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1. Introduction

In the study of the prediction problem for homogeneous Poisson processes (HPP), used in various
fields including biomedicine [1], marketing [2] and reliability [3], the recurrent events often display
extra-Poisson variation. In this problem, the variation is usually handled in an empirical Bayesian
fashion and the gamma prior is the most common choice. In [4], we compared the performance of
the 2-moment maximum entropy prior to other commonly used ones, estimating the parameters by
matching moments (MM) [4–10] as well as maximum likelihood (ML) [6].

ML did as well as MM and often outperformed it. Unfortunately, the [8] result implies that only
cases where the coefficient of variation is less than one can be considered with this 2-moment maximum
entropy prior. Here, we use higher moment maximum entropy priors to overcome this restriction and,
to the best of our knowledge, such priors have not been used for this problem. These priors are also
quite versatile, including bimodality [11,12]. It should be noted that we always assume that each of the
k-moments is finite.

Given the excellent performance of the maximum likelihood estimation method (MLE) for the
2-moment problem and its ease of computation compared to matching moments, especially when
the number of moments is greater than 2, we choose to use MLE here and call it the MLE–MaxEnt
method. The k-moment maximum entropy prior for the homogeneous Poisson process with random
effects (HPPr) obviously outperforms the 2-moment maximum entropy prior, but we also compare it
with other priors such as the gamma, which is popular among the conjugate priors and results in the
negative binomial (NB) posterior distribution. It should be noted that the gamma distribution can also
be considered as a maximum entropy distribution under different constraints [7].

The performance of the k-moment maximum entropy priors is evaluated using the
Kullback–Leibler criterion [13] and a discrepancy measure equal to the root mean square prediction

Entropy 2017, 19, 687; doi:10.3390/e19120687 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19120687
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 687 2 of 15

error between the predicted value obtained using a specific prediction model and the estimator
obtained here using our methods [14].

The method using HPPr is also illustrated on a real example, a warranty data set from the
automobile industry. Here, we use several different prediction models with k-moment entropy priors
for different values of k. We study their performance using the absolute error discrepancy equal to the
absolute difference between point predictors. We also use the likelihood ratio test as a stopping rule to
determine an adequate value for k for the k-moment maximum entropy priors applied in the case of
this example. A general discussion with concluding remarks is presented in Section 5.

The remainder of this paper is organized as follows. In Section 2, we describe the maximum
entropy principle, recall the definition of a homogeneous Poisson process with random effects (HPPr)
and introduce the general Poisson–MaxEnt model. In Section 3, the maximum likelihood approach to
estimate the vector of parameters of this general Poisson–MaxEnt model is discussed. In Section 4,
the performance of the k-moment maximum entropy priors for different values of k proposed here
and their comparison with the use of the gamma conjugate prior are studied through Monte Carlo
simulations. In order to test our methods, we used many different priors to generate the original
random effects including the k-moment maximum entropy priors: the gamma, the generalized gamma,
the Weibull, the lognormal, the uniform and the inverse gaussian.

2. The Homogeneous Poisson Process with Random Effects and the Maximum Entropy Principle

Here, we describe the maximum entropy principle, introduce the homogeneous Poisson process
with random effects (HPPr) and define our general Poisson–MaxEnt model.

2.1. The Maximum Entropy Principle

As noted in our study [4], the entropy of a probability density π(λ) is a measure of the amount of
information contained in the density and was first defined by [15] as

H = −
∫

λ
π(λ) ln(π(λ))dλ.

The goal is to maximize H subject to certain conditions. The usual choice to determine π(λ) is
to use a finite set of expectations µj = E[φj(λ)] of known functions φj(λ), j = 1, . . . , k and to match
these empirical moments. This is called the matching moment (MM) estimation method. These known
functions φj(λ) are often the non-central moments of the form φj(λ) = λj, j = 1, . . . , k. In simple cases,
using these non-central moments, maximizing the likelihood yields the same estimates as the matching
moment method [6].

To find the function π(λ) that maximizes the entropy of this nonlinear problem using matching
moments, we form the Lagrangian, which we have assumed is finite:

L =
∫

λ
π(λ) ln(π(λ))dλ +

k

∑
j=1

αj

( ∫
R+

λjπ(λ)dλ− µj

)
,

where µj = E[λj], j = 1, . . . , k are the k non-central moments and α = (α1, α2, . . . , αk) is a vector of
Lagrange multipliers.

Applying the Lagrange multiplication method [16], the following k-moment maximum entropy
prior distribution is defined by:

π(λ|α) = A exp (−
k

∑
j=1

αjλ
j), (1)

where A is a normalization constant defined as follows:
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A =
1∫

R+ exp (−∑k
j=1 αjλ

j)dλ
.

2.2. Homogeneous Poisson Processes with Random Effects

We let N(s, t) represent the number of events occurring for a subject in the time interval (s, t]
with N(t) representing N(0, t). To model such recurrent events, many different types of processes
are discussed in the literature [17] where the Poisson process (PP) is one of the most popular ones.
We will consider here only continuous time processes where two events cannot occur simultaneously.
The number of events can be defined through the intensity function:

λ(t|H(t)) = lim
4t→0

P[N(t, t +4t) = 1|H(t)]
4t

,

where H(t) denotes the history of the process up to time t.
The intensity function used to model these events corresponds to a homogeneous Poisson process

with random effects (HPPr) where the rates are the unknown parameters. Suppose that we have n
subjects and that Ni(t) denotes the number of events occurring for a subject i up to time t. When these
processes are not time-homogeneous and there is more variation between the individual subjects in the
recurrent events Ni(t), then the λi are considered unobservable i.i.d. random effects and the random
model is defined by:

Ni(t)|λi ∼ PP(λi),

λi ∼ π(λi), (2)

where the processes are independent, i = 1, ...n, π(λi) an unknown prior distribution for λi
and each process is observed up to a fixed time t1i. We want to estimate a point predictor
for each Ni(t1i, t2i)|N(t1i). Throughout this article, (λ1, λ2, . . . , λn), (N1(t11), .., Nn(t1n)) and
(N1(t11, t21), ...Nn(t1n, t2n)) will be denoted by λ, N(t1) and N(t1, t2), respectively.

The choice of an appropriate prior distribution π(λ) for λ is always a very delicate procedure
in Bayesian analysis. It is not clear how to translate our beliefs about λ into a distribution π(λ).
Although Bayesian analysis is often based on “non-informative priors” [18,19], there are convincing
arguments against the existence of such priors. We prefer using the maximum entropy approach which
makes use of prior information often given in the form of the expectations of some known functions to
generate a maximum entropy prior. Such functions are often the non-central moments. The objective
of this approach is to choose a prior probability distribution function π(λ|λ ≥ 0) for the λ which best
represents this data. The Maximum Entropy Principle states that, given some constraints on the prior,
the prior should be chosen to be the distribution with the largest entropy that follows these constraints.

For the prediction problem for HPPr, numerous researchers used the gamma distribution for the
prior distribution π(λ) [20]. The choice of the gamma distribution was motivated by mathematical
convenience only since it is the conjugate prior of the Poisson distribution and results in the negative
binomial (NB) posterior distribution. Moreover, in [4], we concluded that the 2-moment maximum
entropy prior compared very favorably to the gamma prior in the prediction for HPPr. Here, we
improve on these results by the use of the k-moment maximum entropy priors (k > 2). This is called
the general Poisson–MaxEnt model.
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2.3. Model Specification of the General Poisson–MaxEnt Model

The general Poisson–MaxEnt model with k-moments that we develop is then given by:

Ni(t)|λi ∼ HPP(λi),

π(λi; α) = Ai exp (−
k

∑
j=1

(αjλ
j
i)),

(3)

where Ai =
1∫

R+ exp (−∑k
j=1 αjλ

j
i)dλi

is a normalization constant and α = (α1, α2, . . . , αk) is a vector of

parameters. Clearly, αk must be positive.
For the Poisson–MaxEnt model (3), the joint posterior distribution of all the unknown parameters

λ|N(t1) is given by

π(λ|N(t1); α) =
P[N(t1) = N(t1)|λ]π(λ; α)∫

λ P[N(t1) = N(t1)|λ]π(λ; α)dλ

=
n

∏
i=1

λ
Ni(t1i)
i exp

(
− λi(α1 + t1i)−∑k

j=2 αjλ
j
i

)
∫

λi
λ

Ni(t1i)
i exp

(
− λi(α1 + t1i)−∑k

j=2 αjλ
j
i

)
dλi

.

(4)

Hence, using this conditional density, the density function for Ni(t1i, t2i)|Ni(t1i) is then given by

P[Ni(t1i, t2i) = n|Ni(t1i); α] =
(t2i − t1i)

n

n!
∫

λi
λ

Ni(t1i)
i exp

(
− λi(α1 + t1i)−∑k

j=2 αjλ
j
i

)
dλi

×
∫

λi

λ
(Ni(t1i)+n)
i exp

(
− λi(α1 + t2i)−

k

∑
j=2

αjλ
j
i

)
dλi.

(5)

We note that the posterior distribution (4) will not have a known closed form, but includes
rather complicated high dimensional densities, thus rendering direct inference almost impossible
because of the high dimensional integration, necessary to obtain the normalizing constant, which is not
mathematically tractable. For this reason, we generate from this posterior distribution a large number
of samples using Markov chain Monte Carlo (MCMC) implemented in WinBUGS [21], and, from these
samples, we can obtain appropriate parameter estimates such as the posterior mean of λ|(N(t1); α),
where α is estimated by the methods described in the next section.

3. Estimating Unknown Poisson–Maximum Entropy Parameters

The object of both estimation approaches, MM and MLE, in the general Poisson–Maximum
Entropy model is to choose the probability distribution π(λi; α) = Ai exp (−∑k

j=1(αjλ
j
i)) for the

unknown vector of parameters α that best represents the observed data N(t).
Here, we favour the maximum likelihood method (the MLE–MaxEnt method) because it is

computationally less complex than the MM method when k > 2. For completeness, the MM method
for the MaxEnt–Poisson model will be described in Appendix A.
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The MLE–Maximum Entropy Method for the Poisson–MaxEnt Model

Here, we introduce the MLE–Maximum entropy (MLE–MaxEnt) method using MLE for estimating
the parameters of the empirical Bayes MaxEnt model (3). To obtain them, we construct the marginal
likelihood L of the empirical Bayes general Poisson–Maximum Entropy model (3)

L(α|N(t1)) =
∫

λ
P[N(t1) = N(t1)|λ]π(λ; α)dλ

=
n

∏
i=1

tNi(t1i)
1i

Ni(t1i)!
Ai Ii(Ni),

with

Ii(Ni) =
∫ ∞

0
λ

Ni(t1i)
i exp

[
−
( k

∑
j=1

αjλ
j
i + t1iλi

)]
dλi, (6)

and Ai =
1∫ ∞

0 exp (−∑k
j=1 αjλ

j
i)dλi

is a normalization constant.

Ignoring the terms that do not depend on α, the log-likelihood is given by

l(α|N(t1)) ∝
n

∑
i=1

[
ln
(

Ii(Ni)
)
+ ln

(
Ai

)]
. (7)

One method to find the maximum of (7) is to take the partial derivatives and set them equal
to 0 [10]. The necessary and sufficient conditions to interchange the order of differentiation and
integration of Lebesgue’s Dominated Convergence Theorem [22] are verified here for both (6) and the
normalization constant Ai. Interchanging differentiation and integration, the first derivatives of (7)
with respect to α1, α2, . . . , αk are given by the following equations:

∂l(Ni)

∂αj
=

n

∑
i=1

[− ∫ ∞
0 λ

(Ni(t1i)+j)
i exp

[
−
(

∑k
j=1 αjλ

j
i + t1iλi

)]
dλi∫ ∞

0 λ
(Ni(t1i))
i exp

[
−
(

∑k
j=1 αjλ

j
i + t1iλi

)]
dλi

+

∫ ∞
0 λ

j
i exp

[
−
(

∑k
j=1 αjλ

j
i

)]
dλi∫ ∞

0 exp
[
−
(

∑k
j=1 αjλ

j
i

)]
dλi

]
= 0, j = 1, 2, . . . , k.

(8)

The analytic solutions to the equations in (8) are difficult to obtain; thus it is natural to use a
numerical method to estimate directly the vector of parameters α that maximize the log-likelihood (7).

We have chosen MATLAB (version 9.1 (R2016b), MathWorks, Natick, MA, USA) “fminsearchbnd”,
a nonlinear optimization method which is derivative-free and allows bounds on the variables for this
MLE problem. Under our model (3) for HPPr, matching moments and the MLE–Maximum entropy
methods for Poisson–MaxEnt model will not yield the same estimates. This differs from the simple
case without Poisson processes considered by Mohammad-Djafari [6].

4. Simulation Studies and Data Applications

4.1. Simulation Studies

Through extensive simulation studies presented in this section, we will study and compare
the performance of our general Poisson–MaxEnt model with this k-moment prior (k > 2) to the
models using the 2-moment maximum entropy prior or the gamma prior where the parameters were
estimated using the MLE method. For comparison, we use the following goodness-of-fit criteria:
Kullback–Leibler distance and a discrepancy measure for point predictions equal to the root mean
square prediction error.
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Throughout this study, we know that one advantage of using the general Poisson–MaxEnt model
with this k-moment prior (k > 2) for prediction in HPPr is that it can be used regardless of the values
of the coefficient of variation. It also allows us to reflect different orders of heterogeneity in the data.
Among all results obtained with different values of the coefficient of variation, we only present here
the results for two of them in order to be concise. The first one represents a case where the value of the
coefficient of variation is less than 1 and the second where it is greater than 1. The latter case is used in
order to show the benefit of using the general Poisson–MaxEnt model with this k-moment prior when
k > 2 and thus removing the restriction when k ≤ 2 [8].

In order to study which models among those presented in this paper are more robust to the real
distribution of λ, we have chosen several different priors to represent the unknown prior distribution
for the HPPr, such as the maximum entropy distributions given two, four and six non-central moments
(MaxEnt2MM, MaxEnt4MM and MaxEnt6MM), the gamma (Gamma), the Weibull (Weibull), the
lognormal (LNormal), the inverse Gaussian (InvGauss), the generalized gamma (Ggamma) and the
continuous uniform distribution (Uniform), in order to generate the unknown parameters λ.

Moreover, for each value of the coefficient of variation used for these simulation studies, we
generate b = 2000 samples from n = 20 HPPrs and assume that these processes are observed up to the
times t1 = {5, 5.5, . . . , 9.5, 10, . . . , 14.0, 14.5} and we want to predict Ni(t1i, t2i) for each process i up
to the times t2 = {12.5, . . . , 12.5, 17.5, . . . , 17.5}. The idea behind this choice is to represent different
values of (t2i − t1i).

4.1.1. Kullback–Leibler Divergence

One method that allows us to compare the performance of these models is to use their predictive
distributions for Ni(t1i, t2i). Such a comparison can be done by evaluating how close each predictive
density f̃p(y|x) is to the true density f (y|x; θ), where θ is a vector of unknown parameters. To judge
the goodness-of-fit of a given predictive method [23–25], a common approach has been to assess the
relative closeness with the average Kullback–Leibler (KL) divergence [26], which is defined by

DKL

[
f̃p(y|x); f (y|x; θ)

]
= E

[
log
{ f (Y|X; θ)

f̃p(Y|X)

}]
=
∫

f (y|x; θ) log
( f (y|x; θ)

f̃p(y|x)

)
dy,

where X and Y represent an actual and a future random variable, respectively. We note also that this
divergence is positive unless f̃p(y|x) always coincides with f (y|x; θ).

If the real distribution of Ni(t1i, t2i) is known, we can compare the distance between these
predictive densities and the real density of Ni(t1i, t2i). This should give us an indication of the ability
of these methods to adequately predict Ni(t1i, t2i)|Ni(t1i).

We measure which predictive density considered is closer to the true one, f (N(t1, t2)|N(t1); θ),
as follows. If we have two contenders, for example, f̃MLE−−MaxEnt(N(t1, t2)|N(t1)) and
f̃p(N(t1, t2)|N(t1)), for the role of estimates of the true one, f (N(t1, t2)|N(t1); θ), then
f̃MLE−−MaxEnt(N(t1, t2)|N(t1)) is closer in terms of KL divergence than f̃p(N(t1, t2)|N(t1)) if
DKL

[
f̃p(N(t1, t2)|N(t1)); f (N(t1, t2)|N(t1); θ)

]
− DKL

[
f̃MLE−−MaxEnt(N(t1, t2)|N(t1)); f (N(t1, t2)|N(t1); θ)

]
= DKL

[
f̃MLE−−MaxEnt(N(t1, t2)|N(t1)), f̃p(N(t1, t2)|N(t1))

]
is positive.

Here, the average KL divergence will be estimated by simulating b = 2000 samples of n = 20
HPPr and will be defined by

D̂KL

[
f̃MLE−−MaxEnt(N(t1, t2)|N(t1)), f̃p(N(t1, t2)|N(t1))

]
=

1
b

b

∑
j=1

log
{ f̃MLE−−MaxEnt(N∗j (t1, t2)|N∗j (t1))

f̃p(N∗j (t1, t2)|N∗j (t1))

}
,

(9)
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where N∗j (t1) and N∗j (t1, t2) are the counts generated for the jth sample, j = 1, ..., b and

f̃p(N∗j (t1, t2)|N∗j (t1)) is the predictive density obtained from the other model to which we are
comparing our estimator.

The results of these simulations are presented in Table 1. We use the priors in the first column
of Table 1 to generate the “true” random effects and we estimate, using MLE, these random effects
from our four chosen models: the gamma, the 2-moment, the 4-moment and the 6-moment maximum
entropy prior. Each cell of this table contains the value of the average KL divergence given by (9)
between the predictive density f̃MLE–MaxEnt(N∗j (t1, t2)|N∗j (t1)) for the general Poisson–MaxEnt model

with the 6-moment reference prior and the other predictive densities f̃p(N∗j (t1, t2)|N∗j (t1)) for the other
models. We note that a negative value on a line in this table for a given distribution of λ is written in
bold font and it indicates that the predictive model in that column performs better than our reference
model in terms of KL divergence. Therefore, the absence of negative values on a given line indicates
that our reference method is the most suitable for this distribution of λ. It is also noted that the higher
this value is for the other models, the better the performance of our reference model compared to the
other models.

Table 1. Comparison of the average Kullback–Leibler (KL) distance with the general Poisson–MaxEnt
model with the 6-moment prior as reference model with different values of the coefficient of variation
(c.v.). To render the table more readable, the values of the KL distances have been multiplied by 1000.

Moments for λi Random Effects Log[ MLE 6 Moments
Gamma ] Log[ MLE 6 Moments

MLE 2 Moments ] Log[ MLE 6 Moments
MLE 4 Moments ]

E[λi] = 1; Var[λi] = 0.3 and c.v. = 0.56

Gamma −1.0 0.8 0.3

MaxEnt2MM 0.7 −0.9 0.2

MaxEnt4MM 5.9 6.3 −0.5

MaxEnt6MM 8.2 7.5 4.1

Ggamma 7.4 6.2 0.9

Weibull 3.2 2.4 0.7

LNormal 1.9 1.1 0.4

InvGauss 2.2 1.7 0.8

Uniform 7.6 6.4 2.8

E[λi] = 1; Var[λi] = 1.5 and c.v. = 1.2

Gamma −0.3 31.3 9.7

MaxEnt2MM 13.1 11.8 6.2

MaxEnt4MM 13.7 27.8 −0.0

MaxEnt6MM 16.2 29.7 12.7

Ggamma 12.9 25.7 7.9

Weibull 15.3 26.8 10.7

LNormal 13.4 28.2 8.9

InvGauss 12.9 24.7 7.4

We note first that the table indicates that the general Poisson–MaxEnt model with this 6-moment
prior (as a reference model) performs well compared to the other models: the values are always
positive except for some cases, where the true distribution of λ corresponds perfectly to the method
used (Gamma, MaxEnt2MM or MaxEnt4MM). Indeed, when the value of the coefficient of variation
is ≤1 and the random effects are neither generated by the gamma or a MaxEnt prior, we note that the
Poisson–MaxEnt model with the 2-moment prior and the NB model (gamma prior estimated with
the MLE method) are similar in terms of performance where each of their predictive densities are
closest to the true predictive density f (N(t1, t2)|N(t1)). Our reference model performed clearly better
than the Poisson–MaxEnt models with the 2-moment and slightly outperformed the 4-moment prior.
However, when the value of the coefficient of variation is >1, the NB model performs much better
than the Poisson–MaxEnt model with two moments. Nevertheless, our reference model is still clearly
better than the NB model and the Poisson–MaxEnt model with two or four moments except when
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the random effects are generated by the gamma or the 4-moment prior. Ignoring the few exceptions
mentioned above where the true distribution of λ corresponds perfectly to the method used, we see
that our reference model always provides the closest predictive density. Moreover, whatever the
value of the coefficient of variation used for these simulation studies, our reference model has a better
performance compared to the other models and also exhibits a robustness to the type of distribution
of λ.

Finally, we note that when the value of the coefficient of variation is greater than 1, the
Poisson–MaxEnt model with the maximum entropy 2-moment prior gives a positive value of (9) (=11.8)
for the KL divergence in spite of the fact that theoretically the coefficient of variation must be less than
or equal to one in order for this prior to be defined [8]. We do not recommend using this prior here;
however, the results are presented as well for illustrative purposes.

4.1.2. Discrepancy Measure

We also compare the adequacy of each point prediction method for Ni(t1i, t2i) obtained from one
of the four models for the random effects in this simulation study, using the following discrepancy
measure, the root mean square prediction error:

DIS =

√√√√∑n
i=1

(
Ni(t1i, t2i)obs − N̂i(t1i, t2i)

)2

n
, (10)

where Ni(t1i, t2i)obs is the observed value and N̂i(t1i, t2i) is the point predictor provided by the model
chosen and estimated using MLE. The value of DIS represents, for a given sample of n processes, the
root mean square prediction error between the observed value of Ni(t1i, t2i) and its predictor.

The results of these simulations are presented in Table 2. We use the priors in the first column
of Table 2 to generate the “true” random effects and we estimate, using MLE, these random effects
from our four chosen models: the gamma, the 2-moment, the 4-moment and the 6-moment maximum
entropy prior.

We begin by generating the 20 λis (i = 1, . . . , 20) using one of the models in the first
column of Table 2. From this, we can obtain Ni(t1i) ∼ Poisson(t1iλi), i = 1, . . . , 20 and
Ni(t1i, t2i) ∼ Poisson((t2i − t1i)λi), i = 1, . . . , 20. We then estimate λi|Ni(t1i) by the method suggested
in Section 2.3, that is, the Markov Chain Monte Carlo method of [21] implemented in WinBUGS.
The predictor of Ni(t1i, t2i) will equal (t2i − t1i) times the posterior mean of λi|Ni(t1i) and it will be
denoted by N̂i(t1i, t2i). These values are then put into Equation (10) to obtain the discrepancy. Table 2
consists of the value equal to one minus the ratio of two discrepancy measures, where the denominator
is calculated using the true random effects distribution and the numerator is calculated using one of
our four chosen models. In Table 2, the smallest value for a given distribution of λ is written in bold
font and it corresponds to the most suitable model. A value close to 0 means that the point predictor
N̂i(t1i, t2i) provided by the model chosen is very close to the true value and thus that model performs
very well. For example, a value of 1.11 in the first line of Table 2 means that a prediction based on this
model (the NB model) would differ on average 1.11% from the best possible prediction measured by
our discrepancy measure when all the true parameters are known.

From the results in this table, the first thing we can say is that the general Poisson–MaxEnt model
with the 6-moment prior distribution has the overall best performance in terms of our discrepancy
measure when predicting Ni(t1i, t2i). Even when our model does not provide the smallest value, its
value is always very close to the smallest one. It is also robust to the type of distribution used to
generate the random effects. Our model yields the smallest value (the value written in bold font)
regardless of the distribution used to generate the unknown parameters λ with the exception of the
cases where the random effects were generated by the gamma or MaxEnt priors. This corresponds to
the same pattern observed using the KL divergence.
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Table 2. Comparison using our discrepancy measures, the root mean square prediction error, for the
gamma and the general Poisson–MaxEnt model with k = 2, 4 or 6 moments versus the best possible
prediction assuming full knowledge of λi that is, where the λi are generated by one of the models listed
in the column of random effects. We note that the smallest percentage of error prediction in this table
for a given distribution of λ is written in bold font.

Moments for λi Random Effects Gamma MLE MLE MLE
(âmle, b̂mle) 2 Moments 4 Moments 6 Moments

E[λi] = 1; Var[λi] = 0.3 and c.v. = 0.56

Gamma 1.11 1.29 1.26 1.15

MaxEnt2MM 0.90 0.72 0.86 0.79

MaxEnt4MM 0.47 0.50 0.22 0.32

MaxEnt6MM 0.61 0.68 0.36 0.11

Ggamma 0.72 0.79 0.54 0.32

Weibull 0.32 0.47 0.29 0.22

LNormal 1.04 1.18 0.97 0.89

InvGauss 0.75 0.93 0.68 0.61

Uniform 0.47 0.72 0.40 0.25

E[λi] = 1; Var[λi] = 1.5 and c.v. = 1.2

Gamma 0.38 1.41 0.54 0.40

MaxEnt2MM 0.58 1.45 0.51 0.33

MaxEnt4MM 0.73 1.20 0.22 0.22

MaxEnt6MM 0.98 1.41 0.54 0.40

Ggamma 0.98 1.24 0.62 0.40

Weibull 1.09 1.49 0.69 0.44

LNormal 0.90 1.12 0.51 0.33

InvGauss 0.94 1.20 0.47 0.33

When the value of the coefficient of variation is greater than 1, the Poisson–MaxEnt model with the
2-moment prior yields the largest value of the ratio (=1.45) although we used the 2-moment maximum
entropy distribution to generate the random effects for the unknown parameters λ. This anomaly
can possibly be explained by the Wragg and Dowson result, which states that densities of the form
π(λ) = Ae−(α1λ+α2λ2) require that the coefficient of variation ≤1.

It appears from these simulations that the general Poisson–MaxEnt model with the 6-moment
prior distribution is the best overall predictor.

Finally, we note that both the gamma prior and the maximum entropy prior with k > 2 moments
can be used in the prediction problem for HPPr regardless of the value of the coefficient of variation.
However, these simulation studies indicate that the general Poisson–MaxEnt model with higher
moments gives us a performance better than the NB model when the coefficient of variation is ≤1.
When k = 2, the Poisson–MaxEnt with two moments and the NB models yield similar results. On the
other hand, when k > 2 and the value of the coefficient of variation is greater than 1, then the general
Poisson–MaxEnt model with the k-moment prior (k = 4 or 6) truly outperforms the classical NB model.

4.2. Data Applications

In this section, we apply the general Poisson–MaxEnt model with the k-moment prior using the
MLE–MaxEnt estimation method to a warranty data set from the automobile industry using data
from [27]. This example has been previously analysed using 2-moment priors in [4]. We propose a
suitable prediction model and study the performance of such a model using the discrepancy measure
given by (10).

However, first, we propose an approach to determine an adequate value for k in order to stop
adding higher order moments for the k-moment maximum entropy priors. For this, we decided to use
the likelihood ratio test.
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4.2.1. Likelihood Ratio Tests

The likelihood ratio test (LRT) is a hypothesis test that will allow us to determine when to
stop adding higher order moments. Using the likelihood functions for two different models, let us
say the null model with the k-moment maximum entropy prior and the alternative model with the
(k + 2)-moment maximum entropy prior. Then, the test statistic is the ratio of the likelihood of the null
model to the alternative model:

Γ = −2 log
( L(α1|N(t1))

L(α2|N(t1))

)
, (11)

where L(α1|N(t1)) and L(α2|N(t1)) are the likelihood of the null and alternative models, respectively.
This is a statistical test for nested models that rejects the null hypothesis with a given significance

level based on the chi-square distribution [28]. Through successive testing using the LRT, we determine
the number of moments necessary for the k-moment priors.

4.2.2. Automobile Warranty Claims Study

We apply our methods to a warranty data set from the automobile industry to predict the eventual
number of warranty claims using the data already observed. This data set, which describes warranty
claims, contains warranty information on 42,188 cars that were sold over a period of 171 weeks.

Here, Ni(t) represents the number of claims at time t in days since the day of sale. We are
interested in predicting Ni(365), the total number of warranty claims for each car i during the first year
after its sale. The range of the number of claims for each car was 0 to 22 claims and the total number of
claims was 33,438. Table 3 shows the distribution of total claims amongst all the cars.

Table 3. Frequency distribution of warranty claims during the first year after the day of sale.

Number of Claims Number of Cars

0 26,693
1 7911
2 3421
3 1773
4 939
5 555
6 380
7 188
8 112
9 84

10+ 129
33,438 42,188

Figure 1 gives a histogram of the occurrence times of claims during the year where each car is
potentially under warranty. Except possibly for the first 50 days, the rate of occurrence of claims
appears homogenous over the warranty claims time period.

Here, we calculate point predictors for Ni(t1i, t2i) with different values of t1i converging towards
t2i = 365 with these predictive models. For every time t1i, Table 4 presents the LRT results where the
last three columns indicate, respectively, the p-values of the k-moment maximum entropy prior with
k = 2, 4 and 6 as the null models versus the (k + 2)-moment maximum entropy prior as the alternative
models. Note that the last column shows us the number of moments required for our model.

Based on the results in Table 4 with a significance level equal to 5%, we can say that the LRT
always rejects the general Poisson–MaxEnt model with the 8-moment prior. Therefore, it supports
our model with the 6-moment maximum entropy prior as the adequate prediction model when the
maximum entropy prior is used. This means adding other moments does not allow us to reject our
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6-moment predictive model; thus, the LRT provides a stopping rule. The only exception occurs when
t1i equals 365, where the LRT supports the MaxEnt prior with only 2-moments.

Figure 1. Histogram of the occurrence times.

Table 4. The likelihood ratio test for the automobile warranty claims data sets.

t1i (in Days)
p-value of LRT p-Value of LRT p-Value of LRT Number of MomentsMaxEnt MaxEnt MaxEnt Suggested2MM vs. 4MM 4MM vs. 6MM 6MM vs. 8MM

45 <0.01% <0.01% 72.18% 6
85 <0.01% 0.02% 83.73% 6

125 <0.01% 0.10% 90.84% 6
165 0.04% 0.19% 97.61% 6
205 0.11% 0.68% 99.91% 6
245 0.85% 3.02% 100% 6
285 2.48% 4.30% 100% 6
325 3.07% 4.08% 100% 6
365 44.85% 93.32% 100% 2

The likelihood ratio test appears to provide an appropriate stopping rule, since its corresponding
average discrepancy values (values in bold font) are always very close to the smallest absolute error
discrepancies. Furthermore, the most interesting result in Table 5 is that the Poisson MaxEnt model
suggested by the LRT always outperforms the NB model.

Table 5. Absolute error discrepancy of point predictors with different values of t1i for the automobile
warranty claims data sets with MLE–MaxEnt estimation method.

t1i (in Days) Gamma MLE MLE MLE MLE
(âmle, b̂mle) 2 Moments 4 Moments 6 Moments 8 Moments

45 4.89 4.88 4.70 4.61 4.61
85 2.52 2.52 2.41 2.34 2.34

125 1.73 1.72 1.64 1.57 1.57
165 1.32 1.32 1.25 1.19 1.19
205 1.05 1.05 0.94 0.90 0.90
245 0.84 0.84 0.76 0.73 0.73
285 0.64 0.63 0.58 0.55 0.55
325 0.42 0.43 0.40 0.38 0.38
365 0.00 0.00 0.00 0.00 0.00
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Finally, we note from this example that, when k = 2, the Poisson–MaxEnt with 2-moments and
the NB models are similar in terms of performance. On the other hand, when k > 2, the general
Poisson–MaxEnt predictive model suggested by the LRT clearly performs better than the classical NB
model using the conjugate gamma prior.

5. Conclusions

In this paper, we have outlined a model, the general Poisson–MaxEnt model with the k-moment
prior for the prediction problem for the HPPr. The effectiveness of the model for prediction measured
by different goodness-of-fit criteria is tested. We note that the use of this prior with more than
2-moments allows us to remove the restriction of Wragg and Dawson that the coefficient of variation
must be less than one.

We use maximum likelihood to estimate the parameters in the general Poisson–MaxEnt model
because it is computationally less complex than the matching moments procedure when k > 2.
The k-moment maximum entropy prior produced very good results in terms of the comparison criteria
(KL divergence and a discrepancy measure) we used in our simulation studies with different values
for the coefficient of variation. Finally, we have illustrated on a data set the effectiveness of the general
Poisson–MaxEnt model for prediction problems, when the LRT is used as a stopping rule for adding
more moments.

We know that the classical NB model obtained with the conjugate gamma prior is the usual choice
for prediction problems. This model can be used whatever the value of coefficient of variation. We have
seen by using simulation studies and illustrating the method on a data set that the Poisson–MaxEnt
model with k > 2 has generally a better performance than the NB model whatever the value of
coefficient of variation.

In our future research, it will be very interesting to use these methods allowing prediction of
recurrent events using more flexible nonhomogeneous Poisson processes with priors that have heavy
tails and various shapes and with possible heterogeneity amongst the individual units modeled with
higher moment maximum entropy priors.
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Appendix A. Moment Matching Estimation for the Poisson–MaxEnt Model

Here, we illustrate how to use the moment matching (MM) estimation for the
Poisson–MaxEnt method.

We consider the maximum entropy method for the empirical Bayes general Poisson–MaxEnt
model with MM. This involves matching the first k unconditional moments with k > 2 with their
corresponding empirical non-central moments.

Letting Ri = Ni(t1i)
t1i

, we can show that the first k unconditional moments for an unknown

parameter λi truncated at 0 are defined by: E[λi] = E[Ri] = µ1; E[λ2
i ] = E[R2

i ]−
1

t1i
µ1 = µ2, and, for

j > 2, we have the following recurrence formula:

µj = E[Rj
i ]−

j−1

∑
s=1

ts−j
1i µs

[ 1
s!

s

∑
m=0

(−1)s−m
(

s
m

)
mj−1

]
j = 3, 4, . . . , k.
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Then, we have to solve the following nonlinear system of equations:∫
R+

λ
j
iπ(λ|α)dλi = µ̂j j = 1, 2, . . . , k, (A1)

with π(λ|α) = A exp (−∑k
j=1(αjλ

j
i)) with A = 1∫

R+ exp (−∑k
j=1 αjλ

j)dλ
and µ̂1 = R; µ̂2 = R2− t−1

1i µ̂1; and

the following recurrence formula for µ̂j:

µ̂j = Rj −
j−1

∑
s=1

ts−j
1i µ̂s

[ 1
s!

s

∑
m=0

(−1)s−m
(

s
m

)
mj−1

]
j = 3, 4, . . . , k,

where t−j
1i is the sample average of 1

tj
1i

, while Rj is the sample average of the Rj
is.

One way to solve this problem is to transform the nonlinear system of Equation (A1) into an
unconstrained optimization problem and then use a numerical integration and the “fminsearchbnd”
MATLAB function described earlier to obtain an exact density

π(λ|α) = A exp (−
k

∑
j=1

(αjλ
j
i)) f or k > 2. (A2)

Here, we note that [7] has implemented his numerical method in MATLAB, which allows us to
estimate the vector of parameters in the maximum entropy distribution.

Another way is to specify the k-moment prior completely. For that, we substitute (A2) into (A1)
and solve this highly nonlinear set of equations for the α in terms of the k known empirical moments.

For given µ̂1, µ̂2, . . ., µ̂k, the corresponding values of α1, α2, . . ., αk are obtained by solving the set
nonlinear equations:

∫
R+

λ
j
ie
−
[

∑k
j=1 αjλ

j
i

]
= µ̂j

∫
R+

e
−
[

∑k
j=1 αjλ

j
i

]
j = 1, 2, . . . , k. (A3)

We see that this is not an easy problem as it involves, among other things, the integration of an
exponential function in which the exponent is of degree k and also that no general analytic solution
exists for this highly nonlinear set of equations. This is why we adopt a numerical method that should
lead to good approximate solutions for the vector α.

Let α0 = (α0
1, α0

2, . . . , α0
k) be a vector of initial values of α and let ε be the vector defined by

the equations

εj = αj − α0
j j = 1, 2, . . . , k. (A4)

By linearizing (A3), we see that the εj approximately satisfies k simultaneous equations of the form

(Wi+j − µ̂iWi)εi = Wi − µ̂iC0 i, j = 1, 2, . . . , k, (A5)

where

Wt =
∫

R+
λt

i e
−
[

∑k
j=1 αjλ

j
i

]
dλi t = 1, 2, . . . , 2k.

Thus, given a sufficiently good initial approximation (α0
1, α0

2, . . . , α0
k), the system (A5) is solved

for α = α0 + ε, which becomes our new vector of trial α, and iterations continue until ε becomes
appropriately small.
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We note that, for t < k, a numerical calculation with MATLAB has to be performed, but, for t ≥ k,
recurrence relations of the form

Wt =
1

kαk

[
(t + 1− k)W(t−k) −

k−1

∑
j=1

αjW(t+j−k)

]
can be used.
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