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Abstract: In this paper, we develop an energy-based, large-scale dynamical system model driven by
Markov diffusion processes to present a unified framework for statistical thermodynamics predicated
on a stochastic dynamical systems formalism. Specifically, using a stochastic state space formulation,
we develop a nonlinear stochastic compartmental dynamical system model characterized by energy
conservation laws that is consistent with statistical thermodynamic principles. In particular, we show
that the difference between the average supplied system energy and the average stored system
energy for our stochastic thermodynamic model is a martingale with respect to the system filtration.
In addition, we show that the average stored system energy is equal to the mean energy that can
be extracted from the system and the mean energy that can be delivered to the system in order to
transfer it from a zero energy level to an arbitrary nonempty subset in the state space over a finite
stopping time.
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1. Introduction

In an attempt to generalize classical thermodynamics to irreversible nonequilibrium
thermodynamics, a relatively new framework has been developed that combines stochasticity and
nonequilibrium dynamics. This framework is known as stochastic thermodynamics [1–5] and goes
beyond linear irreversible thermodynamics addressing transport properties and entropy production
in terms of forces and fluxes via linear system response theory [6–9]. Stochastic thermodynamics
is applicable to nonequilibrium systems extending the validity of the laws of thermodynamics
beyond the linear response regime by providing a system thermodynamic paradigm formulated
on the level of individual system state realizations that are arbitrarily far from equilibrium.
The thermodynamic variables of heat, work, and entropy, along with the concomitant first and second
laws of thermodynamics, are formulated on the level of individual dynamical system trajectories
using stochastic differential equations.

The nonequilibrium conditions in stochastic thermodynamics are imposed by an exogenous
stochastic disturbance or an initial system state that is far from the system equilibrium resulting in an
open (i.e., driven) or relaxation dynamical process. More specifically, the exogenous disturbance is
modeled as an independent standard Wiener process (i.e., Brownian motion) defined on a complete
filtered probability space wherein the current state is only dependent on the most recent event.
The stochastic system dynamics are described by an overdamped Langevin equation [2,3] in which
fluctuation and dissipation forces obey the Einstein relation expressing that diffusion is a result of both
thermal fluctuations and frictional dissipation [10].
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Brownian motion refers to the irregular movement of microscopic particles suspended in a liquid
and was discovered [11,12] by the botanist Robert Brown [13]. This random motion is explained as
the result of collisions between the suspended particles (i.e., Brownian particles) and the molecules
of the liquid. Einstein was the first to formulate the theory of Brownian motion by assuming that
the particles suspended in the liquid contribute to the thermal fluctuations of the medium and, in
accordance with the principle of equipartition of energy [14], the average translational kinetic energy
of each particle [10]. Thus, Brownian motion results from collisions by molecules of the fluid, wherein
the suspended particles acquire the same average kinetic energy as the molecules of the fluid. This
theory suggested that all matter consists of atoms (or molecules) and heat is the energy of motion
(i.e., kinetic energy) of the atoms.

The use of statistical methods in developing a general molecular theory of heat predicated on
random motions of Newtonian atoms led to the connection between the dynamics of heat flow and the
behavior of electromagnetic radiation. A year after Einstein published his theory on Brownian motion,
Smoluchovski [15] confirmed the relation between friction and diffusion. In an attempt to simplify
Einstein’s theory of Brownian motion, Langevin [16] was the first to model the effect of Brownian
motion using a stochastic differential equation (now known as a Langevin equation) wherein spherical
particles are suspended in a medium and acted upon by external forces.

In stochastic thermodynamics, the Langevin equation captures the coupling between the system
particle damping and the energy input to the particles via thermal effects. Namely, the frictional
forces extract the particle kinetic energy, which in turn is injected back to the particles in the form of
thermal fluctuations. This captures the phenomenological behavior of a Brownian particle suspended
in a fluid medium which can be modeled as a continuous Markov process [17]. Specifically, since
collisions between the fluid molecules and a Brownian particle are more inelastic at higher viscosities,
and temperature decreases with increasing viscosity in a fluid, additional heat is transferred to the
fluid to maintain its temperature in accordance with the equipartition theorem. This heat is transferred
to the Brownian particle through an increased disturbance intensity by the fluid molecules. These
collisions between the Brownian particle and fluid molecules result in the observed persistent irregular
and random motion of the particles.

The balance between damping (i.e., deceleration) of the particles due to frictional effects resulting
in local heating of the fluid, and consequently entropy production, and the energy injection of the
particles due to thermal fluctuations resulting in local cooling of the fluid, and consequently entropy
consumption, is quantified by fluctuation theorems [18–28]. Thus, even though, on average, the entropy
is positive (i.e., entropy production), there exist sample paths wherein the entropy decreases, albeit
with an exponentially lower probability than that of entropy production. In other words, a stochastic
thermodynamic system exhibits a symmetry in the probability distribution of the entropy production
in the asymptotic nonequilibrium process.

Fluctuation theorems give a precise prediction for the cases in which entropy decreases in
stochastic thermodynamic systems and provide a key relation between entropy production and
irreversibility. Specifically, the entropy production of individual sample path trajectories of a stochastic
thermodynamic system described by a Markov process is not restricted by the second law, but rather
the average entropy production is determined to be positive. Furthermore, the notions of heat and
work in stochastic thermodynamic systems allow for a formulation of the first law of thermodynamics
on the level of individual sample path trajectories with microscopic states (i.e., positions and velocities)
governed by a stochastic Langevin equation and macroscopic states governed by a Fokker–Planck
equation [29] (or a Kolmogorov forward equation, depending on context) describing the evolution of
the probability density function of the microscopic (stochastic) states.

In this paper, we combine our large-scale thermodynamic system model developed in [30] with
stochastic thermodynamics to develop a stochastic dynamical systems framework of thermodynamics.
Specifically, we develop a large-scale dynamical system model driven by Markov diffusion processes
to present a unified framework for statistical thermodynamics predicated on a stochastic dynamical
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systems formalism. In particular, using a stochastic state space formulation, we develop a nonlinear
stochastic compartmental dynamical system model characterized by energy conservation laws that
is consistent with statistical thermodynamic principles. Moreover, we show that the difference
between the average supplied system energy and the average stored system energy for our stochastic
thermodynamic model is a martingale with respect to the system filtration. In addition, we show that
the average stored system energy is equal to the mean energy that can be extracted from the system
and the mean energy that can be delivered to the system in order to transfer it from a zero energy level
to an arbitrary nonempty subset in the state space over a finite stopping time.

Finally, using the system ectropy [30] as a Lyapunov function candidate, we show that in the
absence of energy exchange with the environment the proposed stochastic thermodynamic model
is stochastically semistable in the sense that all sample path trajectories converge almost surely to a
set of equilibrium solutions, wherein every equilibrium solution in the set is almost surely Lyapunov
stable. In addition, we show that the steady-state distribution of the large-scale sample path system
energies is uniform, leading to system energy equipartitioning corresponding to a maximum entropy
equilibrium state.

2. Stochastic Dynamical Systems

To extend the dynamical thermodynamic formulation of [30] to stochastic thermodynamics we
need to establish some notation, definitions, and mathematical preliminaries. A review of some basic
results on nonlinear stochastic dynamical systems is given in [31–35]. Recall that given a sample space
Ω, a σ-algebra F on Ω is a collection of subsets of Ω such that ∅ ∈ F , if F ∈ F , then Ω\F ∈ F , and if
F1, F2, . . . ∈ F , then

⋃∞
i=1 Fi ∈ F and

⋂∞
i=1 Fi ∈ F . The pair (Ω,F ) is called a measurable space and the

probability measure P defined on (Ω,F ) is a function P : F → [0, 1] such that P(∅) = 0, P(Ω) = 1,
and if F1, F2, . . . ∈ F and Fi ∩ Fj = ∅, i 6= j, then P(

⋃∞
i=1 Fi) = ∑∞

i=1 P(Fi). The triple (Ω,F ,P) is called
a probability space if F contains all subsets of Ω with P-outer measure [36] zero [33].

The subsets F of Ω belonging to F are called F -measurable sets. If Ω = Rn and Bn is the family of
all open sets in Rn, then Bn is called the Borel σ-algebra and the elements B of Bn are called Borel sets.
If (Ω,F ,P) is a given probability space, then the real valued function (random variable) x : Ω → R
is F -measurable if {ω ∈ Ω : x(ω) ∈ B} ∈ F for all Borel sets B ⊂ Rn. Given the probability space
(Ω,F ,P), a filtration is a family {Ft}t≥0 of σ-algebras Ft ⊂ F such that Ft ⊂ Fs for all 0 ≤ t < s < ∞.

In this paper, we use the notation and terminology as established in [37]. Specifically, define a
complete probability space as (Ω,F ,P), where Ω denotes the sample space, F denotes a σ-algebra, and
P defines a probability measure on the σ-algebra F ; that is, P is a nonnegative countably additive set
function on F such that P(Ω) = 1 [32]. Furthermore, we assume that w(·) is a standard d-dimensional
Wiener process defined by (w(·), Ω,F ,Pw0), where Pw0 is the classical Wiener measure ([33], p. 10),
with a continuous-time filtration {Ft}t≥0 generated by the Wiener process w(t) up to time t.

We denote a stochastic dynamical system by G generating a filtration {Ft}t≥0 adapted to the
stochastic process x : R+ × Ω → D on (Ω,F ,Px0) satisfying Fτ ⊂ Ft, 0 ≤ τ < t, such that
{ω ∈ Ω : x(t, ω) ∈ B} ∈ Ft, t ≥ 0, for all Borel sets B ⊂ Rn contained in the Borel σ-algebra Bn.
We say that the stochastic process x : R+×Ω→ D isFt-adapted if x(t) isFt-measurable for every t ≥ 0.
Furthermore, we say that G satisfies the Markov property if the conditional probability distribution of
the future states of the stochastic process generated by G only depends on the present state. In this
case, G generates a Markov process which results in a decoupling of the past from the future in the sense
that the present state of G contains sufficient information so as to encapsulate the effects of the past
system inputs. Here we use the notation x(t) to represent the stochastic process x(t, ω) omitting its
dependence on ω. Furthermore, Bn denotes the σ-algebra of Borel sets in D ⊆ Rn and S denotes
a σ-algebra generated on a set S ⊆ Rn.

We denote the set of equivalence classes of measurable, integrable, and square-integrable Rn or
Rn×m (depending on context) valued random processes on (Ω,F ,P) over the semi-infinite parameter
space [0, ∞) by L0(Ω,F ,P), L1(Ω,F ,P), and L2(Ω,F ,P), respectively, where the equivalence relation
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is the one induced by P-almost-sure equality. In particular, elements of L0(Ω,F ,P) take finite values
P-almost surely (a.s.) or with probability one. Hence, depending on the context, Rn will denote either
the set of n× 1 real variables or the subspace of L0(Ω,F ,P) comprising of Rn random processes that
are constant almost surely. All inequalities and equalities involving random processes on (Ω,F ,P)
are to be understood to hold P-almost surely. Furthermore, E[ · ] and Ex0 [ · ] denote, respectively,
the expectation with respect to the probability measure P and with respect to the classical Wiener
measure Px0 .

Given x ∈ L0(Ω,F ,P), {x = 0} denotes the set {ω ∈ Ω : x(t, ω) = 0}, and so on. Given
x ∈ L0(Ω,F ,P) and E ∈ F , we say x is nonzero on E if P({x = 0} ∩ E) = 0. Furthermore, given
x ∈ L1(Ω,F ,P) and a σ-algebra E ⊆ F , EP[x] and EP[x|E ] denote, respectively, the expectation of
the random variable x and the conditional expectation of x given E , with all moments taken under
the measure P. In formulations wherein it is clear from context which measure is used, we omit the
symbol P in denoting expectation, and similarly for conditional expectation. Specifically, in such cases
we denote the expectation with respect to the probability space (Ω,F ,P) by E[ · ], and similarly for
conditional expectation.

A stochastic process x : R+ ×Ω → D on (Ω,F ,Px0) is called a martingale with respect to the
filtration {Ft}t≥0 if and only if x(t) is a Ft-measurable random vector for all t ≥ 0, E[x(t)] < ∞, and
x(τ) = E[x(t)|Fτ ] for all t ≥ τ ≥ 0. Thus, a martingale has the property that the expectation of the
next value of the martingale is equal to its current value given all previous values of the dynamical
process. If we replace the equality in x(τ) = E [x(t)|Fτ ] with “≤” (respectively, “≥”), then x(·) is
a supermartingale (respectively, submartingale). Note that every martingale is both a submartingale
and supermartingale.

A random variable τ : Ω → [0, ∞] is called a stopping time with respect to Ft if and only if
{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, t ≥ 0. Thus, the set of all ω ∈ Ω such that τ(ω) ≤ t is a Ft-measurable set.
Note that τ(ω) can take on finite as well as infinite values and characterizes whether at each time t an
event at time τ(ω) < t has occurred using only the information in Ft.

Finally, we write ‖ · ‖ for the Euclidean vector norm, rowi(A) and colj(A) for the i-th row and j-th

column of a matrix A ∈ Rp×q, tr(·) for the trace operator, (·)−1 for the inverse operator, V′(x) , ∂V(x)
∂x

for the Freéchet derivative of V at x, V′′(x) , ∂2V(x)
∂x2 for the Hessian of V at x, andHn for the Hilbert

space of random vectors x ∈ Rn with finite average power, that is,Hn , {x : Ω→ Rn : E[xTx] < ∞}.
For an open set D ⊆ Rn, HDn

4
= {x ∈ Hn : x : Ω → D} denotes the set of all the random vectors

in Hn induced by D. Similarly, for every x0 ∈ Rn, Hx0
n

4
= {x ∈ Hn : x a.s.

= x0}. Moreover, Rn
+

and Rn
+ denote the nonnegative and positive orthants of Rn, that is, if x ∈ Rn, then x ∈ Rn

+ and
x ∈ Rn

+ are equivalent, respectively, to x ≥≥ 0 and x >> 0, where x ≥≥ 0 (respectively, x >> 0)
indicates that every component of x is nonnegative (respectively, positive). Furthermore, C2 denotes
the space of real-valued functions V : D → R that are two-times continuously differentiable with
respect to x ∈ D ⊆ Rn. Finally, we write x(t) → M as t → ∞ to denote that x(t) approaches the
setM, that is, for every ε > 0 there exists T > 0 such that dist(x(t),M) < ε for all t > T, where
dist(p,M) , infx∈M ‖p− x‖.

Definition 1. Let (S,S) and (T,T) be measurable spaces, and let µ : S× T → R+. If the function µ(s,B)
is S-measurable in s ∈ S for a fixed B ∈ T and µ(s,B) is a probability measure in B ∈ T for a fixed s ∈ S,
then µ is called a (probability) kernel from S to T. Furthermore, for s ≤ t, the function µs,t : S×S→ R is
called a regular conditional probability measure if µs,t(·,S) is measurable, µs,t(S, ·) is a probability measure,
and µs,t(·, ·) satisfies

µs,t(x(s),B) = P(x(t) ∈ B|x(s)) = P(x(t) ∈ B|Fs), x(·) ∈ Hn, (1)

where P(x(t) ∈ B|x(s)) = P(0, x, t,B), x ∈ Rn, and P(s, x, t,B), t ≥ s, is the transition probability of the
point x ∈ Rn at time instant s into all Borel subsets B ⊂ Rn at time instant t.
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Any family of regular conditional probability measures {µs,t}s≤t satisfying the Chapman–
Kolmogorov equation ([32])

P(s, x, t,B) =
∫
Rn

P(s, x, σ, dz)P(s, z, t,B), (2)

or, equivalently,

µs,t(x,B) =
∫
Rn

µs,σ(x, dz)µσ,t(z,B), (3)

where 0 ≤ s ≤ σ ≤ t < ∞, x, z ∈ Rn, and B ∈ Bn, is called a semigroup of Markov kernels. The Markov
kernels are called time homogeneous if and only if µs,t = µ0,t−s holds for all s ≤ t.

Consider the nonlinear stochastic dynamical system G given by

dx(t) = f (x(t))dt + D(x(t))dw(t), x(0) a.s.
= x0, t ∈ Ix(0), (4)

where, for every t ∈ Ix0 , x(t) ∈ HDn is a Ft-measurable random state vector, x(0) ∈ Hx0
n , D ⊆ Rn

is relatively open set with 0 ∈ D, w(·) is a d-dimensional independent standard Wiener process
(i.e., Brownian motion) defined on a complete filtered probability space (Ω,F , {Ft}t≥0,P), x(0) is
independent of (w(t)− w(0)), t ≥ 0, f : D → Rn and D : D → Rn×d are continuous, E , f−1(0) ∩
D−1(0) , {x ∈ D : f (x) = 0 and D(x) = 0} is nonempty, and Ix(0) = [0, τx(0)), 0 ≤ τx(0) ≤ ∞, is the
maximal interval of existence for the solution x(·) of (4).

An equilibrium point of (4) is a point xe ∈ Rn such that f (xe) = 0 and D(xe) = 0. It is easy to
see that xe is an equilibrium point of (4) if and only if the constant stochastic process x(·) a.s.

= xe is
a solution of (4). We denote the set of equilibrium points of (4) by E , {ω ∈ Ω : x(t, ω) = xe} = {xe ∈
D : f (xe) = 0 and D(xe) = 0}.

The filtered probability space (Ω,F , {Ft}t≥0,P) is clearly a real vector space with addition
and scalar multiplication defined componentwise and pointwise. A Rn-valued stochastic process
x : [0, τ] × Ω → D is said to be a solution of (4) on the time interval [0, τ] with initial condition
x(0) a.s.

= x0 if x(·) is progressively measurable (i.e., x(·) is nonanticipating and measurable in t and ω)
with respect to the filtration {Ft}t≥0, f ∈ L1(Ω,F ,P), D ∈ L2(Ω,F ,P), and

x(t) = x0 +
∫ t

0
f (x(σ))dσ +

∫ t

0
D(x(σ))dw(σ) a.s., t ∈ [0, τ], (5)

where the integrals in (5) are Itô integrals [38]. If the map t→ w(t, ω), ω ∈ Ω, had a bounded variation,
then the natural definition for the integrals in (5) would be the Lebesgue-Stieltjes integral where ω is
viewed as a parameter. However, since sample Wiener paths are nowhere differentiable and not of
bounded variation for almost all ω ∈ Ω the integrals in (5) need to be defined as Itô integrals [39,40].

Note that for each fixed t ≥ 0, the random variable ω 7→ x(t, ω) assigns a vector x(ω) to every
outcome ω ∈ Ω of an experiment, and for each fixed ω ∈ Ω, the mapping t 7→ x(t, ω) is the sample
path of the stochastic process x(t), t ≥ 0. A path-wise solution t 7→ x(t) of (4) in (Ω, {Ft}t≥0,Px0) is
said to be right maximally defined if x cannot be extended (either uniquely or non-uniquely) forward in
time. We assume that all right maximal path-wise solutions to (4) in (Ω, {Ft}t≥0,Px0) exist on [0, ∞),
and hence, we assume that (4) is forward complete. Sufficient conditions for forward completeness or
global solutions of (4) are given in [34,38].

Furthermore, we assume that f : D → Rn and D : D → Rn×d satisfy the uniform Lipschitz
continuity condition

‖ f (x)− f (y)‖+ ‖D(x)− D(y)‖F ≤ L‖x− y‖, x, y ∈ D\{0}, (6)

and the growth restriction condition

‖ f (x)‖2 + ‖D(x)‖2
F ≤ L2(1 + ‖x‖2), x ∈ D\{0}, (7)
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for some Lipschitz constant L > 0, and hence, since x(0) ∈ HDn and x(0) is independent of
(w(t)− w(0)), t ≥ 0, it follows that there exists a unique solution x ∈ L2(Ω,F ,P) of (4) forward in
time for all initial conditions in the following sense. For every x ∈ HDn \{0} there exists τx > 0
such that if x1 : [0, τ1] × Ω → D and x2 : [0, τ2] × Ω → D are two solutions of (4); that is,
if x1, x2 ∈ L2(Ω,F ,P) with continuous sample paths almost surely solve (4), then τx ≤ min{τ1, τ2}
and P

(
x1(t) = x2(t), 0 ≤ t ≤ τx

)
= 1.

The uniform Lipschitz continuity condition (6) guarantees uniqueness of solutions, whereas the
linear growth condition (7) rules out finite escape times. A weaker sufficient condition for the existence
of a unique solution to (4) using a notion of (finite or infinite) escape time under the local Lipschitz
continuity condition (6) without the growth condition (7) is given in [41]. Alternatively, existence and
uniqueness of solutions even when the uniform Lipschitz continuity condition (6) does not hold are
given in ([38], p. 152).

The unique solution to (4) determines a Rn-valued, time homogeneous Feller continuous Markov
process x(·), and hence, its stationary Feller transition probability function is given by

(
([31], Theorem 3.4),

([32], Theorem 9.2.8)
)

P(x(t) ∈ B|x(t0)
a.s.
= x0) = P(0, x0, t− t0,B), x0 ∈ Rn, (8)

for all t ≥ t0 and all Borel subsets B of Rn, where P(σ, x, t,B), t ≥ σ, denotes the probability of
transition of the point x ∈ Rn at time instant s into the set B ⊂ Rn at time instant t. Recall that every
continuous process with Feller transition probability function is also a strong Markov process ([31]
p. 101). Finally, we say that the dynamical system (4) is convergent in probability with respect to the
closed setHDc

n ⊆ HDn if and only if the pointwise limt→∞ s(t, x, ω) exists for every x ∈ Dc ⊆ Rn and
ω ∈ Ω.

Here, the measurable map s : [0, τx)×D×Ω→ D is the dynamic or flow of the stochastic dynamical
system (2) and, for all t, τ ∈ [0, τx), satisfies the cocycle property s(τ, s(t, x), ω) = s(t + τ, x, ω) and the
identity (on D) property s(0, x, ω) = x for all x ∈ D and ω ∈ Ω. The measurable map st

4
= s(t, ·, ω) :

D → D is continuously differentiable for all t ∈ [0, τx) outside a P-null set and the sample path
trajectory sx 4

= s(·, x, ω) : [0, τx) → D is continuous in D for all t ∈ [0, τx). Thus, for every x ∈ D,
there exists a trajectory of measures defined for all t ∈ [0, τx) satisfying the dynamical processes (4)
with initial condition x(0) a.s.

= x0. For simplicity of exposition we write s(t, x) for s(t, x, ω) omitting its
dependence on ω.

Definition 2. A point p ∈ D is a limit point of the trajectory s(·, x) of (4) if there exists a monotonic sequence
{tn}∞

n=0 of positive numbers, with tn → ∞ as n→ ∞, such that s(tn, x) a.s.→ p as n→ ∞. The set of all limit
points of s(t, x), t ≥ 0, is the limit set ω(x) of s(·, x) of (4).

It is important to note that the ω-limit set of a stochastic dynamical system is a ω-limit set of
a trajectory of measures, that is, p ∈ ω(x) is a weak limit of a sequence of measures taken along
every sample continuous bounded trajectory of (4). It can be shown that the ω-limit set of a stationary
stochastic dynamical system attracts bounded sets and is measurable with respect to the σ-algebra of
invariant sets. Thus, the measures of the stochastic process x(·) tend to an invariant set of measures
and x(t) asymptotically tends to the closure of the support set (i.e., kernel) of this set of measures
almost surely.

However, unlike deterministic dynamical systems, wherein ω-limit sets serve as global attractors,
in stochastic dynamical systems stochastic invariance (see Definition 4) leads to ω-limit sets being
defined for each fixed sample ω ∈ Ω of the underlying probability space (Ω,F ,P), and hence, are
path-wise attractors. This is due to the fact that a cocycle property rather than a semigroup property
holds for stochastic dynamical systems. For details see [42–44].
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Definition 3 ([33], Def. 7.7). Let x(·) be a time-homogeneous Markov process in HDn and let V : D → R.
Then the infinitesimal generator L of x(t), t ≥ 0, with x(0) a.s.

= x0, is defined by

LV(x0)
4
= lim

t→0+

Ex0 [V(x(t))]−V(x0)

t
, x0 ∈ D, (9)

where Ex0 denotes the expectation with respect to the transition probability measure Px0(x(t) ∈ B) , P(0, x0, t,B).

If V ∈ C2 and has a compact support [45], and x(t), t ≥ 0, satisfies (4), then the limit in (9) exists
for all x ∈ D and the infinitesimal generator L of x(t), t ≥ 0, can be characterized by the system
drift and diffusion functions f (x) and D(x) defining the stochastic dynamical system (4) and is given
by ([33], Theorem 7.9)

LV(x) 4=
∂V(x)

∂x
f (x) +

1
2

tr DT(x)
∂2V(x)

∂x2 D(x), x ∈ D. (10)

Next, we extend Proposition 2.1 of [30] to stochastic dynamical systems. First, however, the
following definitions on stochastic invariance and essentially nonnegative vector fields are needed.

Definition 4. A relatively open set D ⊂ Rn is invariant with respect to (4) if D is Borel and, for all x0 ∈ D,
Px0 (x(t) ∈ D) = 1, t ≥ 0.

Definition 5. Let f = [ f1, . . . , fn]T : D ⊆ Rn
+ → Rn. Then f is essentially nonnegative if fi(x) ≥ 0 for

all i = 1, . . . , n and x ∈ Rn
+ such that xi = 0, where xi denotes the i-th component of x.

Proposition 1. Suppose Rn
+ ⊂ D. Then Rn

+ is an invariant set with respect to (4) if and only if f : D → Rn

is essentially nonnegative and D(i,j)(x) = 0, j = 1, . . . , d, whenever xi = 0, i = 1, . . . , n.

Proof. Define dist(x,Rn
+)

4
= infy∈Rn

+
‖x − y‖, x ∈ Rn. Now, suppose f : D → Rn is

essentially nonnegative and let x ∈ Rn
+. For every i ∈ {1, . . . , q}, if xi = 0, then xi +

h fi(x) + rowi(D(x))[w(h, ω) − w(0, ω)] = h fi(x) ≥ 0 for all h ≥ 0 and all ω ∈ Ω, whereas,
if xi > 0, then it follows from the continuity of D(·) and the sample continuity of w(·) that
xi + h fi(x) + rowi(D(x))[w(h, ω)− w(0, ω)] ≥ 0 for all |h| sufficiently small and all ω ∈ Ω. Thus,
x + h f (x) + rowi(D(x))[w(h, ω)− w(0, ω)] ∈ Rn

+ for all sufficiently small h > 0 and all ω ∈ Ω, and
hence, limh→0+ dist(x + h f (x) + rowi(D(x))[w(h, ω) − w(0, ω)],Rn

+)/h = 0. It now follows from

Lemma 2.1 of [46], with x(0) a.s.
= x0, that Px0

(
x(t) ∈ Rn

+

)
= 1 for all t ∈ [0, τx0).

Conversely, suppose that Rn
+ is invariant with respect to (4), let Px0(x(0) ∈ Rn

+) = 1,
and suppose, ad absurdum, x is such that there exists i ∈ {1, . . . , q} such that xi(0)

a.s.
= 0 and

fi(x(0))h + rowi(D(x))[w(h, ω)− w(0, ω)] < 0 for all ω ∈ Ω. Then, since f and D are continuous
and a Wiener process w(·) can be positive or negative with equal probability, there exists sufficiently
small h > 0 such that Px0( fi(x(t))dt + rowi(D(x(t)))dw(t) < 0) 6= 0 for all t ∈ [0, h), where x(t) is
the solution to (4). Hence, xi(t) is strictly decreasing on [0, h) with nonzero probability, and thus,
Px0

(
x(t) ∈ Rn

+

)
6= 1 for all t ∈ (0, h), which leads to a contradiction.

It follows from Proposition 1 that if x0 ≥≥ 0, then x(t)
a.s.
≥≥ 0, t ≥ 0, if and only if f is essentially

nonnegative and D(i,j)(x) = 0, j = 1, . . . , d, whenever xi = 0, i = 1, . . . , n. In this case, we say
that (4) is a stochastic nonnegative dynamical system. Henceforth, we assume that f and D are such that
the nonlinear stochastic dynamical system (4) is a stochastic nonnegative dynamical system.
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3. Stability Theory for Stochastic Nonnegative Dynamical Systems

In this section, we establish key stability results in probability for stochastic nonnegative
dynamical systems. The mathematical machinery used is supermartingale theory and ergodic theory
of Markov processes [31]. Specifically, deterministic stability theory is extended to stochastic dynamical
systems by establishing supermartingale properties of Lyapunov functions. The following definition

introduces several notions of stability in probability for the equilibrium solution x(t)
a.s.≡ xe ∈ Rn

+ of
the stochastic nonnegative dynamical system (4) for Ix(0) = [0, ∞).

Definition 6. (i) The equilibrium solution x(t)
a.s.≡ xe ∈ Rn

+ to (4) is Lyapunov stable in probability with
respect to Rn

+ if, for every ε > 0,

lim
x0→xe

Px0

(
sup
t≥0
‖x(t)− xe‖ > ε

)
= 0. (11)

Equivalently, the equilibrium solution x(t)
a.s.≡ xe ∈ Rn

+ to (4) is Lyapunov stable in probability with respect to
Rn
+ if, for every ε > 0 and ρ ∈ (0, 1), there exists δ = δ(ρ, ε) > 0 such that, for all x0 ∈ Bδ(xe) ∩Rn

+,

Px0

(
sup
t≥0
‖x(t)− xe‖ > ε

)
≤ ρ. (12)

(ii) The equilibrium solution x(t)
a.s.≡ xe ∈ Rn

+ to (4) is asymptotically stable in probability with
respect to Rn

+ if it is Lyapunov stable in probability with respect to Rn
+ and

lim
x0→xe

Px0

(
lim
t→∞
‖x(t)− xe‖ = 0

)
= 1. (13)

Equivalently, the equilibrium solution x(t)
a.s.≡ xe ∈ Rn

+ to (4) is asymptotically stable in probability with
respect to Rn

+ if it is Lyapunov stable in probability with respect to Rn
+ and, for every ρ ∈ (0, 1), there exists

δ = δ(ρ) > 0 such that if x0 ∈ Bδ(xe) ∩Rn
+, then

Px0

(
lim
t→∞
‖x(t)− xe‖ = 0

)
≥ 1− ρ. (14)

(iii) The equilibrium solution x(t)
a.s.≡ xe ∈ Rn

+ to (4) is globally asymptotically stable in probability
with respect to Rn

+ if it is Lyapunov stable in probability with respect to Rn
+ and, for all x0 ∈ Rn

+,

Px0

(
lim
t→∞
‖x(t)− xe‖ = 0

)
= 1. (15)

As in deterministic stability theory, for a given ε > 0 the subset Bε(xe) ∩Rn
+ defines a cylindrical

region in the (t, x)-space wherein the trajectory x(t), t ≥ 0, belongs to. However, in stochastic stability
theory, for every x0 ∈ Bδ(xe) ∩Rn

+, there exists a probability of less than or equal to ρ that the system
solution s(t, x0) leaves the subset Bε(xe) ∩Rn

+; and for x0 = xe this probability is zero. In other words,
the probability of escape is continuous at x0 = xe with small deviations from the equilibrium implying
a small probability of escape.

The following lemma gives an equivalent characterization of Lyapunov and asymptotic stability
in probability with respect to Rn

+ in terms of class K, K∞, and KL functions ([47], p. 162).
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Lemma 1. (i) The equilibrium solution x(t)
a.s.≡ xe to (4) is Lyapunov stable in probability with respect to Rn

+

if and only if for every ρ > 0 there exist a class K function αρ(·) and a constant c = c(ρ) > 0 such that, for all
x0 ∈ Bc(xe) ∩Rn

+,
Px0

(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0. (16)

(ii) The equilibrium solution x(t)
a.s.≡ xe to (4) is asymptotically stable in probability with respect to Rn

+

if and only if for every ρ > 0 there exist a class KL function βρ(·, ·) and a constant c = c(ρ) > 0 such that,
for all x0 ∈ Bc(xe) ∩Rn

+,

Px0
(
‖x(t)− xe‖ > βρ(‖x0 − xe‖, t)

)
≤ ρ, t ≥ 0. (17)

Proof. (i) Suppose that there exist a class K function αρ(·) and a constant c = c(ρ) > 0 such that, for
every ρ > 0 and x0 ∈ Bc(xe) ∩Rn

+,

Px0
(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0. (18)

Now, given ε > 0, let δ(ρ, ε) = min{c(ρ), α−1
ρ (ε)}. Then, for x0 ∈ Bδ(xe) ∩Rn

+ and t ≥ 0,

Px0
(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≥ Px0

(
‖x(t)− xe‖ > αρ(δ)

)
≥ Px0

(
‖x(t)− xe‖ > αρ(α

−1
ρ (ε))

)
≥ Px0 (‖x(t)− xe‖ > ε) .

Therefore, for every given ε > 0 and ρ > 0, there exists δ > 0 such that, for all x0 ∈ Bδ(xe) ∩Rn
+,

Px0

(
sup
t≥0
‖x(t)− xe‖ > ε

)
≤ ρ,

which proves that the equilibrium solution x(t)
a.s.≡ xe is Lyapunov stable in probability with respect

to Rn
+.
Conversely, for every given ε and ρ, let δ̄(ε, ρ) be the supremum of all admissible δ(ε, ρ). Note that

the function δ(·, ·) is positive and nondecreasing in its first argument, but not necessarily continuous.
For every ρ > 0 chose a class K function γρ(r) such that γρ(r) ≤ kδ̄(r, ρ), 0 < k < 1. Let
c(ρ) = limr→∞ γρ(r) and αρ(r) = γ−1

ρ (r), and note that αρ(·) is class K ([48], Lemma 4.2). Next,

for every ρ > 0 and x0 ∈ Bc(ρ)(xe) ∩Rn
+, let ε = αρ(‖x0 − xe‖). Then, ‖x0 − xe‖ < δ̄(ε, ρ) and

Px0

(
sup
t≥0
‖x(t)− xe‖ > ε

)
≤ ρ (19)

imply
Px0

(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0. (20)

(ii) Suppose that there exists a class KL function β(r, s) such that (17) is satisfied. Then,

Px0
(
‖x(t)− xe‖ > βρ(‖x0 − xe‖, 0)

)
≤ ρ, t ≥ 0,

which implies that equilibrium solution x(t)
a.s.≡ xe is Lyapunov stable in probability with respect to

Rn
+. Moreover, for x0 ∈ Bc(ρ)(xe) ∩Rn

+, the solution to (4) satisfies

Px0
(
‖x(t)− xe‖ > βρ(‖c(ρ)‖, t)

)
≤ ρ, t ≥ 0.
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Now, letting t → ∞ yields Px0 (limt→∞ ‖x(t)− xe‖ > 0) ≤ ρ for every ρ > 0, and hence,

Px0 (limt→∞ ‖x(t)− xe‖ = 0) ≥ 1 − ρ, which implies that the equilibrium solution x(t)
a.s.≡ xe is

asymptotically stable in probability with respect to Rn
+.

Conversely, suppose that the equilibrium solution x(t)
a.s.≡ xe is asymptotically stable in probability

with respect to Rn
+. In this case, for every ρ > 0 there exist a constant c(ρ) > 0 and a class K function

αρ(·) such that, for every r ∈ (0, c(ρ)], the solution x(t), t ≥ 0, to (4) satisfies

Px0

(
sup
t≥0
‖x(t)− xe‖ > αρ(r)

)
≤ Px0

(
sup
t≥0
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ (21)

for all ‖x0 − xe‖ < r. Moreover, given η > 0 there exists T = Tρ(η, r) ≥ 0 such that

Px0

 sup
t≥Tρ(η,r)

‖x(t)− xe‖ > η

 ≤ ρ.

Let Tρ(η, r) be the infimum of all admissible Tρ(η, r) and note that Tρ(η, r) is nonnegative and
nonincreasing in η, nondecreasing in r, and Tρ(η, r) = 0 for all η ≥ α(r). Now, let

Wr,ρ(η) =
2
η

∫ η

η
2

Tρ(s, r)ds +
r
η
≥ Tρ(η, r) +

r
η

and note that Wr,ρ(η) is positive and has the following properties: (i) For every fixed r and ρ, Wr,ρ(η)

is continuous, strictly decreasing, and limη→∞ Wr,ρ(η) = 0; and (ii) for every fixed η and ρ, Wr,ρ(η) is
strictly increasing in r.

Next, let Ur,ρ = W−1
r,ρ and note that Ur,ρ satisfies properties (i) and (ii) of Wr,ρ, and Tρ(Ur,ρ(σ), r) <

Wr,ρ(Ur,ρ(σ)) = σ. Therefore,

Px0
(
‖x(t)− xe‖ > Ur,ρ(t)

)
≤ ρ, t ≥ 0, (22)

for all ‖x0 − xe‖ < r. Now, using (21) and (22) it follows that

Px0
(
‖x(t)− xe‖ >

√
αρ(‖x0 − xe‖)Uc(ρ),ρ(t)

)
≤ ρ, ‖x0 − xe‖ < c(ρ), t ≥ 0.

Thus, inequality (17) is satisfied with βρ(‖x0 − xe‖, t) =
√

αρ(‖x0 − xe‖)
√

Uc(ρ),ρ(t).

Next, we present sufficient conditions for Lyapunov and asymptotic stability in probability for
nonlinear stochastic nonnegative dynamical systems. First, however, the following definition of
a recurrent process relative to a domain Dr is needed.

Definition 7. A Markov process x(·) inHDn is recurrent relative to the domainDr or, equivalently,Dr ⊂ D
is recurrent in D, if there exists a finite-time t > 0 such that

Px (x(t) ∈ Dr) = 1. (23)

In addition, Dr is positive recurrent if

sup
x∈Dc

Ex inf{t ≥ 0 : x(t) ∈ Dr} < ∞ (24)

for every compact set Dc ⊂ D.
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Theorem 1. Let D be an open subset relative to Rn
+ that contains xe. Consider the nonlinear stochastic

dynamical system (4) where f is essentially nonnegative and f (xe) = 0, D(i,j)(x) = 0, j = 1, . . . , d, whenever
xi = 0, i = 1, . . . , n, and D(xe) = 0. Assume that there exists a two-times continuously differentiable function
V : D → R such that

V(xe) = 0, (25)

V(x) > 0, x ∈ D, x 6= xe, (26)

∂V(x)
∂x

f (x) +
1
2

tr DT(x)
∂2V(x)

∂x2 D(x) ≤ 0, x ∈ D. (27)

Then the equilibrium solution x(t) ≡ xe to (4) is Lyapunov stable in probability with respect to Rn
+. If,

in addition,
∂V(x)

∂x
f (x) +

1
2

tr DT(x)
∂2V(x)

∂x2 D(x) < 0, x ∈ D, x 6= xe, (28)

then the equilibrium solution x(t) ≡ xe to (4) is asymptotically stable in probability with respect to Rn
+.

Finally, if D = Rn
+ and V(·) is radially unbounded, then the equilibrium solution x(t) ≡ xe to (4) is globally

asymptotically stable in probability with respect to Rn
+.

Proof. Let δ > 0 be such that Bδ(xe) ∩Rn
+ ⊆ D, define Vδ

4
= infx∈D\Bδ(xe)∩Rn

+
V(x) > 0, and let τδ be

the stopping time wherein the trajectory x(t), t ≥ 0, of (4) exits the bounded domain Bδ(xe) ∩Rn
+ ⊆ D

with τδ(t)
4
= min{t, τδ}. Since V(·) is two-times continuously differentiable and (27) holds it follows

from Lemma 5.4 of [31] that
Ex [V(x(τδ(t)))] ≤ V(x) (29)

for all x ∈ Bδ(xe) ∩Rn
+ and t ≥ 0. Now, using Chebyshev’s inequality ([31], p. 29) yields

Px

(
sup

0≤s≤t
‖x(s)− xe‖ > δ

)
≤ Ex [V(x(τδ(t)))]

Vδ
≤ V(x)

Vδ
. (30)

Next, taking the limit as t→ ∞, (30) yields

Px

(
sup
s≥0
‖x(s)− xe‖ > δ

)
≤ V(x)

Vδ
, (31)

and hence, Lyapunov stability in probability with respect to Rn
+ follows from the continuity of V(·)

and (25).
To prove asymptotic stability in probability with respect to Rn

+, note that the stochastic process
V(x(τδ(t))) is a supermartingale ([31], Lemma 5.4), and hence, it follows from Theorem 5.1 of [31] that

lim
t→∞

V(x(τδ(t)))
a.s.
= ν. (32)

Let Bx denote the set of all sample trajectories of (4) starting from x ∈ Rn
+ for which τδ = ∞. Since

the equilibrium solution x(t) ≡ xe to (4) is Lyapunov stable in probability with respect to Rn
+, it

follows that
lim

x→xe
Px(Bx) = 1. (33)

Next, it follows from Theorem 3.9 of [31] and (28) that all sample trajectories contained in Bx,
except for a set of trajectories with measure zero, satisfy inft>0 ‖x(t)− xe‖ = 0. Moreover, it follows
from Lemma 5.3 of [31] that

lim inf
t→∞

‖x(t)− xe‖ = 0, (34)
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and hence, using (25), lim inft→∞ V(x(t)) = 0. Now, (32) implies

lim
t→∞

V(x(τδ(t))) = lim
t→∞

V(x(t)) (35)

for almost all sample trajectories in Bx, and hence,

lim
t→∞

V(x(t)) = lim inf
t→∞

V(x(t)) = 0, (36)

which, using (25) and (26), further implies, that

lim
t→∞
‖x(t)− xe‖ = 0. (37)

Now, asymptotic stability in probability with respect to Rn
+ is direct consequence of (33) and (37).

Finally, to prove global asymptotic stability in probability with respect to Rn
+ note that it follows

from Lyapunov stability in probability with respect to Rn
+ that, for every ε > 0 and ρ = ε, there exists

δ > 0 such that, for all x ∈ Bδ(xe) ∩Rn
+,

Px

(
sup
t>0
‖x(t)− xe‖ > ε

)
< ε. (38)

Moreover, it follows from Lemma 3.9, Theorem 3.9 of [31], and the radial unboundedness of V(·)
that the solution x(t), t ≥ 0, of (4) is recurrent relative to the domain Bε(xe) ∩Rn

+ for every ε > 0.

Thus, τ̃δ
a.s.
< ∞, where τ̃δ is the first hitting time of the trajectories starting from the set Rn

+ \ Bδ(xe) and
transitioning into the set Bδ(xe) ∩Rn

+.
Now, using the strong Markov property of solutions and choosing δ > 0 such that x ∈ Rn

+ \ Bδ(xe)

yields

Px
(

lim sup
t→∞

‖x(t)− xe‖ > ε

)
=
∫ ∞

σ=0

∫
y∈∂Bδ(xe)∩Rn

+

P (τ̃δ ∈ dσ, x(τ̃δ) ∈ dy)Py
(

lim sup
t→∞

‖x(t)− xe‖ > ε

)
(39)

=
∫ ∞

σ=0

∫
y∈∂Bδ(xe)∩Rn

+

P (τ̃δ ∈ dσ, x(τ̃δ) ∈ dy)Py

(
sup
t>0
‖x(t)− xe‖ > ε

)
≤ ε,

which proves global asymptotic stability in probability with respect to Rn
+.

As noted in [37], a more general stochastic stability notion can also be introduced here involving
stochastic stability and convergence to an invariant (stationary) distribution. In this case, state
convergence is not to an equilibrium point but rather to a stationary distribution. This framework
can relax the vanishing perturbation assumption D(xe) = 0 at the equilibrium point xe and requires a
more involved analysis framework showing stability of the underlying Markov semigroup [49].

As in nonlinear stochastic dynamical system theory [31], converse Lyapunov theorems for
Lyapunov and asymptotic stability in probability for stochastic nonnegative dynamical systems can
also be established. However, in this case, a non-degeneracy condition on D(x), x ∈ D, is required [31].

Finally, we establish a stochastic version of the Krasovskii-LaSalle stability theorem for nonnegative
dynamical systems. For nonlinear stochastic dynamical systems this result is due to Mao [50].

Theorem 2. Consider the nonlinear stochastic nonnegative dynamical system (4). Let D ⊆ Rn
+ be an invariant

set with respect to (4) and assume that there exists a two-times continuously differentiable function V : D → R+

and a continuous function η : R+ → R+ such that
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∂V(x)
∂x

f (x) +
1
2

tr DT(x)
∂2V(x)

∂x2 D(x) ≤ −η(V(x)), x ∈ D. (40)

Then, for every x0 ∈ D, limt→∞ V(x(t)) exists and is finite almost surely, and

lim
t→∞

η(V(x(t))) a.s.
= 0. (41)

Proof. Since D ⊆ Rn
+ is invariant with respect to (4), it follows that, for all x0 ∈ D, Px0 (x(t) ∈ D) = 1,

t ≥ 0. Furthermore, using Itô’s chain rule formula and (40) we have

V(x(t)) = V(x0) +
∫ t

0
LV(x(σ))dσ +

∫ t

0

∂V(x(σ))
∂x

D(x(σ))dw(σ)

≤ V(x0)−
∫ t

0
η(V(x(σ)))dσ +

∫ t

0

∂V(x(σ))
∂x

D(x(σ))dw(σ). (42)

Now, it follows from Theorem 7 of ([51], p. 139) that limt→∞ V(x(t)) exists and is finite almost surely,
and

lim
t→∞

∫ t

0
η(V(x(σ)))dσ

a.s.
< ∞. (43)

To show that limt→∞ η(V(x(t))) a.s.
= 0 suppose, ad absurdum, that there exists a sample space

Ω̄ ⊂ Ω such that P(Ω̄) > 0 and

lim sup
t→∞

η(V(x(t, ω))) > 0, ω ∈ Ω̄. (44)

Let {tn}∞
n=0, n ∈ Z+, be a monotonic sequence with tn + 1 < tn+1 and note that there exist ε > 0 and

N ∈ Z+ such that
η(V(x(tn, ω))) > ε, n ≥ N. (45)

Now, it follows from the continuity of η(·) and V(·), and the sample continuity of x(·) that there exist
δ > 0, δ1 > 0, and δ2 > 0, such that if |V(x(tn, ω))−V(x(t, ω))| ≤ δ2, then

|η(V(x(tn, ω)))− η(V(x(t, ω)))| ≤ ε

2
, (46)

if ‖x(tn, ω)− x(t, ω)‖ ≤ δ1, then

|V(x(tn, ω))−V(x(t, ω))| ≤ δ2, (47)

and if |tn − t| ≤ δ, then

‖x(tn, ω)− x(t, ω)‖ ≤ δ1. (48)

Thus, using (45) and (46) it follows that, for all |tn − t| ≤ δ and n ≥ N,

η(V(x(t, ω))) ≥ η(V(x(tn, ω)))− |η(V(x(tn, ω)))− η(V(x(t, ω)))| > ε

2
, (49)

and hence,

lim
t→∞

∫ t

0
η(V(x(σ)))dσ ≥

∞

∑
n=N

∫ tn+δ

tn
η(V(x(σ)))dσ ≥

∞

∑
n=N

εδ

2
= ∞, (50)

which contradicts (43). Thus, limt→∞ η(V(x(t))) a.s.
= 0.
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Note that if we defineDη
4
= {v ≥ 0 : η(v) = 0}, then it can be shown thatDη 6= ∅ and (41) implies

lim
t→∞

dist(V(x(t)),Dη)
a.s.
= 0, (51)

that is, V(x(t)) will asymptotically approach the set Dη with probability one. Thus, if η(V(x)) = xe if
and only if x = xe and V(·) is positive definite with respect to xe, then it follows from Theorems 1 and 2

that the equilibrium solution x(t)
a.s.≡ xe to (4) is asymptotically stable in probability with respect to Rn

+.

4. Semistability of Stochastic Nonnegative Dynamical Systems

As shown in [30], thermodynamic systems give rise to systems that possess a continuum of
equilibria. In this section, we develop a stability analysis framework for stochastic systems having a
continuum of equilibria. Since, as noted in [37,52], every neighborhood of a non-isolated equilibrium
contains another equilibrium, a non-isolated equilibrium cannot be asymptotically stable. Hence,
asymptotic stability is not the appropriate notion of stability for systems having a continuum of
equilibria. Two notions that are of particular relevance to such systems are convergence and semistability.
Convergence is the property whereby every system solution converges to a limit point that may depend
on the system initial condition. Semistability is the additional requirement that all solutions converge
to limit points that are Lyapunov stable. Semistability for an equilibrium thus implies Lyapunov
stability, and is implied by asymptotic stability.

In this section, we present necessary and sufficient conditions for stochastic semistability. It is
important to note that stochastic semistability theory was also developed in [37] for a stronger set of
stability in probability definitions. The results in this section, though parallel the results in [37], are
predicated on a weaker set of stability in probability definitions, and hence, provide a stronger set of
semistability results. First, we present several key propositions. The following proposition gives a
sufficient condition for a trajectory of (4) to converge to a limit point. For this result, Dc ⊆ D ⊆ Rn

+

denotes a positively invariant set with respect to (4) and st(HDc
n ) denotes the image of HDc

n ⊂ HDn
under the flow st : HDc

n → HDn , that is, st(HDc
n )

4
= {y : y = st(x0) for some x(0) a.s.

= x0 ∈ HDc
n }.

Proposition 2. Consider the nonlinear stochastic nonnegative dynamical system (4) and let x ∈ Dc. If the
limit set ω(x) of (4) contains a Lyapunov stable in probability (with respect to Rn

+) equilibrium point y, then
limx→y Px(‖ limt→∞ s(t, x)− y‖ = 0

)
= 1, that is, ω(x) a.s.

= {y} as x → y.

Proof. Suppose y ∈ ω(x) is Lyapunov stable in probability with respect to Rn
+ and let Nε ⊆ Dc be

a relatively open neighborhood of y. Since y is Lyapunov stable in probability with respect to Rn
+,

there exists a relatively open neighborhood Nδ ⊂ Dc of y such that st(HNδ
n ) ⊆ HNε

n as x → y for
every t ≥ 0. Now, since y ∈ ω(x), it follows that there exists τ ≥ 0 such that s(τ, x) ∈ HNδ

n . Hence,
s(t + τ, x) = st(s(τ, x)) ∈ st(HNδ

n ) ⊆ HNε
n for every t > 0. Since Nε ⊆ Dc is arbitrary, it follows

that y a.s.
= limt→∞ s(t, x). Thus, limn→∞ s(tn, x) a.s.

= y as x → y for every sequence {tn}∞
n=1, and hence,

ω(x) a.s.
= {y} as x → y.

The following definition introduces the notion of stochastic semistability.

Definition 8. An equilibrium solution x(t)
a.s.≡ xe ∈ E of (4) is stochastically semistable with respect to

Rn
+ if the following statements hold.

(i) For every ε > 0, limx0→xe Px0
(

sup0≤t<∞ ‖x(t)− xe‖ > ε
)
= 0. Equivalently, for every ε > 0 and

ρ ∈ (0, 1), there exist δ = δ(ε, ρ) > 0 such that, for all x0 ∈ Bδ(xe) ∩Rn
+,

Px0

(
sup

0≤t<∞
‖x(t)− xe‖ > ε

)
≤ ρ.
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(ii) limdist(x0,E)→0 Px0 (limt→∞ dist(x(t), E) = 0) = 1. Equivalently, for every ρ ∈ (0, 1), there exist
δ = δ(ρ) > 0 such that if dist(x0, E) ≤ δ, then Px0 (limt→∞ dist(x(t), E) = 0) ≥ 1− ρ.

The dynamical system (4) is stochastically semistable with respect to Rn
+ if every equilibrium solution of (4)

is stochastically semistable with respect to Rn
+. Finally, the dynamical system (4) is globally stochastically

semistable with respect to Rn
+ if (i) holds and Px0 (limt→∞ dist(x(t), E) = 0) = 1 for all x0 ∈ Rn

.

Note that if x(t)
a.s.≡ xe ∈ E only satisfies (i) in Definition 8, then the equilibrium solution

x(t)
a.s.≡ xe ∈ E of (4) is Lyapunov stable in probability with respect to Rn

+.

Definition 9. For a given ρ ∈ (0, 1), the ρ-domain of semistability with respect to Rn
+ is the set of points

x0 ∈ D ⊆ Rn
such that if x(t), t ≥ 0, is a solution to (4) with x(0) a.s.

= x0, then x(t) converges to a Lyapunov
stable (with respect to Rn

+) in probability equilibrium point in D with probability greater than or equal to 1− ρ.

Note that if (4) is stochastically semistable, then its ρ-domain of semistability contains the set of
equilibria in its interior.

Next, we present alternative equivalent characterizations for stochastic semistability of (4). This
result is an extension of Proposition 2.2 of [37] to the more general semistability definition presented in
this paper.

Proposition 3. Consider the nonlinear stochastic nonnegative dynamical system G given by (4). Then the
following statements are equivalent:

(i) G is stochastically semistable with respect to Rn
+.

(ii) For every xe ∈ E and ρ > 0, there exist class K and L functions αρ(·) and βρ(·), respectively,
and δ = δ(xe, ρ) > 0 such that, if x0 ∈ Bδ(xe) ∩Rn

+, then

Px0
(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0,

and Px0
(
dist(x(t), E) > βρ(t)

)
≤ ρ, t ≥ 0.

(iii) For every xe ∈ E and ρ > 0, there exist class K functions α1ρ(·) and α2ρ(·), a class L function βρ(·),
and δ = δ(xe, ρ) > 0 such that, if x0 ∈ Bδ(xe) ∩Rn

+, then

Px0
(
dist(x(t), E) > α2ρ(‖x0 − xe‖)βρ(t)

)
≤ Px0

(
α1ρ(‖x(t)− xe‖) > α2ρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0.

Proof. To show that (i) implies (ii), suppose (4) is stochastically semistable with respect to Rn
+ and

let xe ∈ E . It follows from Lemma 1 that for every ρ > 0 there exists δ = δ(xe, ρ) > 0 and a class K
function αρ(·) such that if ‖x0 − xe‖ ≤ δ, then Px0

(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0. Without

loss of generality, we can assume that δ is such that Bδ(xe) ∩ Rn
+ is contained in the ρ-domain of

semistability of (4). Hence, for every x0 ∈ Bδ(xe) ∩ Rn
+, limt→∞ x(t) a.s.

= x∗ ∈ E and, consequently,
Px0 (limt→∞ dist(x(t), E) = 0) = 1.

For every ε > 0, ρ > 0, and x0 ∈ Bδ(xe) ∩Rn
+, define Tx0(ε, ρ) to be the infimum of T with the

property that Px0
(

supt≥T dist(x(t), E) > ε
)
≤ ρ, that is,

Tx0(ε, ρ) , inf

{
T : Px0

(
sup
t≥T

dist(x(t), E) > ε

)
≤ ρ

}
.

For each x0 ∈ Bδ(xe) ∩Rn
+ and ρ, the function Tx0(ε, ρ) is nonnegative and nonincreasing in ε, and

Tx0(ε, ρ) = 0 for sufficiently large ε.
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Next, let T(ε, ρ) , sup{Tx0(ε, ρ) : x0 ∈ Bδ(xe) ∩Rn
+}. We claim that T is well defined. To show

this, consider ε > 0, ρ > 0, and x0 ∈ Bδ(xe) ∩ Rn
+. Since Px0

(
supt≥Tx0 (ε,ρ) dist(x(t), E) > ε

)
≤ ρ,

it follows from the sample continuity of s that, for every ε > 0 and ρ > 0, there exists an open
neighborhood U of x0 such that Px0

(
supt≥Tz(ε,ρ) dist(s(t, z), E) > ε

)
≤ ρ for every z ∈ U . Hence,

lim supz→x0
Tz(ε, ρ) ≤ Tx0(ε, ρ) implying that the function x0 7→ Tx0(ε, ρ) is upper semicontinuous at

the arbitrarily chosen point x0, and hence on Bδ(xe) ∩Rn
+. Since an upper semicontinuous function

defined on a compact set achieves its supremum, it follows that T(ε, ρ) is well defined. The function
T(·) is the pointwise supremum of a collection of nonnegative and nonincreasing functions, and hence
is nonnegative and nonincreasing. Moreover, T(ε, ρ) = 0 for every ε > max{αρ(‖x0 − xe‖) : x0 ∈
Bδ(xe) ∩Rn

+}.
Let ψρ(ε) , 2

ε

∫ ε
ε/2 T(σ, ρ)dσ + 1

ε ≥ T(ε, ρ) + 1
ε . The function ψρ(ε) is positive, continuous, strictly

decreasing, and ψρ(ε) → 0 as ε → ∞. Choose βρ(·) = ψ−1(·). Then βρ(·) is positive, continuous,
strictly decreasing, and limσ→∞ βρ(σ) = 0. Furthermore, T(βρ(σ), ρ) < ψρ(βρ(σ)) = σ. Hence,
Px0

(
dist(x(t), E) > βρ(t)

)
≤ ρ, t ≥ 0.

Next, to show that (ii) implies (iii), suppose (ii) holds and let xe ∈ E . Then it follows from (i) of
Lemma 1 that xe is Lyapunov stable in probability with respect to Rn

+. For every ρ > 0, choosing x0

sufficiently close to xe, it follows from the inequality Px0
(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0,

that trajectories of (4) starting sufficiently close to xe are bounded, and hence, the positive limit set
of (4) is nonempty. Since Px0 (limt→∞ dist(x(t), E) = 0) = 1 as dist(x0, E) → 0, it follows that the
positive limit set is contained in E as dist(x0, E)→ 0.

Now, since every point in E is Lyapunov stable in probability with respect to Rn
+, it follows from

Proposition 2 that limt→∞ x(t) a.s.
= x∗ as x0 → x∗, where x∗ ∈ E is Lyapunov stable in probability with

respect to Rn
+. If x∗ = xe, then it follows using similar arguments as above that there exists a class L

function β̂ρ(·) such that

Px0
(
dist(x(t), E) > β̂ρ(t)

)
≤ Px0

(
‖x(t)− xe‖ > β̂ρ(t)

)
≤ ρ

for every x0 satisfying ‖x0 − xe‖ < δ and t ≥ 0. Hence,

Px0

(
dist(x(t), E) >

√
‖x(t)− xe‖

√
β̂ρ(t)

)
≤ ρ, t ≥ 0.

Next, consider the case where x∗ 6= xe and let α1ρ(·) be a class K function. In this case, note that

Px0

(
lim
t→∞

dist(x(t), E)/α1ρ(‖x(t)− xe‖) = 0
)
≥ 1− ρ,

and hence, it follows using similar arguments as above that there exists a class L function βρ(·)
such that

Px0
(
dist(x(t), E) > α1ρ(‖x(t)− xe‖)βρ(t)

)
≤ ρ, t ≥ 0.

Now, note that α1ρ ◦ αρ is of class K (by [48]), Lemma 4.2), and hence, (iii) follows immediately.
Finally, to show that (iii) implies (i), suppose (iii) holds and let xe ∈ E . Then it follows that for

every ρ > 0,
Px0
(
α1ρ(‖x(t)− xe‖) > α2ρ(‖x(0)− xe‖)

)
≤ ρ, t ≥ 0,

that is, Px0 [‖x(t)− xe‖ > αρ(‖x(0)− xe‖)] ≤ ρ, where t ≥ 0 and αρ = α1ρ
−1 ◦ α2ρ is of class K (by [48],

Lemma 4.2). It now follows from (i) of Lemma 1 that xe is Lyapunov stable in probability with respect
to Rn

+. Since xe was chosen arbitrarily, it follows that every equilibrium point is Lyapunov stable in
probability with respect to Rn

+. Furthermore, Px0 (limt→∞ dist(x(t), E) = 0) ≥ 1− ρ.
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Choosing x0 sufficiently close to xe, it follows from the inequality

Px0
(
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ, t ≥ 0,

that trajectories of (4) are almost surely bounded as x0 → xe, and hence, the positive limit set of (4) is
nonempty as x0 → xe. Since every point in E is Lyapunov stable in probability with respect to Rn

+,
it follows from Proposition 2 that limt→∞ x(t) a.s.

= x∗ as x0 → x∗, where x∗ ∈ E is Lyapunov stable in
probability with respect to Rn

+. Hence, by Definition 8, (4) is stochastically semistable with respect to
Rn
+.

Next, we develop necessary and sufficient conditions for stochastic semistability. First, we present
sufficient conditions for stochastic semistability. The following theorems generalize Theorems 3.1 and
3.2 of [37].

Theorem 3. Consider the nonlinear stochastic nonnegative dynamical system (4). Let Q ⊆ Rn
+ be a relatively

open neighborhood of E and assume that there exists a two-times continuously differentiable function V : Q →
R+ such that

V′(x) f (x) +
1
2

tr DT(x)V′′(x)D(x) < 0, x ∈ Q\E . (52)

If every equilibrium point of (4) is Lyapunov stable in probability with respect to Rn
+, then (4) is stochastically

semistable with respect to Rn
+. Moreover, if Q = Rn

+ and V(x) → ∞ as ‖x‖ → ∞, then (4) is globally
stochastically semistable with respect to Rn

+.

Proof. Since every equilibrium point of (4) is Lyapunov stable in probability with respect to Rn
+ by

assumption, for every z ∈ E , there exists a relatively open neighborhood Vz of z such that s([0, ∞)×
Vz ∩ Bε(z)), ε > 0, is bounded and contained in Q as ε → 0. The set Vε ,

⋃
z∈E Vz ∩ Bε(z), ε > 0, is

a relatively open neighborhood of E contained in Q. Consider x ∈ Vε so that there exists z ∈ E such
that x ∈ Vz ∩ Bε(z) and s(t, x) ∈ HVz∩Bε(z)

n , t ≥ 0, as ε→ 0. Since Vz ∩ Bε(z) is bounded and invariant
with respect to the solution of (4) as ε→ 0, it follows that Vε is invariant with respect to the solution
of (4) as ε → 0. Furthermore, it follows from (52) that LV(s(t, x)) < 0, t ≥ 0, and hence, since Vε is
bounded it follows from Theorem 2 that limt→∞ LV(s(t, x)) a.s.

= 0 as ε→ 0.
It is easy to see that LV(x) 6= 0 by assumption and LV(xe) = 0, xe ∈ E . Therefore, s(t, x) a.s.→ E as

t→ ∞ and ε→ 0, which implies that limdist(x,E)→0 Px(limt→∞ dist(s(t, x), E) = 0) = 1. Finally, since

every point in E is Lyapunov stable in probability with respect to Rn
+, it follows from Proposition 2

that limt→∞ s(t, x) a.s.
= x∗ as x → x∗, where x∗ ∈ E is Lyapunov stable in probability with respect to

Rn
+. Hence, by Definition 8, (4) is semistable. For Q = Rn

+ global stochastic semistability with respect
to Rn

+ follows from identical arguments using the radially unbounded condition on V(·).

Next, we present a slightly more general theorem for stochastic semistability wherein we do not
assume that all points in LV−1(0) are Lyapunov stable in probability with respect to Rn

+ but rather we
assume that all points in (η ◦V)−1(0) are Lyapunov stable in probability with respect to Rn

+ for some
continuous function η : R+ → R+.

Theorem 4. Consider the nonlinear stochastic nonnegative dynamical system (4) and letQ ⊆ Rn
+ be a relatively

open neighborhood of E . Assume that there exist a two-times continuously differentiable function V : Q → R+

and a continuous function η : R+ → R+ such that

V′(x) f (x) +
1
2

tr DT(x)V′′(x)D(x) ≤ −η(V(x)), x ∈ Q. (53)
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If every point in the setM 4
= {x ∈ Q : η(V(x)) = 0} is Lyapunov stable in probability with respect to Rn

+,
then (4) is stochastically semistable with respect to Rn

+. Moreover, if Q = Rn
+ and V(x) → ∞ as ‖x‖ → ∞,

then (4) is globally stochastically semistable with respect to Rn
+.

Proof. Since, by assumption, (4) is Lyapunov stable in probability with respect to Rn
+ for all z ∈ M,

there exists a relatively open neighborhood Vz of z such that s([0, ∞)× Vz ∩ Bε(z)), ε > 0, is bounded
and contained in Q as ε → 0. The set Vε ,

⋃
z∈M Vz ∩ Bε(z) is a relatively open neighborhood

of M contained in Q. Consider x ∈ Vε so that there exists z ∈ M such that x ∈ Vz ∩ Bε(z) and
s(t, x) ∈ HVz∩Bε(z)

n , t ≥ 0, as ε→ 0. Since Vz is bounded it follows that Vε is invariant with respect to
the solution of (4) as ε→ 0. Furthermore, it follows from (53) that LV(s(t, x)) ≤ −η(V(s(t, x))), t ≥ 0,
and hence, since Vε is bounded and invariant with respect to the solution of (4) as ε → 0, it follows
from Theorem 2 that limt→∞ η(V(s(t, x))) a.s.

= 0 as ε→ 0. Therefore, s(t, x) a.s.→M as t→ ∞ and ε→ 0,
which implies that limdist(x,M)→0 Px (limt→∞ dist(s(t, x),M) = 0) = 1.

Finally, since every point inM is Lyapunov stable in probability with respect to Rn
+, it follows

from Proposition 2 that limt→∞ s(t, x) a.s.
= x∗ as x → x∗, where x∗ ∈ M is Lyapunov stable in

probability with respect to Rn
+. Hence, by definition, (4) is semistable. For Q = Rn

+ global stochastic
semistability with respect to Rn

+ follows from identical arguments using the radially unbounded
condition on V(·).

Example 1. Consider the nonlinear stochastic nonnegative dynamical system onH2 given by ([37])

dx1(t) = [σ12(x2(t))− σ21(x1(t))]dt + γ(x2(t)− x1(t))dw(t), x1(0)
a.s.
= x10, t ≥ 0, (54)

dx2(t) = [σ21(x1(t))− σ12(x2(t))]dt + γ(x1(t)− x2(t))dw(t), x2(0)
a.s.
= x20, (55)

where σij(·), i, j = 1, 2, i 6= j, are Lipschitz continuous and γ > 0. Equations (54) and (55) represent the
collective dynamics of two subsystems which interact by exchanging energy. The energy states of the subsystems
are described by the scalar random variables x1 and x2. The unity coefficients scaling σij(·), i, j ∈ {1, 2},
i 6= j, appearing in (54) and (55) represent the topology of the energy exchange between the subsystems. More
specifically, given i, j ∈ {1, 2}, i 6= j, a coefficient of 1 denotes that subsystem j receives energy from subsystem
i, and a coefficient of zero denotes that subsystem i and j are disconnected, and hence, cannot exchange energies.

The connectivity between the subsystems can be represented by a graph G having two nodes such that G
has a directed edge from node i to node j if and only if subsystem j can receive energy from subsystem i. Since
the coefficients scaling σij(·), i, j ∈ {1, 2}, i 6= j, are constants, the graph topology is fixed. Furthermore, note
that the directed graph G is weakly connected since the underlying undirected graph is connected; that is, every
subsystem receives energy from, or delivers energy to, at least one other subsystem.

Note that (54) and (55) can be cast in the form of (4) with

f (x) =

[
σ12(x2)− σ21(x1)

σ21(x1)− σ12(x2)

]
, D(x) =

[
γ(x2 − x1)

γ(x1 − x2)

]
,

where the stochastic term D(x)dw represents probabilistic variations in the energy transfer between the two
subsystems. Furthermore, note that since

eT2 dx(t) = eT2 f (x(t))dt + eT2 D(x(t))dw(t) = 0, x(0) a.s.
= x0, t ≥ 0,

where e2 , [1 1]T, it follows that dx1(t) + dx2(t) = 0, which implies that the total system energy is conserved.
In this example, we use Theorem 3 to analyze the collective behavior of (54) and (55). Specifically, we are

interested in the energy equipartitioning behavior of the subsystems. For this purpose, we make the assumptions
σij(xj) − σji(xi) = 0 if and only if xi = xj, i 6= j, and (xi − xj)[σij(xj) − σji(xi)] ≤ −γ2(x1 − x2) for
i, j ∈ {1, 2}.
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The first assumption implies that if the energies in the connected subsystems i and j are equal, then
energy exchange between the subsystems is not possible. This statement is reminiscent of the zeroth law of
thermodynamics, which postulates that temperature equality is a necessary and sufficient condition for thermal
equilibrium. The second assumption implies that energy flows from more energetic subsystems to less energetic
subsystems and is reminiscent of the second law of thermodynamics, which states that heat (energy) must
flow in the direction of lower temperatures. It is important to note here that due to the stochastic term D(x)dw
capturing probabilistic variations in the energy transfer between the subsystems, the second assumption requires
that the scaled net energy flow (xi − xj)[σij(xj)− σji(xi)] is bounded by the negative intensity of the diffusion
coefficient given by 1

2 tr D(x)DT(x).

To show that (54) and (55) is stochastically semistable with respect to R2
+, note that E 4

= f−1(0) ∩
D−1(0) = {(x1, x2) ∈ R2

+ : x1 = x2 = α, α ∈ R+} and consider the Lyapunov function candidate
V(x1, x2) =

1
2 (x1 − α)2 + 1

2 (x2 − α)2, where α ∈ R+. Now, it follows that

LV(x1, x2) = (x1 − α)[σ12(x2)− σ21(x1)] + (x2 − α)[σ21(x1)− σ12(x2)]

+ 1
2 [(γ(x2 − x1))

2 + (γ(x1 − x2))
2]

= x1[σ12(x2)− σ21(x1)] + x2[σ21(x1)− σ12(x2)] + (γ(x1 − x2))
2

= (x1 − x2)[σ12(x2)− σ21(x1) + γ2(x1 − x2)]

≤ 0, (x1, x2) ∈ R+ ×R+, (56)

which implies that x1 = x2 = α is Lyapunov stable in probability with respect to R2
+.

Next, it is easy to see that LV(x1, x2) 6= 0 when x1 6= x2, and hence, LV(x1, x2) < 0, (x1, x2) ∈ R2
+\E .

Therefore, it follows from Theorem 3 that x1 = x2 = α is stochastically semistable with respect to R2
+ for all

α ∈ R+. Furthermore, note that eT2 dx(t) a.s.
= 0, t ≥ 0, implies

x(t) a.s.→ 1
2

e2eT2 x(0) a.s.
=

1
2
[x1(0) + x2(0)]e2 as t→ ∞.

Note that an identical assertion holds for the collective dynamics of n subsystems with a connected undirected
energy graph topology. 4

Finally, we extend Theorem 3.3 of [37] to provide a converse Lyapunov theorem for stochastic
semistability. For this result, recall that LV(xe) = 0 for every xe ∈ E . Also note that it follows from (9)
that LV(x) = LV(s(0, x)).

Theorem 5. Consider the nonlinear stochastic nonnegative dynamical system (4). Suppose (4) is stochastically
semistable with a ρ-domain of semistability D0. Then there exist a continuous nonnegative function
V : D0 → R+ and a class K∞ function α(·) such that (i) V(x) = 0, x ∈ E , (ii) V(x) ≥ α(dist(x, E)),
x ∈ D0, and (iii) LV(x) < 0, x ∈ D0\E .

Proof. Let Bx0 denote the set of all sample trajectories of (4) for which limt→∞ dist(x(t, ω), E) = 0 and
x({t ≥ 0}, ω) ∈ Bx0 , ω ∈ Ω, and let 1Bx0 (ω), ω ∈ Ω, denote the indicator function defined on the set
Bx0 , that is,

1Bx0 (ω)
4
=

{
1, if x({t ≥ 0}, ω) ∈ Bx0 ,
0, otherwise.

Note that by definition Px0 (Bx0) ≥ 1− ρ for all x0 ∈ D0. Define the function V : D0 → R+ by

V(x) , sup
t≥0

{
1 + 2t
1 + t

E [dist(s(t, x), E)1Bx (ω)]

}
, x ∈ D0, (57)
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and note that V(·) is well defined since (4) is stochastically semistable with respect to Rn
+. Clearly, (i)

holds. Furthermore, since V(x) ≥ dist(x, E), x ∈ D0, it follows that (ii) holds with α(r) = r.
To show that V(·) is continuous on D0\E , define T : D0\E → [0, ∞) by T(z) , inf{h :

E [dist(s(h, z), E)1Bz(ω)] < dist(z, E)/2 for all t ≥ h > 0}, and denote

Wε ,

{
x ∈ D0 : Px

(
sup
t≥0

dist(s(t, x), E) ≤ ε

)
≥ 1− ρ

}
. (58)

Note thatWε ⊃ E is open and contains an open neighborhood of E . Consider z ∈ D0\E and define
λ , dist(z, E) > 0. Then it follows from stochastic semistability of (4) that there exists h > 0 such that
Pz (s(h, z) ∈ Wλ/2) ≥ 1− ρ. Consequently, Pz (s(h + t, z) ∈ Wλ/2) ≥ 1− ρ for all t ≥ 0, and hence,
it follows that T(z) is well defined. Since Wλ/2 is open, there exists a neighborhood Bσ(s(T(z), z)
such that Pz (Bσ(s(T(z), z)) ⊂ Wλ/2) ≥ 1− ρ. Hence, N ⊂ D0 is a neighborhood of z such that
sT(z)(HNn ) , Bσ(s(T(z), z)).

Next, choose η > 0 such that η < λ/2 and Bη(z) ⊂ N . Then, for every t > T(z) and y ∈ Bη(z),

[(1 + 2t)/(1 + t)]E [dist(s(t, y), E)1By(ω)] ≤ 2E [dist(s(t, y), E)1By(ω)] ≤ λ.

Therefore, for every y ∈ Bη(z),

V(z)−V(y) = sup
t≥0

{
1 + 2t
1 + t

E [dist(s(t, z), E)1Bz(ω)]

}
− sup

t≥0

{
1 + 2t
1 + t

E [dist(s(t, y), E)1By(ω)]

}
= sup

0≤t≤T(z)

{
1 + 2t
1 + t

E [dist(s(t, z), E)1Bz(ω)]

}
(59)

− sup
0≤t≤T(z)

{
1 + 2t
1 + t

E [dist(s(t, y), E)1By(ω)]

}
.

Hence,

|V(z)−V(y)| ≤ sup
0≤t≤T(z)

∣∣∣∣1 + 2t
1 + t

(
E [dist(s(t, z), E)1Bz(ω)] (60)

−E [dist(s(t, y), E)1By(ω)]
)∣∣∣∣

≤ 2 sup
0≤t≤T(z)

|E [dist(s(t, z), E)1Bz(ω)]−E [dist(s(t, y), E)1By(ω)]|

≤ 2 sup
0≤t≤T(z)

E [dist(s(t, z), s(t, y))] , z ∈ D0\E , y ∈ Bη(z). (61)

Now, since f (·) and D(·) satisfy (6) and (7), it follows from continuous dependence of solutions s(·, ·)
on system initial conditions ([32], Theorem 7.3.1) and (61) that V(·) is continuous on D0\E .

To show that V(·) is continuous on E , consider xe ∈ E . Let {xn}∞
n=1 be a sequence in D0\E that

converges to xe. Since xe is Lyapunov stable in probability with respect to Rn
+, it follows that x(t)

a.s.≡ xe

is the unique solution to (4) with x(0) a.s.
= xe. By continuous dependence of solutions s(·, ·) on system

initial conditions ([32], Theorem 7.3.1), s(t, xn)
a.s.→ s(t, xe)

a.s.
= xe as n→ ∞, t ≥ 0.

Let ε > 0 and note that it follows from (ii) of Proposition 3 that there exists δ = δ(xe) > 0 such that
for every solution of (4) in Bδ(xe) there exists T̂ = T̂(xe, ε) > 0 such that P

(
st(HBδ(xe)

n ) ⊂ Wε

)
≥ 1− ρ



Entropy 2017, 19, 693 21 of 48

for all t ≥ T̂. Next, note that there exists a positive integer N1 such that xn ∈ Bδ(xe) for all n ≥ N1.
Now, it follows from (57) that

V(xn) ≤ 2 sup
0≤t≤T̂

E[dist(s(t, xn), E)1Bxn (ω)] + 2ε, n ≥ N1. (62)

Next, it follows from ([32], Theorem 7.3.1) that E[|s(·, xn)|] converges to E[|s(·, xe)|] uniformly on
[0, T̂]. Hence,

lim
n→∞

sup
0≤t≤T̂

E [dist(s(t, xn), E)1Bxn (ω)] = sup
0≤t≤T̂

E
[

lim
n→∞

dist(s(t, xn), E)1Bxn (ω)
]

≤ sup
0≤t≤T̂

dist(xe, E) (63)

= 0,

which implies that there exists a positive integer N2 = N2(xe, ε) ≥ N1 such that

sup
0≤t≤T̂

E [dist(s(t, xn), E)1Bxn (ω)] < ε

for all n ≥ N2. Combining (62) with the above result yields V(xn) < 4ε for all n ≥ N2, which implies
that limn→∞ V(xn) = 0 = V(xe).

Finally, we show that LV(x(t)) is negative along the solution of (4) on D0\E . Note that for every
x ∈ D0\E and 0 < h ≤ 1/2 such that P (s(h, x) ∈ D0\E) ≥ 1− ρ, it follows from the definition of T(·)
that E [V(s(h, x))] is reached at some time t̂ such that 0 ≤ t̂ ≤ T(x). Hence, it follows from the law of
iterated expectation that

E [V(s(h, x))] = E
[
E
[
dist(s(t̂ + h, x), E)1Bs(h,x)(ω)

] 1 + 2t̂
1 + t̂

]
= E

[
dist(s(t̂ + h, x), E)1Bx (ω)

] 1 + 2t̂ + 2h
1 + t̂ + h

[
1− h

(1 + 2t̂ + 2h)(1 + t̂)

]
(64)

≤ V(x)
[

1− h
2(1 + T(x))2

]
,

which implies that

LV(x) = lim
h→0+

E [V(s(h, x))]−V(x)
h

≤ −1
2

V(x)(1 + T(x))−2 < 0, x ∈ D0\E ,

and hence, (iii) holds.

5. Conservation of Energy and the First Law of Thermodynamics: A Stochastic Perspective

In this section, we extend the thermodynamic model proposed in [30] to include probabilistic
variations in the instantaneous rate of energy dissipation as well as probabilistic variations in the
energy transfer between the subsystems. Even though the treatment in this and the next two sections
closely parallels that of [30] for deterministic thermodynamics, the thermodynamic models and proofs
of our results are rendered more difficult due to the inclusion of stochastic disturbances. To formulate
our state space stochastic thermodynamic model, we consider the large-scale stochastic dynamical
system G shown in Figure 1 involving energy exchange between q interconnected subsystems and use
the notation developed in [30].
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Sq σqq(E)

σjj(E)

σii(E)

σ11(E)G1

Gi

Gj

Gq

σij(E) σji(E)

Figure 1. Large-scale dynamical system G with D(E) = 0 and J(E) = 0.

Specifically, Ei : [0, ∞)→ R+ denotes the energy (and hence a nonnegative quantity) of the i-th
subsystem, Si : [0, ∞) → R denotes the external power (heat flux) supplied to (or extracted from)
the i-th subsystem, σij : Rq

+ → R+, i 6= j, i, j = 1, . . . , q, denotes the instantaneous rate of energy
(heat) flow from the j-th subsystem to the i-th subsystem, J(i,k) : Rq

+ → R+, i = 1, . . . , q, k = 1, . . . , d1,
denotes the instantaneous rate of energy (heat) received or delivered to the i-th subsystem from all
other subsystems due to the stochastic disturbance w1k(·), σii : Rq

+ → R+, i = 1, . . . , q, denotes
the instantaneous rate of energy (heat) dissipation from the i-th subsystem to the environment,
and D(i,l) : Rq

+ → R+, i = 1, . . . , q, l = 1, . . . , d2, denotes the instantaneous rate of energy (heat)
dissipation from the i-th subsystem to the environment due to the stochastic disturbance w2l(·).
Here we assume that σij : Rq

+ → R+, i, j = 1, . . . , q, J(i,k) : Rq
+ → R+, i = 1, . . . , q, k = 1, . . . , d1,

and D(i,l) : Rq
+ → R+, i = 1, . . . , q, l = 1, . . . , d2, are locally Lipschitz continuous on Rq

+ and satisfy
a linear growth condition, and Si : [0, ∞) → R, i = 1, . . . , q, are bounded piecewise continuous
functions of time.

An energy balance for the i-th subsystem yields

Ei(T) = Ei(t0) +
q

∑
j=1, j 6=i

∫ T

t0

[σij(E(t))− σji(E(t))]dt

+
∫ T

t0

rowi(J(E(t)))dw1(t)−
∫ T

t0

σii(E(t))dt (65)

−
∫ T

t0

rowi(D(E(t)))dw2(t) +
∫ T

t0

Si(t)dt, T ≥ t0,
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or, equivalently, in vector form,

E(T) = E(t0) +
∫ T

t0

f (E(t))dt +
∫ T

t0

J(E(t))dw1(t)−
∫ T

t0

d(E(t))dt

−
∫ T

t0

D(E(t))dw2(t) +
∫ T

t0

S(t)dt, T ≥ t0, (66)

where E(t) 4
= [E1(t), . . . , Eq(t)]T, w1(·) and w2(·) are, respectively, a d1-dimensional and

d2-dimensional independent standard Wiener process (i.e., Brownian motion) defined on a complete
filtered probability space (Ω,F , {Ft}t≥t0 ,P), E(t0) is independent of (w1(t) − w1(t0)), t ≥ t0, and
(w2(t)− w2(t0)), t ≥ t0,

d(E(t)) 4
= [σ11(E(t)), . . . , σqq(E(t))]T,

S(t) 4
= [S1(t), . . . , Sq(t)]T,

f (E) = [ f1(E), . . . , fq(E)]T : Rq
+ → Rq,

J(E) = [row1(J(E)), . . . , rowq(J(E))]T : Rq
+ → Rq ×Rd1 ,

D(E) = [row1(D(E)), . . . , rowq(D(E))]T : Rq
+ → Rq ×Rd2 .

Here, the stochastic disturbance J(E)dw1 in (66) captures probabilistic variations in the energy transfer
rates between compartments and the stochastic disturbance D(E)dw2 captures probabilistic variations
in the instantaneous rate of energy dissipation.

Equivalently, (65) can be rewritten as

dEi(t) =
q

∑
j=1, j 6=i

[σij(E(t))− σji(E(t))]dt + rowi(J(E(t)))dw1(t)− σii(E(t))dt

−rowi(D(E(t)))dw2(t) + Si(t)dt, Ei(t0)
a.s.
= Ei0, t ≥ t0, (67)

or, in vector form,

dE(t) = f (E(t))dt + J(E(t))dw1(t)− d(E(t))dt− D(E(t))dw2(t) + S(t)dt, E(t0)
a.s.
= E0, t ≥ t0, (68)

where E0
4
= [E10, . . . , Eq0]

T, yielding a differential energy balance equation that characterizes energy
flow between subsystems of the large-scale stochastic dynamical system G. Here we assume that
S(·) satisfies sufficient regularity conditions such that (68) has a unique solution forward in time.
Specifically, we assume that the external power (heat flux) S(·) supplied to the large-scale stochastic
dynamical system G consists of measurable functions S(·) adapted to the filtration {Ft}t≥t0 such that
S(t) ∈ Hq, t ≥ t0, for all t ≥ s, w(t)− w(s) is independent of S(τ), w(τ), τ ≤ s, and E(t0), where

w(t) 4= [wT
1 (t), wT

2 (t)]
T, and hence, S(·) is non-anticipative. Furthermore, we assume that S(·) takes

values in a compact metrizable set. In this case, it follows from Theorem 2.2.4 of [53] that there exists
a path-wise unique solution to (68) in (Ω, {Ft}t≥t0 ,PE0).

Equation (66) or, equivalently, (68) is a statement of the first law for stochastic thermodynamics as
applied to isochoric transformations (i.e., constant subsystem volume transformations) for each of the
subsystems Gi, i = 1, . . . , q. To see this, let the total energy in the large-scale stochastic dynamical
system G be given by U 4

= eTE, where eT 4
= [1, . . . , 1] and E ∈ Rq

+, and let the net energy received by
the large-scale dynamical system G over the time interval [t1, t2] be given by

Q 4
=
∫ t2

t1

eT[S(t)− d(E(t))]dt−
∫ t2

t1

eTD(E(t))dw2(t), (69)
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where E(t), t ≥ t0, is the solution to (68). Then, premultiplying (66) by eT and using the fact that
eT f (E) ≡ 0 and eT J(E) ≡ 0, it follows that

∆U = Q, (70)

where ∆U 4
= U(t2) − U(t1) denotes the variation in the total energy of the large-scale stochastic

dynamical system G over the time interval [t1, t2].
For our large-scale stochastic dynamical system model G, we assume that σij(E) = 0, E ∈ Rq

+,
σjj(E) = 0, E ∈ Rq

+, J(j,k)(E) = 0, E ∈ Rq
+, k = 1, . . . , d1, and D(j,l)(E) = 0, E ∈ Rq

+, l = 1, . . . , d2,

whenever Ej = 0, j = 1, . . . , q. In this case, f (E)− d(E), E ∈ Rq
+, is essentially nonnegative. The above

constraint implies that if the energy of the j-th subsystem of G is zero, then this subsystem cannot
supply any energy to its surroundings nor dissipate energy to the environment. Moreover, we assume
that Si(t) ≥ 0 whenever Ei(t) = 0, t ≥ t0, i = 1, . . . , q, which implies that when the energy of the i-th
subsystem is zero, then no energy can be extracted from this subsystem.

The following proposition is needed for the main results of this paper.

Proposition 4. Consider the large-scale stochastic dynamical system G with differential energy balance equation
given by (68). Suppose σij(E) = 0, E ∈ Rq

+, J(j,k)(E) = 0, E ∈ Rq
+, k = 1, . . . , d1, and D(j,l)(E) = 0, E ∈

Rq
+, l = 1, . . . , d2, whenever Ej = 0, j = 1, . . . , q, and Si(t) ≥ 0 whenever Ei(t) = 0, t ≥ t0, i = 1, . . . , q.

Then the solution E(t), t ≥ t0, to (68) is nonnegative for all nonnegative initial conditions E0 ∈ Rq
+.

Proof. First note that f (E) − d(E), E ∈ Rq
+, is essentially nonnegative, J(j,k)(E) = 0, E ∈ Rq

+,

k = 1, . . . , d1, and D(j,l)(E) = 0, E ∈ Rq
+, l = 1, . . . , d2, whenever Ej = 0, j = 1, . . . , q. Next,

since Si(t) ≥ 0 whenever Ei(t) = 0, t ≥ t0, i = 1, . . . , q, it follows that dEi(t) ≥ 0 for all t ≥ t0

and i = 1, . . . , q whenever Ei(t) = 0 and Ej(t) ≥ 0 for all j 6= i and t ≥ t0. This implies that for all
nonnegative initial conditions E0 ∈ Rq

+, every sample trajectory of G is directed towards the interior of
the nonnegative orthant Rq

+ whenever Ei(t) = 0, i = 1, . . . , q, and hence, remains nonnegative almost
surely for all t ≥ t0.

Next, premultiplying (66) by eT, using Proposition 4, and using the fact that eT f (E) ≡ 0 and
eT J(E) ≡ 0, it follows that

eTE(T) = eTE(t0) +
∫ T

t0

eTS(t)dt−
∫ T

t0

eTd(E(t))dt−
∫ T

t0

eTD(E(t))dw2(t), T ≥ t0. (71)

Now, for the large-scale stochastic dynamical system G, define the input u(t) 4= S(t) and the output
y(t) 4

= d(E(t)). Hence, it follows from (71) that for any two Ft-stopping times τ1 and τ2 such that
τ1 ≥ τ2 almost surely,

E
[
eTE(τ2)|Fτ1

]
= eTE(τ1) +E

[∫ τ2

τ1

eTS(t)dt|Fτ1

]
−E

[∫ τ2

τ1

eTd(E(t))dt|Fτ1

]
−E

[∫ τ2

τ1

eTD(E(t))dw2(t)|Fτ1

]
(72)

= eTE(τ1) +E
[∫ τ2

τ1

[
eTS(t)− eTd(E(t))

]
dt|Fτ1

]
.

Thus, the large-scale stochastic dynamical system G is stochastically lossless [54] with respect to the
energy supply rate r(u, y) 4

= eTu − eTy and with the energy storage function U(E) 4
= eTE, E ∈ Rq

+.
In other words, the difference between the supplied system energy and the stored system energy is
a martingale with respect to the differential energy balance system filtration.

The following lemma is required for our next result.
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Lemma 2. Consider the large-scale stochastic dynamical system G with differential energy balance Equation (68).

Then, for every equilibrium state Ee ∈ H+
q and every ε > 0 and τ

a.s.
> 0, there exist Se ∈ Hq, α > 0, and

τ
a.s.
> τ̂

a.s.
> 0 such that, for every Ê ∈ H+

q with ‖Ê − Ee‖
a.s.
≤ ατ, there exists S : R+ → Hq such that

‖S(t)− Se‖
a.s.
≤ ε, t ∈ [0, τ̂], and E(t) = Ee +

(Ê−Ee)
τ̂ t, t ∈ [0, τ̂].

Proof. Note that with Se
4
= d(Ee)− f (Ee), the state Ee ∈ Rq

+ is an equilibrium state of (68). Let θ > 0

and τ
a.s.
> 0, and define

M(θ, τ)
4
= sup

E∈HB1(0)
q , t∈[0,τ]

‖ f (Ee + θtE)− d(Ee + θtE) + Se‖, (73)

MJ(θ, τ)
4
= sup

E∈HB1(0)
q , t∈[0,τ]

∥∥∥J
(

Ee +
(Ê−Ee)

‖Ê−Ee‖αt
)∥∥∥ , (74)

MD(θ, τ)
4
= sup

E∈HB1(0)
q , t∈[0,τ]

∥∥∥D
(

Ee +
(Ê−Ee)

‖Ê−Ee‖αt
)∥∥∥ . (75)

Note that for every τ
a.s.
> 0, limθ→0+ M(θ, τ)

a.s.
= 0, limθ→0+ MJ(θ, τ)

a.s.
= 0, and limθ→0+ MD(θ, τ)

a.s.
= 0,

and for every θ > 0, lim
τ

a.s.→0+ M(θ, τ)
a.s.
= 0, lim

τ
a.s.→0+ MJ(θ, τ)

a.s.
= 0, and lim

τ
a.s.→0+ MD(θ, τ)

a.s.
= 0.

Moreover, it follows from Lévy’s modulus of continuity theorem [55] that for sufficiently small dt > 0,

‖dw1(t)‖
a.s.
≤ MW(dt)dt and ‖dw2(t)‖

a.s.
≤ MW(dt)dt, where MW(dt) 4=

√
2dt loge

(
1
dt

)
.

Next, let ε > 0 and τ
a.s.
> 0 be given and, for sufficiently small dt > 0, let α > 0 be such that

M(α, τ) + α + MJ(α, τ)MW(dt) + MD(α, τ)MW(dt)
a.s.
≤ ε.

(The existence of such an α is guaranteed since M(α, τ)
a.s.→ 0, MJ(α, τ)

a.s.→ 0, and MD(α, τ)
a.s.→ 0 as

α→ 0+.) Now, let Ê ∈ H+
q be such that ‖Ê− Ee‖

a.s.
≤ ατ. With τ̂

4
= ‖Ê−Ee‖

α

a.s.
≤ τ and

S(t)dt =

[
− f (E(t)) + d(E(t)) + α

(Ê− Ee)

‖Ê− Ee‖

]
dt

−J(E(t))dw1(t) + D(E(t))dw2(t), t ∈ [0, τ̂], (76)

it follows that

E(t) = Ee +
(Ê− Ee)

‖Ê− Ee‖
αt, t ∈ [0, τ̂], (77)

is a solution to (68).
The result is now immediate by noting that E(τ̂) a.s.

= Ê and

‖S(t)− Se‖dt
a.s.
≤
∥∥∥ f
(

Ee +
(Ê−Ee)

‖Ê−Ee‖αt
)
− d

(
Ee +

(Ê−Ee)

‖Ê−Ee‖αt
)
+ Se

∥∥∥dt

+αdt +
∥∥∥J
(

Ee +
(Ê−Ee)

‖Ê−Ee‖αt
)∥∥∥ |dw1(t)| (78)

+
∥∥∥D
(

Ee +
(Ê−Ee)

‖Ê−Ee‖αt
)∥∥∥ |dw2(t)|

a.s.
≤ [M(α, τ) + α + MJ(α, τ)MW(dt) + MD(α, τ)MW(dt)]dt, t ∈ [0, τ̂],
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and hence,

‖S(t)− Se‖
a.s.
≤ M(α, τ) + α + MJ(α, τ)MW(dt) + MD(α, τ)MW(dt)

a.s.
≤ ε,

which proves the result.

It follows from Lemma 2 that the large-scale stochastic dynamical system G with the differential
energy balance Equation (68) is stochastically reachable from and stochastically controllable to the origin in
Rq
+. Recall from [54] that the large-scale stochastic dynamical system G with the differential energy

balance Equation (68) is stochastically reachable from the origin in Rq
+ if, for all E0 ∈ Rq

+ and ε > 0,

there exist a finite random variable τBε(E0)

a.s.
≥ t0, called the first hitting time, defined by

τBε(E0)
(ω) , inf{t ≥ t0 : E(t, ω) ∈ Bε(E0)},

and a Ft-adapted square integrable input S(·) defined on [t0, τBε(E0)
] such that the state E(t), t ≥ t0,

can be driven from E(t0)
a.s.
= 0 to E(τBε(E0)

) and E
[
τE0

]
< ∞, where τE0 , supε>0 τBε(E0)

and the

supremum is taken pointwise. Alternatively, G is stochastically controllable to the origin in Rq
+ if,

for all E(t0)
a.s.
= E0, E0 ∈ Rq

+, there exists a finite random variable τ̃Bε(E0)

a.s.
≥ t0 defined by

τ̃Bε(E0)
(ω) , inf{t ≥ t0 : E(t, ω) ∈ Bε(0)},

and aFt-adapted square integrable input S(·) defined on [t0, τ̃Bε(E0)
] such that the state E(t), t ≥ t0, can

be driven from E(t0)
a.s.
= E0 to E(τ̃Bε(E0)

) ∈ Bε(0) and τ̃E0 , supε>0 τ̃Bε(E0)
with a pointwise supremum.

We let Ur denote the set of measurable bounded H+
q -valued stochastic processes on the

semi-infinite interval [t0, ∞) consisting of power inputs (heat fluxes) to the large-scale stochastic

dynamical system G such that for every τE0

a.s.
≥ t0 the system energy state can be driven from E(t0)

a.s.
= 0

to E(τE0) by S(·) ∈ Ur. Furthermore, we let Uc denote the set of measurable bounded H+
q -valued

stochastic processes on the semi-infinite interval [t0, ∞) consisting of power inputs (heat fluxes) to
the large-scale stochastic dynamical system G such that the system energy state can be driven from
E(t0)

a.s.
= E0, E0 ∈ Rq

+ to E(τ̃E0) by S(·) ∈ Uc. Finally, let U be an input space that is a subset of
measurable bounded H+

q -valued stochastic processes on R. The spaces Ur, Uc, and U are assumed
to be closed under the shift operator, that is, if S(·) ∈ U (respectively, Uc or Ur), then the function ST

defined by ST(t)
4
= S(t + T) is contained in U (respectively, Uc or Ur) for all T ≥ 0.

The next result establishes the uniqueness of the internal energy function U(E), E ∈ Rq
+, for our

large-scale stochastic dynamical system G. For this result define the available energy of the large-scale
stochastic dynamical system G by

Ua(E0)
4
= − inf

u(·)∈U , τ
a.s.
≥ t0

E
[
E
[∫ τ

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]
, E0 ∈ Rq

+, (79)

where E(t), t ≥ t0, is the solution to (68) with E(t) a.s.
= E0 and admissible inputs S(·) ∈ U . The infimum

in (79) is taken over all Ft-measurable inputs S(·), all finite Ft-stopping times τ
a.s.
≥ 0, and all system

sample paths with initial value E(t0)
a.s.
= E0 and terminal value left free. Furthermore, define the

required energy supply of the large-scale stochastic dynamical system G by

Ur(E0)
4
= inf

u(·)∈Ur, τE0

a.s.
≥ 0

E
[
E
[∫ τE0

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

, E0 ∈ Rq
+. (80)

The infimum in (80) is taken over all system sample paths starting from E(t0)
a.s.
= 0 and ending at

E(τE0)
a.s.
= E0 at time t = τE0 , and all times t ≥ t0.
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Note that the available energy Ua(E) is the maximum amount of stored energy (net heat) that can
be extracted from the large-scale stochastic dynamical system G at any finite stopping time τ, and the
required energy supply Ur(E) is the minimum amount of energy (net heat) that can be delivered to the
large-scale stochastic dynamical system G such that, for all ε > 0, P0

(
limt→τE0

E(t) ∈ Bε(E0)
)
= 1.

Theorem 6. Consider the large-scale stochastic dynamical system G with differential energy balance equation
given by (68). Then G is stochastically lossless with respect to the energy supply rate r(u, y) = eTu− eTy,
where u(t) ≡ S(t) and y(t) ≡ d(E(t)), and with the unique energy storage function corresponding to the total
energy of the system G given by

U(E0) = eTE0

= −E
[
E
[∫ τ0

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= E0

]]
(81)

= E
[
E
[∫ τE0

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

, E0 ∈ Rq
+,

where E(t), t ≥ t0, is the solution to (68) with admissible input u(·) ∈ U , E(τ0)
a.s.
= 0, and E(τE0)

a.s.
= E0 ∈ Rq

+.
Furthermore,

0 ≤ Ua(E0) = U(E0) = Ur(E0) < ∞, E0 ∈ Rq
+. (82)

Proof. Note that it follows from (71) that G is stochastically lossless with respect to the energy supply
rate r(u, y) = eTu− eTy and with the energy storage function U(E) = eTE, E ∈ Rq

+. Since, by Lemma 2,
G is reachable from and controllable to the origin in Rq

+, it follows from (71), with E(t0)
a.s.
= E0 ∈ Rq

+

and E(τ+)
a.s.
= 0 for some τ+

a.s.
≥ t0 and u(·) ∈ U , that

eTE0 = −E
[
E
[∫ τ+

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]
≤ sup

u(·)∈U , τ+
a.s.
≥ t0

−E
[
E
[∫ τ+

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]
(83)

= − inf
u(·)∈U , τ+

a.s.
≥ t0

E
[
E
[∫ τ+

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]
= Ua(E0), E0 ∈ Rq

+.

Alternatively, it follows from (71), with E(0) a.s.
= 0 for some τ−

a.s.
≥ 0 and u(·) ∈ Ur, that

eTE0 = E
[
E
[∫ τ−

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

≥ inf
u(·)∈Ur, τ−

a.s.
≥ 0

E
[
E
[∫ τ−

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

(84)

= Ur(E0), E0 ∈ Rq
+.

Thus, (83) and (84) imply that (81) is satisfied and

Ur(E0) ≤ eTE0 ≤ Ua(E0), E0 ∈ Rq
+. (85)
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Conversely, it follows from (71) and the fact that U(E) = eTE ≥ 0, E ∈ Rq
+, that, for all τ

a.s.
≥ t0

and u(·) ∈ U ,

eTE0 ≥ −E
[
E
[∫ τ

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]
, E0 ∈ Rq

+, (86)

which implies that

eTE(t0) ≥ sup
u(·)∈U , τ

a.s.
≥ t0

−E
[
E
[∫ τ

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]

= − inf
u(·)∈U , τ

a.s.
≥ t0

E
[
E
[∫ τ

t0

[eTu(t)− eTy(t)]dt|E(t0)
a.s.
= E0

]]
(87)

= Ua(E0), E0 ∈ Rq
+.

Furthermore, it follows from the definition of Ua(·) that Ua(E) ≥ 0, E ∈ Rq
+, since the infimum in (79)

is taken over the set of values containing the zero value (τ a.s.
= t0).

Next, note that it follows from (71), with E(0) a.s.
= 0 and E(τ) a.s.

= E0, E0 ∈ Rq
+, for all τ

a.s.
≥ 0 and

u(·) ∈ Ur, that

eTE0 = E
[
E
[∫ τ

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

= inf
u(·)∈Ur, τ

a.s.
≥ 0

E
[
E
[∫ τ

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

(88)

= Ur(E0), E0 ∈ Rq
+.

Moreover, since the system G is reachable from the origin, it follows that for every E0 ∈ Rq
+, there

exists τ
a.s.
≥ 0 and u(·) ∈ Ur such that

E
[
E
[∫ τ

0
[eTu(t)− eTy(t)]dt|E(0) a.s.

= 0
]]

(89)

is finite, and hence, Ur(E0) < ∞, E0 ∈ Rq
+. Finally, combining (85), (87), and (88), it follows

that (82) holds.

It follows from (82) and the definitions of available energy Ua(E0) and the required energy supply
Ur(E0), E0 ∈ Rq

+, that the large-scale stochastic dynamical system G can deliver to its surroundings
all of its stored subsystem energies and can store all of the work done to all of its subsystems. This is
in essence a statement of the first law of stochastic thermodynamics and places no limitation on the
possibility of transforming heat into work or work into heat. In the case where S(t) ≡ 0, it follows
from (71) and the fact that σii(E) ≥ 0, E ∈ Rq

+, i = 1, . . . , q, that the zero solution E(t) ≡ 0 of
the large-scale stochastic dynamical system G with the differential energy balance Equation (68) is
Lyapunov stable in probability with respect to Rn

+ with Lyapunov function U(E) corresponding to the
total energy in the system.

6. Entropy and the Second Law of Thermodynamics

As for the deterministic dynamical thermodynamic model presented in [30], the nonlinear
differential energy balance Equation (68) can exhibit a full range of nonlinear behavior, including
bifurcations, limit cycles, and even chaos. However, a thermodynamically consistent energy flow
model should ensure that the evolution of the system energy is diffusive in character with convergent
subsystem energies. As established in [30], such a system model would guarantee the absence of the
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Poincaré recurrence phenomenon [56]. To ensure a thermodynamically consistent energy flow model,
we require the following axioms [57]. For the statement of these axioms, we first recall the following
graph-theoretic notions.

Definition 10 ([58]). A directed graph G(C) associated with the connectivity matrix C ∈ Rq×q has vertices
{1, 2, . . . , q} and an arc from vertex i to vertex j, i 6= j, if and only if C(j,i) 6= 0. A graph G(C) associated
with the connectivity matrix C ∈ Rq×q is a directed graph for which the arc set is symmetric, that is, C = CT.
We say that G(C) is strongly connected if for any ordered pair of vertices (i, j), i 6= j, there exists a path
(i.e., a sequence of arcs) leading from i to j.

Recall that the connectivity matrix C ∈ Rq×q is irreducible, that is, there does not exist a
permutation matrix such that C is cogredient to a lower-block triangular matrix, if and only if G(C)
is strongly connected (see Theorem 2.7 of [58]). Let φij(E) , σij(E)− σji(E), E ∈ Rq

+, denote the net
energy flow from the j-th subsystem Gj to the i-th subsystem Gi of the large-scale stochastic dynamical
system G.

Axiom (i): For the connectivity matrix C ∈ Rq×q associated with the large-scale stochastic dynamical
system G defined by

C(i,j) ,
{

0, if φij(E) ≡ 0,
1, otherwise,

i 6= j, i, j = 1, . . . , q, (90)

and

C(i,i) , −
q

∑
k=1, k 6=i

C(k,i), i = j, i = 1, . . . , q, (91)

rank C = q− 1, and for C(i,j) = 1, i 6= j, φij(E) = 0 if and only if Ei = Ej.

Axiom (ii): For i, j = 1, . . . , q, (Ei − Ej)φij(E)
a.s.
≤ 0, E ∈ Rq

+, and, for all c > 0,

q

∑
j=1, j 6=i

(Ei − Ej)φij(E)
c + Ei
c + Ej

≤ −rowi(J(E))rowT
i (J(E)), i = 1, . . . , q.

As discussed in [30] for the deterministic thermodynamic problem, the fact that φij(E) = 0
if and only if Ei = Ej, i 6= j, implies that subsystems Gi and Gj of G are connected; alternatively,
φij(E) ≡ 0 implies that Gi and Gj are disconnected. Axiom (i) implies that if the energies in the connected
subsystems Gi and Gj are equal, then energy exchange between these subsystems is not possible.
This statement is consistent with the zeroth law of thermodynamics, which postulates that temperature
equality is a necessary and sufficient condition for thermal equilibrium. Furthermore, it follows from
the fact that C = CT and rank C = q− 1 that the connectivity matrix C is irreducible, which implies
that for any pair of subsystems Gi and Gj, i 6= j, of G there exists a sequence of connectors (arcs) of G
that connect Gi and Gj.

Axiom (ii) implies that energy flows from more energetic subsystems to less energetic subsystems
and is consistent with the second law of thermodynamics, which states that heat (energy) must flow
in the direction of lower temperatures [59]. Furthermore, note that φij(E) = −φji(E), E ∈ Rq

+, i 6=
j, i, j = 1, . . . , q, which implies conservation of energy between lossless subsystems. With S(t) ≡ 0 and
J(E) = 0, Axioms (i) and (ii) along with the fact that φij(E) = −φji(E), E ∈ Rq

+, i 6= j, i, j = 1, . . . , q,
imply that at a given instant of time, energy can only be transported, stored, or dissipated but
not created, and the maximum amount of energy that can be transported and/or dissipated from
a subsystem cannot exceed the energy in the subsystem. Finally, it is important to note here that due to
the stochastic disturbance term J(E)dw1 capturing probabilistic variations in heat transfer between the
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subsystems, Axiom (ii) requires that the scaled net energy flow between the subsystems is bounded by
the negative intensity of the system diffusion.

Next, we show that the classical Clausius equality and inequality for reversible and irreversible
thermodynamics over cyclic motions are satisfied for our stochastic thermodynamically consistent
energy flow model. For this result

∮
denotes a cyclic integral evaluated along an arbitrary closed path

of (68) in Rq
+; that is,

∮
,
∫ τf

t0
with τf

a.s.
≥ t0 and S(·) ∈ U such that E(τf)

a.s.
= E(t0)

a.s.
= E0 ∈ Rq

+.

Proposition 5. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and assume that Axioms (i) and (ii) hold. Then, for all E0 ∈ Rq

+, τf ≥ t0, and S(·) ∈ U
such that E(τf)

a.s.
= E(t0)

a.s.
= E0,

EE0

[∫ τf

t0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
dt
]]

= EE0

[∮ q

∑
i=1

dQi(t)
c + Ei(t)

]

≤ EE0

[∫ τf

t0

q

∑
i=1

1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt

]
, (92)

where c > 0, dQi(t) , [Si(t)− σii(E(t))]dt, i = 1, . . . , q, is the amount of net energy (heat) received by the
i-th subsystem over the infinitesimal time interval dt, and E(t), t ≥ t0, is the solution to (68) with initial
condition E(t0)

a.s.
= E0. Furthermore,

EE0

[∮ q

∑
i=1

dQi(t)
c + Ei(t)

]
= EE0

[∫ τf

t0

q

∑
i=1

1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt

]
(93)

if and only if there exists a continuous function α : [t0, tf]→ R+ such that E(t) = α(t)e, t ∈ [t0, tf].

Proof. Since, by Proposition 4, E(t) ≥≥ 0, t ≥ t0, and φij(E) = −φji(E), E ∈ Rq
+, i 6= j, i, j = 1, . . . , q,

it follows from (68), Ito’s lemma, and Axiom (ii) that, for all τf
a.s.
≥ t0,

EE0

[∮ q

∑
i=1

dQi(t)
c + Ei(t)

]
= EE0

[∫ τf

t0

q

∑
i=1

dEi(t)−∑
q
j=1, j 6=i φij(E(t))dt

c + Ei(t)

]

= EE0

[∫ τf

t0

q

∑
i=1

dEi(t)
c + Ei(t)

]
−EE0

[∫ τf

t0

q

∑
i=1

∑
q
j=1, j 6=i φij(E(t))dt

c + Ei(t)

]

= EE0

[ ∫ τf

t0

q

∑
i=1

[
d loge (c + Ei(t)) +

1
2

rowi(J(E(t)))rowT
i (J(E(t)))

(c + Ei(t))2 dt

+
1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt
]]

−EE0

[∫ τf

t0

q

∑
i=1

q

∑
j=1, j 6=i

1
2

(
φij(E(t))
c + Ei(t)

− φij(E(t))
c + Ej(t)

)
dt

]

= EE0

[
q

∑
i=1

loge

(
c + Ei(τf)

c + Ei(t0)

)]

−EE0

[∫ τf

t0

q

∑
i=1

q

∑
j=1, j 6=i

1
2

φij(E(t))[Ej(t)− Ei(t)]
(c + Ei(t))(c + Ej(t))

dt

]
(94)

+EE0

[∫ τf

t0

q

∑
i=1

1
2

rowi(J(E(t)))rowT
i (J(E(t)))

(c + Ei(t))2 dt

]
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+EE0

[∫ τf

t0

q

∑
i=1

1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt

]

= EE0

[ ∫ τf

t0

q

∑
i=1

1
2

1
(c + Ei(t))2

[ q

∑
j=1, j 6=i

φij(E(t))[Ei(t)− Ej(t)]
c + Ei(t)
c + Ej(t)

+rowi(J(E(t)))rowT
i (J(E(t)))

]
dt
]

+EE0

[∫ τf

t0

q

∑
i=1

1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt

]

≤ EE0

[∫ τf

t0

q

∑
i=1

1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt

]
,

which proves (92).
To show (93), note that it follows from (94), Axiom (i), and Axiom (ii) that (93) holds if and only

if Ei(t)
a.s.
= Ej(t), t ∈ [t0, τf], i 6= j, i, j = 1, . . . , q, or, equivalently, there exists a continuous function

α : [t0, τf]→ R+ such that E(t) a.s.
= α(t)e, t ∈ [t0, τf].

Inequality (92) is a generalization of Clausius’ inequality for reversible and irreversible
thermodynamics as applied to large-scale stochastic dynamical systems and restricts the manner
in which the system dissipates (scaled) heat over cyclic motions. Note that the Clausius inequality (92)
for the stochastic thermodynamic model is stronger than the Clausius inequality for the deterministic
model presented in [30].

It follows from Axiom (i) and (68) that for the adiabatically isolated large-scale stochastic dynamical
system G (that is, S(t) ≡ 0 and D(E(t)) ≡ 0), the energy states given by Ee = αe, α ≥ 0, correspond to
the equilibrium energy states of G. Thus, as in classical thermodynamics, we can define an equilibrium
process as a process in which the trajectory of the large-scale stochastic dynamical system G moves
along the equilibrium manifoldMe , {E ∈ Rq

+ : E = αe, α ≥ 0} corresponding to the set of equilibria
of the isolated [60] system G. The power input that can generate such a trajectory can be given by
S(t) = d(E(t)) + u(t), t ≥ t0, where u(·) ∈ U is such that ui(t) ≡ uj(t), i 6= j, i, j = 1, . . . , q. Our
definition of an equilibrium transformation involves a continuous succession of intermediate states
that differ by infinitesimals from equilibrium system states and thus can only connect initial and
final states, which are states of equilibrium. This process need not be slowly varying, and hence,
equilibrium and quasistatic processes are not synonymous in this paper. Alternatively, a nonequilibrium
process is a process that does not lie on the equilibrium manifoldMe. Hence, it follows from Axiom (i)
that for an equilibrium process φij(E(t)) = 0, t ≥ t0, i 6= j, i, j = 1, . . . , q, and thus, by Proposition 5,
inequality (92) is satisfied as an equality. Alternatively, for a nonequilibrium process it follows from
Axioms (i) and (ii) that (92) is satisfied as a strict inequality.

Next, we give a stochastic definition of entropy for the large-scale stochastic dynamical system G
that is consistent with the classical thermodynamic definition of entropy.

Definition 11. For the large-scale stochastic dynamical system G with differential energy balance Equation (68),
a function S : Rq

+ → R satisfying

E [S(E(τ2))|Fτ1 ] ≥ S(E(τ1)) +E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Fτ1

]
(95)

for every Ft-stopping times τ2
a.s.
≥ τ1

a.s.
≥ t0 and S(·) ∈ U is called the entropy function of G.
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Note that it follows from Definition 11 that the difference between the system entropy production
and the stored system entropy is a submartingale with respect to the differential energy balance filtration.

Next, we show that (92) guarantees the existence of an entropy function for G. For this result
define the available entropy of the large-scale stochastic dynamical system G by

Sa(E0) , − sup
S(·)∈Uc, τ0

a.s.
≥ t0

E
[
E
[ ∫ τ0

t0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|E(t0)

a.s.
= E0

]]
, (96)

where E0 ∈ Rq
+ and E(τ0)

a.s.
= 0, and define the required entropy supply of the large-scale stochastic

dynamical system G by

Sr(E0) , sup
S(·)∈Ur, τE0

a.s.
≥ t0

E
[
E
[ ∫ τE0

t0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|E(t0)

a.s.
= 0

]]
, (97)

where E(τE0)
a.s.
= E0 ∈ Rq

+. Note that the available entropy Sa(E0) is the minimum amount of scaled
heat (entropy) that can be extracted from the large-scale stochastic dynamical system G in order to
transfer it from an initial state E(t0) = E0 to E(T) = 0. Alternatively, the required entropy supply
Sr(E0) is the maximum amount of scaled heat (entropy) that can be delivered to G to transfer it from
the origin to a given subset in the state space containing the initial state E(t0) = E0 over a finite
stopping time. For further details, see [54].

Theorem 7. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and assume that Axiom (ii) holds. Then there exists an entropy function for G. Moreover,
Sa(E), E ∈ Rq

+, and Sr(E), E ∈ Rq
+, are possible entropy functions for G with Sa(0) = Sr(0) = 0. Finally,

all entropy functions S(E), E ∈ Rq
+, for G satisfy

Sr(E) ≤ S(E)− S(0) ≤ Sa(E), E ∈ Rq
+. (98)

Proof. Since, by Lemma 2, G is stochastically controllable to and stochastically reachable from the
origin in Rq

+, it follows from (96) and (97) that Sa(E0) < ∞, E0 ∈ Rq
+, and Sr(E0) > −∞, E0 ∈ Rq

+,
respectively. Next, let E0 ∈ Rq

+, and let S(·) ∈ U be such that E(τi)
a.s.
= E(τf)

a.s.
= 0 and E(τ0)

a.s.
= E0,

where τi
a.s.
< τ0

a.s.
< τf. In this case, it follows from (92) that, for all τi

a.s.
< τ0

a.s.
< τf,

E
[
E
[ ∫ τf

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τi)

a.s.
= 0

]]
≤ 0. (99)

Next, using the strong Markov property we have

E
[
E
[ ∫ τf

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τi)

]]

= E
[
E
[∫ τ0

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt

+
∫ τf

τ0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τi)

]]
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= E
[
E
[ ∫ τ0

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τi)

]]
(100)

+E
[
E
[ ∫ τf

τ0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ0

]]

= E
[
E
[ ∫ τ0

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τi)

]]

+E
[
E
[ ∫ τf

τ0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τ0)

]]
,

and hence, (99) implies

E
[
E
[ ∫ τ0

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τi)

]]

≤ −E
[
E
[ ∫ τf

τ0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τ0)

]]
. (101)

Now, taking the supremum on both sides of (101) over all S(·) ∈ Ur and τi
a.s.
≤ τ0 yields

Sr(E0) = sup
S(·)∈Ur, τi

a.s.
≤ τ0

E
[
E
[ ∫ τ0

τi

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt|E(τi)

]]
(102)

≤ −E
[
E
[ ∫ τf

τ0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τ0)

]]
.

Next, taking the infimum on both sides of (102) over all S(·) ∈ Uc and τf
a.s.
≥ τ0, we obtain Sr(E0) ≤

Sa(E0), E0 ∈ Rq
+, which implies that −∞ < Sr(E0) ≤ Sa(E0) < ∞, E0 ∈ Rq

+. Hence, the functions
Sa(·) and Sr(·) are well defined.

Next, it follows from the definition of Sa(·), the law of iterated expectation, and the strong Markov

property that for every stopping time T
a.s.
≥ τ1 and S(·) ∈ Uc such that E(τ1) ∈ H+

q and E(T ) a.s.
= 0,

−Sa(E(τ1))

= sup
S(·)∈Uc, T

a.s.
≥ τ1

E
[ ∫ T

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|E(τ1)

]
,

≥ E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ1

]

+ sup
S(·)∈Uc, T

a.s.
≥ τ2

E
[ ∫ T

τ2

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ1

]
,

= E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ1

]
(103)

+E
[

sup
S(·)∈Uc, T

a.s.
≥ τ2

E
[ ∫ T

τ2

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Fτ2

]
|Fτ1

]
,
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= E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ1

]
−E [Sa(E(τ2))|Fτ1 ] , τ1

a.s.
≤ τ2

a.s.
≤ T ,

which implies that Sa(E), E ∈ Rq
+, satisfies (95). Thus, Sa(E), E ∈ Rq

+, is a possible entropy function
for G. Note that with E(τ0)

a.s.
= E(T ) a.s.

= 0 it follows from (92) that the supremum in (96) is taken over
the set of negative semidefinite values with one of the values being zero for S(t)

a.s.≡ 0. Thus, Sa(0) = 0.
Similarly, it follows from the definition of Sr(·) that for every stopping time T ≤ τ2 and S(·) ∈ Ur

such that E(τ2) ∈ H+
q and E(T ) a.s.

= 0,

Sr(E(τ2)) = sup
S(·)∈Ur, T

a.s.
≤ τ2

∫ τ2

T

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt,

≥ sup
S(·)∈Ur, T

a.s.
≤ τ1

∫ τ1

T

[ q

∑
i=1

Si(t)− σii(E(t))
c + Ei(t)

− 1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt

+
∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt, (104)

= Sr(E(τ1)) +
∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt,

T
a.s.
≤ τ1

a.s.
≤ τ2,

which implies that Sr(E), E ∈ Rq
+, satisfies (95). Thus, Sr(E), E ∈ Rq

+, is a possible entropy function
for G. Note that with E(t0)

a.s.
= E(T ) a.s.

= 0 it follows from (92) that the supremum in (97) is taken over
the set of negative semidefinite values with one of the values being zero for S(t)

a.s.≡ 0. Thus, Sr(0) = 0.
Next, suppose there exists an entropy function S : Rq

+ → R for G, and let E(τ2)
a.s.
= 0 in (95). Then

it follows from (95) that

S(E(τ1))− S(0) ≤ −E
[ ∫ τ2

τ1

q

∑
i=1

Si(t)− σii(E(t))
c + Ei(t)

− 1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Fτ1

]
(105)

for all τ2
a.s.
≥ τ1 and S(·) ∈ Uc, which implies that

S(E(τ1))− S(0)

≤ inf
S(·)∈Uc, τ2

a.s.
≥ τ1

[
−E

[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ1

]]

= − sup
S(·)∈Uc, τ2

a.s.
≥ τ1

E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Fτ1

]
(106)

= Sa(E(τ1)).

Since E(τ1) is arbitrary, it follows that S(E)− S(0) ≤ Sa(E), E ∈ Rq
+.

Alternatively, let E(τ1)
a.s.
= 0 in (95). Then it follows from (95) that

S(E(τ2))− S(0) ≥ E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Fτ1

]
(107)
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for all τ1
a.s.
≤ τ2 and S(·) ∈ Ur. Hence,

S(E(τ2))− S(0) ≥ sup
S(·)∈Ur, τ1

a.s.
≤ τ2

E
[ ∫ τ2

τ1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Fτ1

]
(108)

= Sr(E(τ2)),

which, since E(τ2) is arbitrary, implies that Sr(E) ≤ S(E)− S(0), E ∈ Rq
+. Thus, all entropy functions

for G satisfy (98).

It is important to note that inequality (92) is equivalent to the existence of an entropy function for
G. Sufficiency is simply a statement of Theorem 7, while necessity follows from (95) with E(t2)

a.s.
= E(t1).

This definition of entropy leads to the second law of stochastic thermodynamics being viewed as
an axiom in the context of stochastic (anti)cyclo-dissipative dynamical systems [54].

The next result shows that all entropy functions for G are continuous on Rq
+.

Theorem 8. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and let S : Rq

+ → R be an entropy function of G. Then S(·) is continuous on Rq
+.

Proof. Let Ee ∈ Rq
+ and Se ∈ Rq be such that Se = d(Ee)− f (Ee). Note that with S(t)

a.s.≡ Se, Ee is
an equilibrium point of the differential energy balance Equation (68). Next, it follows from Lemma 2

that G is locally stochastically controllable, that is, for every τ
a.s.
> 0 and ε > 0, the set of points that can

be reached from and to Ee in time T using admissible inputs S : [0, τ]→ Hq, satisfying ‖S(t)− Se‖
a.s.
< ε,

contains a neighborhood of Ee.
Next, let δ > 0 and note that it follows from the continuity of f (·), d(·), J(·), and D(·) that there

exist τ > 0 and ε > 0 such that for every S : [0, τ) → Rq and ‖S(t)− Se‖
a.s.
< ε, ‖E(t)− Ee‖

a.s.
< δ,

t ∈ [0, τ), where S(·) ∈ U and E(t), t ∈ [0, τ), denotes the solution to (68) with the initial condition
Ee. Furthermore, it follows from the local controllability of G that for every τ̂ ∈ (0, τ], there exists
a strictly increasing, continuous function γ : Rq

+ → Rq
+ such that γ(0) = 0, and for every E0 ∈ H+

q

such that ‖E0 − Ee‖
a.s.
≤ γ(τ̂), there exists 0

a.s.
≤ τ̃

a.s.
≤ τ̂ and an input S : [0, τ̂] → Hq such that

‖S(t)− Se‖ < ε, t ∈ [0, τ̃), and E(t̂) a.s.
= E0. Hence, there exists β > 0 such that for every E0 ∈ H+

q such

that ‖E0 − Ee‖
a.s.
≤ β, there exists 0

a.s.
≤ τ̂

a.s.
≤ γ−1(‖E0 − Ee‖)] and an input S : [t0, τ̂] → Hq such that

‖S(t)− Se‖
a.s.
< ε, t ∈ [0, t̂], and E(t̂) a.s.

= E0. In addition, it follows from Lemma 2 that S : [0, τ̂]→ Hq is

such that E(t)
a.s.
≥≥ 0, t ∈ [0, τ̂].

Next, since σii(·), i = 1, . . . , q, is continuous, it follows that there exists M ∈ H+
1 such that

sup
‖E−Ee‖

a.s.
< δ, ‖S−Se‖

a.s.
< ε

∣∣∣∣∣ q

∑
i=1

[
Si − σii(E)

c + Ei
− 1

2
rowi(D(E))rowT

i (D(E))
(c + Ei)2

]∣∣∣∣∣ = M.

(109)

Hence, it follows that∣∣∣∣∣
∫ τ̂

0

q

∑
i=1

[
Si(σ)− σii(E(σ))

c + Ei(σ)
− 1

2
rowi(D(E(σ)))rowT

i (D(E(σ)))
(c + Ei(σ))2

]
dσ

∣∣∣∣∣
a.s.
≤

∫ τ̂

0

∣∣∣∣∣ q

∑
i=1

[
Si(σ)− σii(E(σ))

c + Ei(σ)
− 1

2
rowi(D(E(σ)))rowT

i (D(E(σ)))
(c + Ei(σ))2

]∣∣∣∣∣dσ
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a.s.
≤ Mτ̂
a.s.
≤ Mγ−1(‖E0 − Ee‖). (110)

Now, if S(·) is an entropy function of G, then

E [S(E(τ̂))|F0]
a.s.
≥ S(Ee) +E

[ ∫ τ̂

0

q

∑
i=1

[
Si(σ)− σii(E(σ))

c + Ei(σ)

−1
2

rowi(D(E(σ)))rowT
i (D(E(σ)))

(c + Ei(σ))2

]
dσ|F0

]
(111)

or, equivalently,

−E
[∫ τ̂

0

q

∑
i=1

[
Si(σ)− σii(E(σ))

c + Ei(σ)
− 1

2
rowi(D(E(σ)))rowT

i (D(E(σ)))
(c + Ei(σ))2

]
dσ|F0

]
a.s.
≥ S(Ee)−E [S(E(τ̂))|F0] . (112)

If S(Ee)
a.s.
≥ S(E(τ̂)), then combining (110) and (112) yields

|S(Ee)−E [S(E(τ̂))|F0] |
a.s.
≤ E

[
Mγ−1(‖E0 − Ee‖)|F0

]
. (113)

Alternatively, if S(E(τ̂))
a.s.
≥ S(Ee), then (113) can be derived by reversing the roles of Ee and E(τ̂).

Specifically, for E0 ∈ Rq
+ and E(τ̂) a.s.

= E0, (113) becomes

|S(E0)− S(Ee)| ≤ E[M]γ−1(‖E0 − Ee‖).

Hence, since γ(·) is continuous and E(τ̂) is arbitrary, it follows that S(·) is continuous on Rq
+.

Next, as a direct consequence of Theorem 7, we show that all possible entropy functions of G form
a convex set, and hence, there exists a continuum of possible entropy functions for G ranging from the
required entropy supply Sr(E) to the available entropy Sa(E).

Proposition 6. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and assume that Axioms (i) and (ii) hold. Then

S(E) , αSr(E) + (1− α)Sa(E), α ∈ [0, 1], (114)

is an entropy function for G.

Proof. The result is a direct consequence of the reachability of G along with inequality (95) by noting
that if Sr(E) and Sa(E) satisfy (95), then S(E) satisfies (95).

It follows from Proposition 6 that Definition 11 does not provide enough information to define
the entropy uniquely for nonequilibrium thermodynamic systems with differential energy balance
Equation (68). This difficulty has long been pointed out in [61]. Two particular entropy functions
for G can be computed a priori via the variational problems given by (96) and (97). For equilibrium
thermodynamics, however, uniqueness is not an issue, as shown in the next proposition.
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Proposition 7. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and assume that Axioms (i) and (ii) hold. Then at every equilibrium state E = Ee of the
isolated system G, the entropy S(E), E ∈ Rq

+, of G is unique (modulo a constant of integration) and is given by

S(E)− S(0) = Sa(E) = Sr(E) = eTloge(ce + E)− q loge c, (115)

where E = Ee and loge(ce+ E) denotes the vector natural logarithm given by [loge(c+ E1), . . . , loge(c+ Eq)]T.

Proof. It follows from Axiom (i) and Axiom (ii) that for an equilibrium process φij(E(t))
a.s.≡ 0, i 6=

j, i, j = 1, . . . , q, D(E(t))
a.s.≡ 0, and J(E(t))

a.s.≡ 0. Consider the entropy function Sa(·) given by (96),
and let E0 = Ee for some equilibrium state Ee. Then it follows from (68) that

Sa(E0) = − sup
S(·)∈Uc, T

a.s.
≥ t0

E
[
E
[ ∫ T

t0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(σ))2

]
dt|E(t0)

a.s.
= E0

]]

= − sup
S(·)∈Uc, T

a.s.
≥ t0

E
[
E
[∫ T

t0

q

∑
i=1

[
dEi(t)−∑

q
j=1,j 6=i φij(E(t))dt

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(σ))2 dt

]
|E(t0)

a.s.
= E0

]]

= − sup
S(·)∈Uc, T

a.s.
≥ t0

E

E
 q

∑
i=1

loge

(
c

c + Ei0

)
+
∫ T

t0

q

∑
i=1

1
2

rowi(J(E(t)))rowT
i (J(E(t)))

(c + Ei(t))2 dt

−
∫ T

t0

q

∑
i=1

q

∑
j=1,j 6=i

φij(E(t))
c + Ei(t)

dt|E(t0)
a.s.
= E0

]]
(116)

= − sup
S(·)∈Uc, T

a.s.
≥ t0

E

E
 q

∑
i=1

loge

(
c

c + Ei0

)
+
∫ T

t0

q

∑
i=1

1
2

rowi(J(E(t)))rowT
i (J(E(t)))

(c + Ei(t))2 dt

−
∫ T

t0

q

∑
i=1

q

∑
j=1,j 6=i

1
2

(
φij(E(t))
c + Ei(t)

− φij(E(t))
c + Ej(t)

)
dt|E(t0)

a.s.
= E0

]]

=
q

∑
i=1

loge

(
c + Ei0

c

)
+ inf

S(·)∈Uc, T
a.s.
≥ t0

E
[
E
[∫ T

t0

q

∑
i=1
−1

2
1

(c + Ei(t))2

[
q

∑
j=1, j 6=i

φij(E(t))

·[Ei(t)− Ej(t)]
c + Ei(t)
c + Ej(t)

+ rowi(J(E(t)))rowT
i (J(E(t)))

]
dt|E(t0)

a.s.
= E0

]]
.

Since the solution E(t), t ≥ t0, to (68) is nonnegative for all nonnegative initial conditions, it follows
from Axiom (ii) that the infimum in (116) is taken over the set of nonnegative values. However, the
zero value of the infimum is achieved on an equilibrium process for which φij(E(t))

a.s.≡ 0, i 6= j,
i, j = 1, . . . , q. Thus,

Sa(E0) = eTloge(ce + E0)− q loge c, E0 = Ee. (117)

Similarly, consider the entropy function Sr(·) given by (97). Then, it follows from (68) that, for E0 = Ee,
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Sr(E0) = sup
S(·)∈Ur, T

a.s.
≥ t0

E
[
E
[ ∫ T

t0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|E(t0)

a.s.
= 0

]]

= sup
S(·)∈Ur, T

a.s.
≥ t0

E

E
∫ T

t0

q

∑
i=1

dEi(t)−∑
q
j=1,j 6=i φij(E(t))dt

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt

]
|E(t0)

a.s.
= 0

]]

= sup
S(·)∈Ur, T

a.s.
≥ t0

E

E
 q

∑
i=1

loge

(
c + Ei0

c

)
+
∫ T

t0

q

∑
i=1

1
2

rowi(J(E(t)))rowT
i (J(E(t)))

(c + Ei(t))2 dt (118)

−
∫ T

t0

q

∑
i=1

q

∑
j=1,j 6=i

φij(E(t))
c + Ei(t)

dt|E(t0)
a.s.
= 0


=

q

∑
i=1

loge

(
c + Ei0

c

)
+ sup

S(·)∈Ur, T
a.s.
≥ t0

E
[
E
[∫ T

t0

q

∑
i=1

1
2

1
(c + Ei(t))2

[
q

∑
j=1, j 6=i

φij(E(t))

·[Ei(t)− Ej(t)]
c + Ei(t)
c + Ej(t)

+ rowi(J(E(t)))rowT
i (J(E(t)))

]
dt|E(t0)

a.s.
= 0

]]
.

Now, it follows from Axioms (i) and (ii) that the zero value of the supremum in (118) is achieved on
an equilibrium process and thus

Sr(E0) = eTloge(ce + E0)− q loge c, E0 = Ee. (119)

Finally, it follows from (98) that (115) holds.

The next proposition shows that if (95) holds as an equality for some transformation starting and
ending at an equilibrium point of the isolated dynamical system G, then this transformation must lie
on the equilibrium manifoldMe.

Proposition 8. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and assume that Axioms (i) and (ii) hold. Let S(·) denote an entropy of G, and let
E : [t0, t1] → Rq

+ denote the solution to (68) with E(t0)
a.s.
= α0e and E(t1)

a.s.
= α1e, where α0, α1 ≥ 0.

Then

E [S(E(t1))|Ft0 ] = S(E(t0)) +E
[∫ t1

t0

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

− 1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Ft0

]
(120)

if and only if there exists a continuous function α : [t0, t1] → R+ such that α(t0) = α0, α(t1) = α1, and
E(t) a.s.

= α(t)e, t ∈ [t0, t1].

Proof. Since E(t0) and E(t1) are equilibrium states of the isolated dynamical system G, it follows from
Proposition 7 that

E [S(E(t1))|Ft0 ]− S(E(t0))
a.s.
= q loge(c + α1)− q loge(c + α0). (121)
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Furthermore, it follows from (68) that

E
[∫ t1

t0

[
q

∑
i=1

Si(t)− σii(E(t))
c + Ei(t)

− 1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Ft0

]

= E
[∫ t1

t0

q

∑
i=1

dEi(t)−∑
q
j=1,j 6=i φij(E(t))dt

c + Ei(t)
|Ft0

]

−E
[∫ t1

t0

q

∑
i=1

1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2 dt|Ft0

]
(122)

= q loge

(
c + α1

c + α0

)
+E

[∫ t1

t0

q

∑
i=1

1
2

1
(c + Ei(t))2

[
q

∑
j=1, j 6=i

φij(E(t))[Ei(t)− Ej(t)]

· c + Ei(t)
c + Ej(t)

+ rowi(J(E(t)))rowT
i (J(E(t)))

]
dt|Ft0

]
.

Now, it follows from Axioms (i) and (ii) that (120) holds if and only if Ei(t) = Ej(t), t ∈ [t0, t1],
i 6= j, i, j = 1, . . . , q, or, equivalently, there exists a continuous function α : [t0, t1] → R+ such that
E(t) a.s.

= α(t)e, t ∈ [t0, t1], α(t0) = α0, and α(t1) = α1.

Even though it follows from Proposition 6 that Definition 11 does not provide a unique continuous
entropy function for nonequilibrium systems, the next theorem gives a unique, two-times continuously
differentiable entropy function for G for equilibrium and nonequilibrium processes. This result answers
the long-standing question of how the entropy of a nonequilibrium state of a dynamical process should
be defined [61,62], and establishes its global existence and uniqueness.

Theorem 9. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68), and assume that Axioms (i) and (ii) hold. Then the function S : Rq

+ → Rq
+ given by

S(E) = eTloge(ce + E)− q loge c, E ∈ Rq
+, (123)

where c > 0, is a unique (modulo a constant of integration), two-times continuously differentiable entropy
function of G. Furthermore, for E(t) 6∈ HMe

q , t ≥ t0, where E(t), t ≥ t0, denotes the solution to (68) and
Me = {E ∈ Rq

+ : E = αe, α ≥ 0}, (123) satisfies

E [S(E(t2))|Ft1 ] > S(E(t1)) +E
[∫ t2

t1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)

−1
2

rowi(D(E(t)))rowT
i (D(E(t)))

(c + Ei(t))2

]
dt|Ft1

]
(124)

for every t2 ≥ t1 ≥ t0 and S(·) ∈ U .

Proof. Since, by Proposition 1, E(t) ≥≥ 0, t ≥ t0, and φij(E) = −φji(E), E ∈ Rq
+, i 6= j, i, j = 1, . . . , q,

it follows that

E [S(E(t2))|Ft1 ]− S(E(t1))

= E
[∫ t2

t1

dS(E(t))|Ft1

]
= E

[∫ t2

t1

q

∑
i=1

dEi(t)
c + Ei(t)

− 1
2

[
rowi(J(E(t)))rowT

i (J(E(t)))
(c + Ei(t))2
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+
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Ft1

]

= E
[∫ t2

t1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Ft1

]

+E
[∫ t2

t1

q

∑
i=1

[
q

∑
j=1, j 6=i

φij(E(t))
c + Ei(t)

− 1
2

rowi(J(E(t)))rowT
i (J(E(t)))

(c + Ei(t))2

]
dt|Ft1

]
(125)

= E
[∫ t2

t1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Ft1

]

−E
[∫ t2

t1

q

∑
i=1

1
2

1
(c + Ei(t))2

[
q

∑
j=1, j 6=i

φij(E(t))(Ei(t)− Ej(t))
c + Ei(t)
c + Ej(t)

+rowi(J(E(t)))rowT
i (J(E(t)))

]

≥ E
[∫ t2

t1

q

∑
i=1

[
Si(t)− σii(E(t))

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
dt|Ft1

]
, t ≥ t0.

Furthermore, in the case where E(t) 6∈ HMe
q , t ≥ t0, it follows from Axiom (i), Axiom (ii), and (125)

that (124) holds.
To show that (123) is a unique, two-times continuously differentiable entropy function of G,

let S(E) be a two-times continuously differentiable entropy function of G so that S(E) satisfies (95)
or, equivalently,

LS(E) ≥ µT
1 (E)[S− d(E)]− 1

2
tr µ2(E)D(E)DT(E), E ∈ Rq

+, S ∈ Rq, (126)

where µT
1 (E) = [ 1

c+E1
, . . . , 1

c+Eq
] and µ2(E) = diag[ 1

(c+E1)2 , . . . , 1
(c+Eq)2 ], E ∈ Rq

+, E(t), t ≥ t0, denotes

the solution to the differential energy balance Equation (68), and LS(E(t)) denotes the infinitesimal
generator of S(E) along the solution E(t), t ≥ t0. Hence, it follows from (126) that

S ′(E)[ f (E)− d(E) + S] +
1
2

trS ′′(E)[J(E)JT(E) + D(E)DT(E)]

≥ µT
1 (E)[S− d(E)]− 1

2
tr µ2(E)D(E)DT(E), E ∈ Rq

+, S ∈ Rq, (127)

which implies that there exist continuous functions ` : Rq
+ → Rp andW : Rq

+ → Rp×q such that

0 = S ′(E)[ f (E)− d(E) + S] +
1
2

trS ′′(E)[J(E)JT(E) + D(E)DT(E)]

−µT
1 (E)[S− d(E)] +

1
2

tr µ2(E)D(E)DT(E) (128)

−[`(E) +W(E)S]T[`(E) +W(E)S], E ∈ Rq
+, S ∈ Rq.

Now, equating coefficients of equal powers (of S and D), it follows thatW(E) ≡ 0, S ′(E) = µT(E),
S ′′(E) = −µ2(E), E ∈ Rq

+, and

0 = S ′(E) f (E) +
1
2

trS ′′(E)J(E)JT(E)− `T(E)`(E), E ∈ Rq
+. (129)
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Hence, S(E) = eTloge(ce + E)− q loge c, E ∈ Rq
+, and

0 = µT
1 (E) f (E)− 1

2
tr µ2(E)J(E)JT(E)− `(E)`T(E), E ∈ Rq

+. (130)

Thus, (123) is a unique, two-times continuously differentiable entropy function for G.

Note that it follows from Axiom (i), Axiom (ii), and the last equality in (125) that the entropy
function given by (123) satisfies (95) as an equality for an equilibrium process and as a strict inequality
for a nonequilibrium process. For any entropy function of G, it follows from Proposition 8 that if (95)
holds as an equality for some transformation starting and ending at equilibrium points of the isolated
system G, then this transformation must lie on the equilibrium manifoldMe. However, (95) may hold
as an equality for nonequilibrium processes starting and ending at nonequilibrium states.

The entropy expression given by (123) is identical in form to the Boltzmann entropy for statistical
thermodynamics. Due to the fact that the entropy given by (123) is indeterminate to the extent of
an additive constant, we can place the constant of integration q loge c to zero by taking c = 1. Since
S(E) given by (123) achieves a maximum when all the subsystem energies Ei, i = 1, . . . , q, are equal,
the entropy of G can be thought of as a measure of the tendency of a system to lose the ability to do
useful work, lose order, and settle to a more homogenous state. For further details see [30].

Recalling that E [dQi(t)|Ft] = [Si(t)− σii(E(t))]dt, i = 1, . . . , q, is the infinitesimal amount of
the net heat received or dissipated by the i-th subsystem of G over the infinitesimal time interval dt,
it follows from (95) that

E [dS(E(t))|Ft] ≥
q

∑
i=1

[
dQi(t)

c + Ei(t)
− 1

2
rowi(D(E(t)))rowT

i (D(E(t)))
(c + Ei(t))2

]
, t ≥ t0. (131)

Inequality (131) is analogous to the classical thermodynamic inequality for the variation of entropy
during an infinitesimal irreversible transformation with the shifted subsystem energies c + Ei playing
the role of the i-th subsystem thermodynamic (absolute) temperatures. Specifically, note that since
dSi
dEi

= 1
c+Ei

, where Si = loge(c + Ei) − loge c denotes the unique continuously differentiable

i-th subsystem entropy, it follows that dSi
dEi

, i = 1, . . . , q, defines the reciprocal of the subsystem
thermodynamic temperatures. That is,

1
Ti

,
dSi
dEi

(132)

and Ti > 0, i = 1, . . . , q. Hence, in our formulation, temperature is a function derived from entropy
and does not involve the primitive subjective notions of hotness and coldness.

It is important to note that in this paper we view subsystem temperatures to be synonymous with
subsystem energies. Even though this does not limit the generality of our theory from a mathematical
perspective, it can be physically limiting since it does not allow for the consideration of two subsystems
of G having the same stored energy with one of the subsystems being at a higher temperature
(i.e., hotter) than the other. This, however, can be easily addressed by assigning different specific heats
(i.e., thermal capacities) for each of the compartments of the large-scale system G as shown in [30].

7. Stochastic Semistability and Energy Equipartition

For the (adiabatically) isolated large-scale stochastic dynamical system G, (95) yields the
fundamental inequality

E [S(E(τ2))|Fτ1 ] ≥ S(E(τ1)), τ2
a.s.
≥ τ1. (133)
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Inequality (133) implies that, for any dynamical change in an adiabatically isolated large-scale stochastic
dynamical system G, the entropy of the final state can never be less than the entropy of the initial
state and is a generalization of Clausius’ version of the entropy principle, which states that for every
irreversible (nicht umkehrbar) process in an adiabatically isolated system beginning and ending at an
equilibrium state, the entropy of the final state is greater than or equal to the entropy of the initial state.
Inequality (133) is often identified with the second law of thermodynamics for stochastic systems
and gives as a statement about entropy increase. It is important to stress that this result holds for an
adiabatically isolated dynamical system. It is, however, possible with power (heat flux) supplied from
an external system to reduce the entropy of the dynamical system G. The entropy of both systems
taken together, however, cannot decrease.

As for the deterministic thermodynamic problem [30], this observation implies that when the
isolated large-scale dynamical system G with thermodynamically consistent energy flow characteristics
(i.e., Axioms (i) and (ii) hold) is at a state of maximum entropy consistent with its energy, it cannot be
subject to any further dynamical change since any such change would result in a decrease of entropy.
This of course implies that the state of maximum entropy is the stable state of an isolated system, and
this equilibrium state has to be stochastically semistable. The following theorem generalizes Theorem
3.9 of [30] to the stochastic setting.

Theorem 10. Consider the large-scale stochastic dynamical system G with differential energy balance
Equation (68) with S(t)

a.s.≡ 0, D(E(t))
a.s.≡ 0, and d(E(t))

a.s.≡ 0, and assume that Axioms (i) and (ii) hold.
Then, for every α ≥ 0, αe is a stochastic semistable equilibrium state of (68). Furthermore, E(t) a.s.→ 1

q eeTE(t0)

as t → ∞ and 1
q eeTE(t0) is a semistable equilibrium state. Finally, if for some k ∈ {1, . . . , q}, σkk(E) ≥ 0,

E ∈ Rq
+, and σkk(E) = 0 if and only if Ek = 0 [63], then the zero solution E(t) ≡ 0 to (68) is a globally

asymptotically stable in probability equilibrium state of (68).

Proof. It follows from Axiom (i) and (ii) that αe ∈ Rq
+, α ≥ 0, is an equilibrium state of (68). To show

Lyapunov stability of the equilibrium state αe, consider V(E) = 1
2 (E− αe)T(E− αe) as a Lyapunov

function candidate. Note that for c >> max{Ei, Ej}, i 6= j, i, j = 1, . . . , q,

c + Ei
c + Ej

=
1 + Ei/c
1 + Ej/c

≈ 1. (134)

Since, Axiom (ii) holds for all c > 0, we have

q

∑
j=1, j 6=i

(Ei − Ej)φij(E) ≤ −rowi(J(E))rowT
i (J(E)), i = 1, . . . , q. (135)

Now, since φij(E) = −φji(E), E ∈ Rq
+, i 6= j, i, j = 1, . . . , q, eT f (E) = 0, E ∈ Rq

+, and
eT J(E) = 0, E ∈ Rq

+, it follows from (135) that

LV(E) = (E− αe)T f (E) +
1
2

trJ(E)JT(E)

= ET f (E) +
1
2

J(E)JT(E)

=
q

∑
i=1

Ei

[
q

∑
j=1, j 6=i

φij(E)

]
+

1
2

q

∑
i=1

rowi(J(E))rowT
i (J(E)) (136)

=
1
2

q

∑
i=1

[
q

∑
j=1, j 6=i

(Ei − Ej)φij(E) + rowi(J(E))rowT
i (J(E))

]
≤ 0, E ∈ Rq

+,
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which establishes Lyapunov stability in probability of the equilibrium state αe.
To show that αe is stochastically semistable, let R , {E ∈ Rq

+ : LV(E) = 0}. Now, by Axiom
(i) and (ii) the directed graph associated with the connectivity matrix C for the large-scale dynamical
system G is strongly connected, which implies that R = {E ∈ Rq

+ : E1 = · · · = Eq}. Since the Rq
+ is

an invariant set and V(E) is radially unbounded, it follows from the Theorem 2 that for every initial
condition E(t0) ∈ Rq

+, E(t) a.s.→ R as t→ ∞, and hence, αe is a stochastic semistable equilibrium state of
(68). Next, note that since eTE(t) = eTE(t0) and E(t) a.s.→ R as t→ ∞, it follows that E(t) a.s.→ 1

q eeTE(t0)

as t→ ∞. Hence, with α = 1
q eTE(t0), αe = 1

q eeTE(t0) is a semistable equilibrium state of (68).

To show that in the case where for some k ∈ {1, . . . , q}, σkk(E) ≥ 0, E ∈ Rq
+, and σkk(E) = 0 if

and only if Ek = 0, the zero solution E(t) ≡ 0 to (68) is globally asymptotically stable in probability,
consider V(E) = 1

2 ETE, E ∈ Rq
+, as a candidate Lyapunov function. Note that V(0) = 0, V(E) > 0, E ∈

Rq
+, E 6= 0, and V(E) is radially unbounded. Now, the infinitesimal generator of Lyapunov function

along the system energy trajectories of (68) is given by

LV(E) = ET[ f (E)− d(E)] +
1
2

trJ(E)JT(E)

= ET f (E) +
1
2

trJ(E)JT(E)− Ekσkk(E)

=
q

∑
i=1

Ei

[
q

∑
j=1,j 6=i

φij(E)

]
+

1
2

q

∑
i=1

rowi(J(E))rowT
i (J(E))− Ekσkk(E) (137)

=
1
2

q

∑
i=1

[
q

∑
j=1, j 6=i

(Ei − Ej)φij(E) + rowi(J(E))rowT
i (J(E))

]
− Ekσkk(E)

≤ 0, E ∈ Rq
+,

which shows that the zero solution E(t)
a.s.≡ 0 to (68) is Lyapunov stable in probability.

Finally, to show global asymptotic stability in probability of the zero equilibrium state, letR ,
{E ∈ Rq

+ : LV(E) = 0}. Now, since Axiom (i) holds and σkk(E) = 0 if and only if Ek = 0, it follows
that R = {E ∈ Rq

+ : Ek = 0, k ∈ {1, . . . , q}} ∩ {E ∈ Rq
+ : E1 = E2 = · · · = Eq} = {0}. Hence,

it follows from Theorem 2 that for every initial condition E(t0) ∈ Rq
+, E(t) a.s.→ R = {0} as t → ∞,

which proves global asymptotic stability in probability of the zero equilibrium state of (68).

Theorem 10 shows that the isolated (i.e., S(t)
a.s.≡ 0, d(E)

a.s.≡ 0, and D(E)
a.s.≡ 0) large-scale stochastic

dynamical system G is stochastically semistable. In Theorem 10 we used the energy Lyapunov function

to show that for the isolated (i.e., S(t)
a.s.≡ 0, d(E)

a.s.≡ 0, and D(E)
a.s.≡ 0) large-scale stochastic dynamical

system G, E(t) a.s.→ 1
q eeTE(t0) as t→ ∞ and 1

q eeTE(t0) is a stochastic semistable equilibrium state. This
result can also be arrived at using the system entropy.

Specifically, using the system entropy given by (123), we can show attraction of the system
trajectories to stochastic Lyapunov stable equilibrium points αe, α ≥ 0, and hence show stochastic
semistability of these equilibrium states. To see this, note that since eT f (E) = 0, E ∈ Rq

+ and
eT J(E) = 0, E ∈ Rq

+, it follows that eTdE(t) = 0, t ≥ t0. Hence, eTE(t) a.s.
= eTE(t0), t ≥ t0.

Furthermore, since E(t) ≥≥ 0, t ≥ t0, it follows that 0 ≤≤ E(t) ≤≤ eeTE(t0) a.s., t ≥ t0, which
implies that all solutions to (68) are almost surely bounded.

Next, since by (125) the function −S(E(t)), t ≥ t0, is a supermartingale and E(t), t ≥ t0,
is bounded, it follows from Theorem 2 that for every initial condition E(t0) ∈ Rq

+, E(t) a.s.→ R as
t → ∞, where R , {E ∈ Rq

+ : LS(E) = 0}. It now follows from the last inequality of (125) that
R = {E ∈ Rq

+ : (Ei − Ej)φij(E) = 0, i = 1, . . . , q, j ∈ Ki}, which, since the directed graph associated
with the connectivity matrix C for the large-scale dynamical system G is strongly connected, implies
that R = {E ∈ Rq

+ : E1 = · · · = Eq}. Since the set R consists of the equilibrium states of (68),
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it follows thatM = R, which, along with (136), establishes stochastic semistability of the equilibrium
states αe, α ≥ 0.

Theorem 10 implies that the steady-state value of the energy in each subsystem Gi of the isolated
stochastic large-scale dynamical system G is equal, that is, the steady-state energy of the isolated
large-scale stochastic dynamical system G given by

E∞
a.s.
=

1
q

eeTE(t0)
a.s.
=

[
1
q

q

∑
i=1

Ei(t0)

]
e (138)

is uniformly distributed over all subsystems of G. This phenomenon is known as equipartition of
energy [64–68] and is an emergent behavior in thermodynamic systems [30].

Example 2. In this example, we apply Theorem 10 to the five-compartment thermodynamic system shown in
Figure 2. Specifically, consider

dE1(t) = [E2(t)− E1(t)]dt + γ[E2(t)− E1(t)]dw(t), E1(0)
a.s.
= E10, t ≥ 0, (139)

dE2(t) = [E1(t)− E2(t) + E3(t)− E2(t) + E5(t)− E2(t)]dt

+ γ[E1(t)− E2(t) + E3(t)− E2(t) + E5(t)− E2(t)]dw(t), E2(0)
a.s.
= E20, (140)

dE3(t) = [E2(t)− E3(t) + E4(t)− E3(t)]dt + γ[E2(t)− E3(t) + E4(t)− E3(t)]dw(t),

E3(0)
a.s.
= E30, (141)

dE4(t) = [E3(t)− E4(t)]dt + γ[E3(t)− E4(t)]dw(t), E4(0)
a.s.
= E40, (142)

dE5(t) = [E2(t)− E5(t)]dt + γ[E2(t)− E5(t)]dw(t), E5(0)
a.s.
= E50. (143)

Note that (139)–(143) can be cast in the form of (68) with E , [E1, E2, E3, E4, E5]
T, d(E) = 0, D(E) = 0,

S(t) ≡ 0, w1 = w,

f (E) =


E2 − E1

E1 − E2 + E3 − E2 + E5 − E2

E2 − E3 + E4 − E3

E3 − E4

E2 − E5

 , J(E) = γ


E2 − E1

E1 − E2 + E3 − E2 + E5 − E2

E2 − E3 + E4 − E3

E3 − E4

E2 − E5

 .

It follows from Theorem 10 that the thermodynamic heat flow model (139)–(143) is stochastically semistable
with respect to R5

+ and achieves energy equipartition. To see this, let E10 = 0, E20 = 10, E30 = 20, E40 = 30,
E50 = 40, and γ = 0.2. Figure 3 shows the sample energy trajectories along with the standard deviation of the
states of each thermodynamic compartment versus time for 10 sample paths.

1

234 5

Figure 2. Thermodynamic model with undirected heat flow.
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Figure 3. Sample average along with the sample standard deviation of the system energies versus time;
E1(t) in blue, E2(t) in red, E3(t) in green, E4(t) in magenta, and E5(t) in black.

8. Conclusions

In this paper, we combined thermodynamics and stochastic dynamical system theory to provide
a system-theoretic foundation of thermodynamics. The proposed dynamical systems framework
of thermodynamics can potentially provide deeper insights into the constitutive mechanisms that
explain fundamental thermodynamic processes and describe acute microcosms and macrocosms in
the ever-elusive pursuit of unifying the subatomic and astronomical domains. In future research, we
will use the realizations of each sample path of the stochastic energy variables characterized by the
stochastic differential energy balance dynamical model to describe the probability density function
of our large-scale stochastic thermodynamic model by a continuous-time and continuous-space
Fokker–Planck evolution equation to give a thermodynamic interpretation between the stationary
solution of the Fokker–Planck equation and the canonical thermodynamic equilibrium distribution.
Furthermore, since our stochastic thermodynamic model does not restrict the second law on each
individual sample path trajectory, we will explore the second law as a fluctuation theorem to give a
precise prediction of the cases in which the system entropy decreases over a given time interval for our
model.

Acknowledgments: This research was supported in part by the Air Force Office of Scientific Research under
Grant FA9550-16-1-0100.

Author Contributions: Both authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References and Notes

1. Sekimoto, K. Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys.
Soc. Jpn. 1997, 66, 1234–1237.

2. Sekimoto, K. Langevin equation and thermodynamics. Prog. Theor. Phys. Supp. 1998, 130, 17–27.
3. Sekimoto, K. Stochastic Energetics; Springer: Berlin, Germany, 2010.
4. Seifert, U. Stochastic thermodynamics: Principles and perspectives. Eur. Phys. J. B 2008, 64, 423–431.
5. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012,

75, 1–58.
6. Onsager, L. Reciprocal relations in irreversible processes, I. Phys. Rev. 1931, 37, 405–426.
7. Onsager, L. Reciprocal relations in irreversible processes, II. Phys. Rev. 1932, 38, 2265–2279.
8. De Groot, S.R. Thermodynamics of Irreversible Processes; North-Holland: Amsterdam, The Netherlands, 1951.
9. Prigogine, I. Thermodynamics of Irreversible Processes; Interscience: New York, NY, USA, 1955.
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