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Abstract: Polyomino graphs is one of the research objectives in statistical physics and in modeling
problems of surface chemistry. A random polyomino chain is a subgraph of a polyomino graph.
The matching energy is defined as the sum of the absolute values of the zeros of the matching
polynomial of a graph. In this paper, we characterize the graphs with the extremal matching energy
among all random polyomino chains of a polyomino graph by the probability method.
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1. Introduction

A polyomino graph [1] (also called chessboards [2] or square-cell configurations [3]) is a connected
geometric graph obtained by arranging congruent regular squares of side length 1 (called a cell) in a plane
such that two squares are either disjoint or have a common edge. Considerable research in statistical
physics and structural chemistry has been devoted to polyomino graphs [4–14].

A polyomino chain Qn with n squares, which is a subgraph of a polyomino graph, can be
regarded as a polyomino chain Qn−1 with n− 1 squares adjoining to a new terminal square by a cut
edge, see Figure 1.

Figure 1. A polyomino chain Qn with n squares.

Let Qn = S1S2 · · · Sn be a polyomino chain with n(≥ 2) squares, where Sk is the kth square of Qn

attached to Sk−1 by a cut edge uk−1wk, k = 2, 3, . . . , n, where wk = v1 is a vertex of Sk. A vertex v is
said to be ortho- and para-vertex of Sk if the distance between v and wk is one and two, denoted by
ok and pk, respectively. Checking Figure 1, it is easy to see that wn = v1, ortho-vertices on = v2, v3,
and para-vertex pn = v4 in Sn.

A polyomino chain Qn is a polyomino ortho-chain if uk = ok for 2 ≤ k ≤ n − 1, denoted by
Qo

n. A polyomino chain Qn is a polyomino para-chain if uk = ok for 2 ≤ k ≤ n− 1, denoted by Qp
n.

The polyomino or tho-chain Qo
4 and polyomino para-chain Qp

4 are depicted in Figure 2.
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Figure 2. Qo
4 and Qp

4 .

For n ≥ 3, the terminal square can be attached to ortho- or para-vertex in two ways, which results
in the local arrangements, described as Q1

n+1 and Q2
n+1 (see Figure 3).

Figure 3. The two types of local arrangements in polyomino chains.

A random polyomino chain Q(n, t) with n squares is a polyomino chain obtained by stepwise
addition of terminal squares. At each step k(= 3, 4, . . . , n), a random selection is made from one of the
two possible constructions:

(i) Qk−1 → Q1
k with probability t(= t1),

(ii) Qk−1 → Q2
k with probability 1− t(= t2),

where the probability t is a constant, irrespective to the step parameter k. In particular, the random
polyomino chain Q(n, 1) is the polyomino ortho-chain Qo

n. In addition, Q(n, 0) is the polyomino
para-chain Qp

n. For example, random polyomino chain Q(4, 1) is the polyomino ortho-chain Qo
4, and

Q(4, 0) is the polyomino para-chain Qp
4 , respectively. The two types of uniform chains are shown in

Figure 2.
A k-matching in G is a set of k pairwise non-adjacent edges. The number of k-matchings in G

is denoted by m(G, k). Specifically, m(G, 0) = 1, m(G, 1) = m and m(G, k) = 0 for k > n
2 or k < 0.

The matching polynomial of G is defined by

µ(G, x) = ∑
k≥0

(−1)km(G, k)xn−2k,

and its theory is well elaborated [15–18] and the references therein.
Gutman and Wagner [19] first proposed the concept of the matching energy of a graph, denoted by

ME(G), as

ME(G) =
2
π

∫ ∞

0
x−2ln

[
∑
k≥0

m(G, k)x2k

]
dx. (1)
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Meanwhile, they also gave another definition of matching energy of a graph. That is,

ME(G) =
n

∑
i=1
|µi|,

where µi denotes the root of matching polynomial of G.
The formula given by Gutman and Wagner [19] reveals the relation between topological resonance

energy (TRE(G)) [20], graph energy (E(G)) [21] and matching energy, i.e., TRE(G) = E(G)−ME(G).
The matching energy has received a lot of attention from researchers in recent years (see [22–36]).

For a random polyomino chain Q(n, t), the matching energy is a random variable. In this
paper, we shall determine the extremal graphs with respect to the matching energy for all random
polyomino chains.

2. Preliminaries

Let G = (V(G), E(G)) be a graph with the vertex set V(G) = {v1, v2, ..., vn} and the edge set
E(G) = {e1, e2, ..., em}. The graphs obtained from G by removing v or e are denoted by G− v or G− e,
respectively, where v ∈ V(G) and e ∈ E(G). Let G ∪ H be the union of two graphs G and H that have
no common vertices.

Among many properties of m(G, k), we mention the following results that will be used later [21].

Lemma 1. (i) If uv is an edge of G, then m(G, k) = m(G− uv, k) + m(G− u− v, k− 1);
(ii) If u is a vertex of G, then m(G, k) = m(G − u, k) + ∑

v∈N(u)
m(G − u − v, k − 1), where N(u) is the

neighbors of u in G.

Lemma 2. Let Gj(j = 1, 2, 3, 4) be a graph. If m(G1, i) ≥ m(G2, i) and m(G3, i) ≥ m(G4, i) for
i = 1, 2, . . . , k, then m(G1 ∪ G3, k) ≥ m(G2 ∪ G4, k).

The quasi-order � is defined by

G � H ⇐⇒ m(G, k) ≥ m(H, k) for all k = 0, 1, ..., bn/2c. (2)

If G � H and there exists some k such that m(G, k) > m(H, k), then we write G � H. In particular,
by Equations (1) and (2), the following property can be easily obtained:

G � H =⇒ ME(G) ≥ ME(H) and G � H =⇒ ME(G) > ME(H). (3)

This property is an important technique to determine extremal graphs with respect to the
matching energy.

In order to prove the main result of this paper, we give two auxiliary graphs of Q(n, t), denoted by
Q′(n, t) and Q′′(n, t), respectively (see Figure 4). In particular, Q′(n, t)(resp. Q′′(n, t)) is denoted by

Qo′
n (resp. Qp′′

n ) when Q′(n, t) (resp. Qp′′
n ) is isomorphic to Qo

n (resp. Qp
n).

Figure 4. The two types of auxiliary graphs of Q(n, t).
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3. Main Result

In this section, we will prove the following results.

Theorem 1. Let Q(n, t) be a random polyomino chain. Then,

ME(Qp
n) ≤ ME(Q(n, t)) ≤ ME(Qo

n),

where Qp
n and Qo

n are polyomino para-chain and polyomino ortho-chain, respectively.

Before proving Theorem 1, we first prove the following lemma.

Lemma 3. Let Q(n, t) be a random polyomino chain. Then, for any 0 ≤ k ≤ 2n,

m(Qp
n, k) ≤ m(Q(n, t), k) ≤ m(Qo

n, k),

where Qp
n and Qo

n denote the polyomino para-chain and polyomino ortho-chain, respectively.

Proof. We prove this lemma by the induction on n.
By the definition of Q(n, t), if n = 1, 2, then the proof is obvious. Let n = 3. Then Q(3, t) is

isomorphic to Qo
3 or Qp

3 . By Lemma 1, we obtain that

m(Qo
3, k) = m(Qo

2 ∪ C4, k) + m(Qo′
1 ∪ P3, k− 1)

= m(Qo
2 ∪ C4, k) + m(Qo

1 ∪ 2P3, k− 1) + m(2P3 ∪ P2, k− 2)

and

m(Qp
3 , k) = m(Qp

2 ∪ C4, k) + m(Qp′′
1 ∪ P3, k− 1)

= m(Qp
2 ∪ C4, k) + m(Qp

1 ∪ 2P3, k− 1) + m(2P3 ∪ 2K1, k− 2).

Checking graphs Qo
3 and Qp

3 , we know that Qo
2 and Qp

2 are isomorphic. By Lemma 2, we have
m(2P3 ∪ 2K1, k− 2) ≤ m(2P3 ∪ P2, k− 2). Thus, m(Qp

3 , k) ≤ m(Qo
3, k).

Next, we assume that the lemma is true for a random polyomino chain with length less than n.
Let Q(n, t) be a random polyomino chain of length n. It is clear that m(Qp

n, k) ≤ m(Q(n, t), k)
≤ m(Qo

n, k) for k = 0, 1. If 2 ≤ k < n, then

m(Qo
n, k) = m(Qo

n−1 ∪ C4, k) + m(Qo′
n−2 ∪ P3, k− 1)

= m(Qo
n−1 ∪ C4, k) + m(Qo

n−2 ∪ 2P3, k− 1) + m(Qo′
n−3 ∪ P3 ∪ P2, k− 2)

= m(Qo
n−1 ∪ C4, k) + m(Qo

n−2 ∪ 2P3, k− 1) + m(Qo
n−3 ∪ 2P3 ∪ P2, k− 2)

+m(Qo′
n−4 ∪ P3 ∪ 2P2, k− 3)

= ...

= m(Qo
n−1 ∪ C4, k) + m(Qo

n−2 ∪ 2P3, k− 1) + m(Qo
n−3 ∪ 2P3 ∪ P2, k− 2)

+... + m(Qo
n−k ∪ 2P3 ∪ (k− 2)P2, 1) + m(Qo′

n−k−1 ∪ P3 ∪ (k− 2)P2, 0)

= m(Qo
n−1 ∪ C4, k) + m(Qo

n−2 ∪ 2P3, k− 1) + m(Qo
n−3 ∪ 2P3 ∪ P2, k− 2)

+... + m(Qo
n−k ∪ 2P3 ∪ (k− 2)P2, 1) + 1

= m(Qo
n−1 ∪ C4, k) +

k−2

∑
s=0

m(Qo
n−2−s ∪ 2P3 ∪ sP2, k− 1− s) + 1,
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m(Qp
n, k) = m(Qp

n−1 ∪ C4, k) + m(Qp′′
n−2 ∪ P3, k− 1)

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp′′
n−3 ∪ P3 ∪ 2K1, k− 2)

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp
n−3 ∪ 2P3 ∪ 2K1, k− 2)

+m(Qp′′
n−4 ∪ P3 ∪ 4K1, k− 3)

= ...

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp
n−3 ∪ 2P3 ∪ 2K1, k− 2)

+... + m(Qp
n−k ∪ 2P3 ∪ (2k− 2)K1, 1) + m(Qp′′

n−k−1 ∪ P3(2k− 4)K1, 0)

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp
n−3 ∪ 2P3 ∪ 2K1, k− 2)

+... + m(Qp
n−k ∪ 2P3 ∪ (2k− 2)K1, 1) + 1

= m(Qp
n−1 ∪ C4, k) +

k−2

∑
s=0

m(Qp
n−2−s ∪ 2P3 ∪ 2sK1, k− 1− s) + 1,

and

m(Qn, k) = m(Qn−1 ∪ C4, k) + t1m(Qo′
n−2 ∪ P3, k− 1) + t2m(Qp′′

n−2 ∪ P3, k− 1)

= m(Qn−1 ∪ C4, k) + m(Qn−2 ∪ 2P3, k− 1) + t1[t1m(Qo′
n−3 ∪ P3 ∪ P2, k− 2) + t2m(Qp′′

n−3

∪P3 ∪ P2, k− 2)] + t2[t1m(Qo′
n−3 ∪ P3 ∪ 2K1, k− 2) + t2m(Qp′′

n−3 ∪ P3 ∪ 2K1, k− 2)]

= m(Qn−1 ∪ C4, k) + m(Qn−2 ∪ 2P3, k− 1) + t2
1[m(Qn−3 ∪ 2P3 ∪ P2, k− 2)

+t1m(Qo′
n−4 ∪ P3 ∪ 2P2, k− 3) + t2m(Qp′′

n−4 ∪ P3 ∪ 2P2, k− 3)] + t1t2[m(Qn−3 ∪ 2P3

∪P2, k− 2) + t1m(Qo′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3) + t2m(Qp′′

n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3)]

+t1t2[m(Qn−3 ∪ 2P3 ∪ 2K1, k− 2) + t1m(Qo′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3) + t2m(Qp′′

n−4 ∪ P3

∪P2 ∪ 2K1, k− 3)] + t2
2[m(Qn−3 ∪ 2P3 ∪ 2K1, k− 2) + t1m(Qo′

n−4 ∪ P3 ∪ 4K1, k− 3)

+t2m(Qp′′
n−4 ∪ P3 ∪ 4K1, k− 3)]

= · · ·

= m(Qn−1 ∪ C4, k) +
n−2

∑
s=0

∑
s1+s2=s

s!
s1!s2!

ts1
1 ts2

2 m(Qn−2−s ∪ 2P3 ∪ s1P2 ∪ 2s2K1, k− 1− s) + 1.

If n ≤ k ≤ 2n, then

m(Qo
n, k) = m(Qo

n−1 ∪ C4, k) + m(Qo′
n−2 ∪ P3, k− 1)

= m(Qo
n−1 ∪ C4, k) + m(Qo

n−2 ∪ 2P3, k− 1) + m(Qo′
n−3 ∪ P3 ∪ P2, k− 2)

= m(Qo
n−1 ∪ C4, k) + m(Qo

n−2 ∪ 2P3, k− 1) + m(Qo
n−3 ∪ 2P3 ∪ P2, k− 2)

+m(Qo′
n−4 ∪ P3 ∪ 2P2, k− 3)

= · · ·
= m(Qo

n−1 ∪ C4, k) + m(Qo
n−2 ∪ 2P3, k− 1) + ... + m(Q1 ∪ 2P3

∪(n− 3)P2, k− n + 2) + m(2P3 ∪ (n− 2)P2, k− n + 1)

= m(Qo
n−1 ∪ C4, k) +

n−2

∑
s=0

m(Qo
n−2−s ∪ 2P3 ∪ sP2, k− 1− s),
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m(Qp
n, k) = m(Qp

n−1 ∪ C4, k) + m(Qp′′
n−2 ∪ P3, k− 1)

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp′′
n−3 ∪ P3 ∪ 2K1, k− 2)

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp
n−3 ∪ 2P3 ∪ 2K1, k− 2)

+m(Qp′′
n−4 ∪ P3 ∪ 4K1, k− 3)

= m(Qp
n−1 ∪ C4, k) + m(Qp

n−2 ∪ 2P3, k− 1) + m(Qp
n−3 ∪ 2P3 ∪ 2K1, k− 2)

+m(Qp
n−4 ∪ 2P3 ∪ 4K1, k− 3) + m(Qp′′

n−5 ∪ P3 ∪ 6K1, k− 4)

= · · ·
= m(Qp

n−1 ∪ C4, k) + m(Qp
n−2 ∪ 2P3, k− 1) + m(Qp

n−3 ∪ 2P3 ∪ 2K1, k− 2)

+ . . . + m(Qp
1 ∪ 2P3 ∪ (2n− 6)K1, k− n + 2) + m(2P3 ∪ (2n− 4)K1, k− n + 1)

= m(Qp
n−1 ∪ C4, k) +

n−2

∑
s=0

m(Qp
n−2−s ∪ 2P3 ∪ 2sK1, k− 1− s),

and

m(Qn, k) = m(Qn−1 ∪ C4, k) + t1m(Qo′
n−2 ∪ P3, k− 1) + t2m(Qp′′

n−2 ∪ P3, k− 1)

= m(Qn−1 ∪ C4, k)

+t1[m(Qn−2 ∪ 2P3, k− 1) + t1m(Qo′
n−3 ∪ P3 ∪ P2, k− 2) + t2m(Qp′′

n−3 ∪ P3 ∪ P2, k− 2)]

+t2[m(Qn−2 ∪ 2P3, k− 1) + t1m(Qo′
n−3 ∪ P3 ∪ 2K1, k− 2)

+t2m(Qp′′
n−3 ∪ P3 ∪ 2K1, k− 2)]

= m(Qn−1 ∪ C4, k) + m(Qn−2 ∪ 2P3, k− 1)

+t2
1[m(Qn−3 ∪ 2P3 ∪ P2, k− 2) + t1m(Qo′

n−4 ∪ P3 ∪ 2P2, k− 3)

+t2m(Qp′′
n−4 ∪ P3 ∪ 2P2, k− 3)]

+t1t2[m(Qn−3 ∪ 2P3 ∪ P2, k− 2) + t1m(Qo′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3)

+t2m(Qp′′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3)]

+t1t2[m(Qn−3 ∪ 2P3 ∪ 2K1, k− 2) + t1m(Qo′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3)

+t2m(Qp′′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3)]

+t2
2[m(Qn−3 ∪ 2P3 ∪ 2K1, k− 2) + t1m(Qo′

n−4 ∪ P3 ∪ 4K1, k− 3)

+t2m(Qp′′
n−4 ∪ P3 ∪ 4K1, k− 3)]

= m(Qn−1 ∪ C4, k) + m(Qn−2 ∪ 2P3, k− 1)

+t1m(Qn−3 ∪ 2P3 ∪ P2, k− 2) + t2m(Qn−3 ∪ 2P3 ∪ 2K1, k− 2)

+t2
1[t1m(Qo′

n−4 ∪ P3 ∪ 2P2, k− 3) + t2m(Qp′′
n−4 ∪ P3 ∪ 2P2, k− 3)]

+2t1t2[t1m(Qo′
n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3) + t2m(Qp′′

n−4 ∪ P3 ∪ P2 ∪ 2K1, k− 3)]

+t2
2[t1m(Qo′

n−4 ∪ P3 ∪ 4K1, k− 3) + t2m(Qp′′
n−4 ∪ P3 ∪ 4K1, k− 3)]

= · · ·

= m(Qn−1 ∪ C4, k) +
n−2

∑
s=0

∑
s1+s2=s

s!
s1!s2!

ts1
1 ts2

2 m(Qn−2−s ∪ 2P3 ∪ s1P2 ∪ 2s2K1, k− 1− s),
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since ∑
s1+s2=s

s!
s1!s2! t

s1
1 ts2

2 = (t1 + t2)
s = 1 and m(Qp

n−2−s ∪ 2P3 ∪ 2sK1, k− 1− s) ≤ m(Qn−2−s ∪ 2P3 ∪

s1P2 ∪ 2s2K1, k− 1− s) ≤ m(Qo
n−2−s ∪ 2P3 ∪ sP2, k− 1− s). By the induction hypothesis and Lemma 2,

we obtain that

m(Qp
n, k) ≤ m(Q(n, t), k) ≤ m(Qo

n, k) for any 0 ≤ k ≤ 2n.

The lemma holds by induction.

In what follows, we prove Theorem 1.

Proof of Theorem 1. By Equations (2), (3) and Lemma 3, it is straightforward to show that ME(Qp
n) ≤

ME(Q(n, t)) ≤ ME(Qo
n).

4. Discussion

In this paper, we investigate the matching energy of a class of subgraphs (called polyomino chains)
of a polyomino graph. The graphs with the extremal matching energy among all polyomino chains are
completely determined. This is also the best result for all random polyomino chains. As a derivative
problem, we shall discuss which random polyomino chain has the second largest (or smallest)
matching energy.
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