑ−1
1

∫
{t∈R,|ui(t)|≥R1}

|ui(t)|ϑdt

−D
l

∑
j=1

1
γj

R
γj−2
1

∫
{t∈R,|ui(t)|<R1}

|ui(t)|2dt

≥ 1
2
‖ui‖2

Xα − D

(
1
2
+

l

∑
j=1

1
γj

R
γj−2
1

)
‖ui‖2

L2

−DCα‖ui‖Xα

l

∑
j=1

1
γj

R
γj−ϑ−1
1

∫
{t∈R,|ui(t)|≥R1}

|ui(t)|ϑdt, (83)
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for some M2 > 0. Divided by ‖ui‖2
Xα on both sides of (83), noting that (82), we have

‖vi‖2
L2 ≥

1

2D
(

1
2 + ∑l

j=1
1
γj

R
γj−2
1

) > 0, as i→ ∞. (84)

It follows from (71) and (84) that v0 6= 0. This is a contradiction.

Case 2. v0 6= 0. The proof is the same as that in Theorem 4, and we omit it here. Hence, {ui} is bounded
in Xα. Similar to the proof of Theorem 4, we can prove that {ui} has a convergent subsequence in Xα.
Hence, Φ satisfies the Palais–Smale condition. The proof is completed. �

4. Conclusions

Using variational methods, we have obtained homoclinic solutions for fractional Hamiltonian
systems. The fractional component of the equation is due to a memory effect modeled by means of
Liouville–Weyl type derivative in time. The introduction provides an overview about the state of the
fractional Hamiltonian systems and authors’ motivation. In Section 2, we have recalled some related
preliminary concepts for the convenience of the reader. Section 3 contains main theorems, which are
proved by applying Clark’s theorem from critical point theory and fountain theorem.
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