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Abstract: We explored the dynamics of two interacting information systems. We show that for the
Markovian marginal systems, the driving force for information dynamics is determined by both
the information landscape and information flux. While the information landscape can be used to
construct the driving force to describe the equilibrium time-reversible information system dynamics,
the information flux can be used to describe the nonequilibrium time-irreversible behaviors of the
information system dynamics. The information flux explicitly breaks the detailed balance and is
a direct measure of the degree of the nonequilibrium or time-irreversibility. We further demonstrate
that the mutual information rate between the two subsystems can be decomposed into the equilibrium
time-reversible and nonequilibrium time-irreversible parts, respectively. This decomposition of
the Mutual Information Rate (MIR) corresponds to the information landscape-flux decomposition
explicitly when the two subsystems behave as Markov chains. Finally, we uncover the intimate
relationship between the nonequilibrium thermodynamics in terms of the entropy production rates
and the time-irreversible part of the mutual information rate. We found that this relationship and
MIR decomposition still hold for the more general stationary and ergodic cases. We demonstrate the
above features with two examples of the bivariate Markov chains.

Keywords: nonequilibrium thermodynamics; landscape-flux decomposition; mutual information
rate; entropy production rate

1. Introduction

There is growing interest in studying two interacting information systems in the fields of control
theory, information theory, communication theory, nonequilibrium physics and biophysics [1–9].
Significant progresses has been made recently towards the understanding of the information system in
terms of information thermodynamics [10–13]. However, the identification of the global driving forces
for the information system dynamics is still challenging. Here, we aim to fill this gap by quantifying
the driving forces for the information system dynamics. Inspired by the recent development of
landscape and flux theory for the continuous nonequilibrium systems [14–16] and the Markov chain
decomposition dynamics for the discrete systems [17–23], we show that at least for the underlying
marginal Markovian cases, the driving force for information dynamics is determined by both the
information landscape and information flux. The information landscape can be used to construct
the driving force responsible for the equilibrium time-reversible part of the information dynamics.
The information flux explicitly breaks the detailed balance and provides a quantitative measure of
the degree of nonequilibrium or time-irreversibility. It is responsible for the time-irreversible part
of the information dynamics. The Mutual Information Rate (MIR) [24] represents the correlation
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between two information subsystems. We uncovered that the MIR between the two subsystems can be
decomposed into the time-reversible and time-irreversible parts, respectively. Especially when the
two subsystems act as Markov chains, this decomposition can be expressed in terms of information
landscape-flux decomposition for Markovian dynamics. An important signature of nonequilibrium
is the Entropy Production Rate (EPR) [17,25,26]. We also uncover the intimate relation between the
EPRs and the time-irreversible part of the MIR. We demonstrate the above features with two cases
of the bivariate Markov chains. Furthermore, we show that the decomposition of the MIR and the
relationship between the EPRs and the time-irreversible part of the MIR still hold for more general
stationary and ergodic cases.

2. Bivariate Markov Chains

Markov chains have been often assumed for the underlying dynamics of the total system in
random environments. When the two subsystems together jointly form a Markov chain in continuous
or discrete time, the resulting chain is called the Bivariate Markov Chain (BMC, a special case of the
multivariate Markov chain with two stochastic variables). The processes of the two subsystems are
correspondingly said to be marginal processes or a marginal chain. The BMC was used to model
ion channel currents [2]. It was also used to model delays and congestion in a computer network [3].
Recently, different models of BMC appeared in nonequilibrium statistical physics for capturing or
implementing Maxwell’s demon [4–6], which can be seen as one marginal chain in the BMC playing
feedback control to the other marginal chain. Although the BMC has been studied for decades,
there are still challenges on quantifying the dynamics of the whole, as well as the two subsystems.
This is because neither of them needs to be a Markovian chain in general [7], and the quantifications
of the probabilities (densities) for the trajectories of the two subsystems involve the complicated
random matrix multiplications [8]. This leads to the problem not exactly being analytically solvable.
The corresponding numerical solutions often lack direct mathematical and physical interpretations.

The conventional analysis of the BMC focuses on the mutual information [9] of the two subsystems
for quantifying the underlying information correlations. There are three main representations of
this. The first one was proposed and emphasized in the works of Sagawa, T. and Ueda, M. [11] and
Parrondo, J. M. R., Horowitz, J. M. and Sagawa, T. [10], respectively, for explaining the mechanism of
Maxwell’s demon in Szilard’s engine. In this representation, the mutual information between the demon
and controlled system characterizes the observation and the feedback of the demon. This leads to an
elegant approach, which includes the increment of the mutual information into a unified fluctuation
relation. The second representation was proposed by the work of Horowitz, J. M. and Esposito, M. [12]
in an attempt to explain the violation of the second law in a specified BMC, the bipartite model, where
the mutual information is divided into two parts corresponding to the two subsystems, respectively,
which were said to be the information flows. This representation tries to explain the mechanism of
the demon because one can see that the information flows do contribute to the entropy production
for both the demon and controlled system. The first two representations are based on the ensembles
of the subsystem states. This means that the mutual information is defined only on the time-sliced
distributions of the system states, which somehow lack the information of subsystem dynamics: the
time-correlations of the observation and feedback of the demon. The last representation was seen
in the work of Barato, A. C., Hartich, D. and Seifert, U. [13], where a more general definition of
mutual information in information theory was used, which is defined on the trajectories of the two
subsystems. More exactly, this is the so-called Mutual Information Rate (MIR) [24], which quantifies the
correlation between the two subsystem dynamics. However, due to the difficulties from the possible
underlying non-Markovian property of the marginal chains, exactly solvable models and comprehensive
conclusions are still challenging from this representation.

In this study, we study the discrete-time BMC in both stochastic information dynamics and
thermodynamics. To avoid the technical difficulty caused by non-Markovian dynamics, we first
assume that the two marginal chains follow the Markovian dynamics. The non-Markovian case will
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be discussed elsewhere. We explore the time-irreversibility of BMC and marginal processes in the
steady state. Then, we decompose the driving force for the underlying dynamics as the information
landscape and information flux [14–16], which can be used to describe the time-reversible parts and
time-irreversible parts, respectively. We also prove that the non-vanishing flux fully describes the
time-irreversibility of BMC and marginal processes.

We focus on the mutual information rate between the two marginal chains. Since the two marginal
chains are assumed to be Markov chains here, the mutual information rate is exactly analytically
solvable, which can be seen as the averaged conditional correlation between the two subsystem
states. Here, the conditional correlations reveal the time correlations between the past states and the
future states.

Corresponding to the landscape-flux decomposition in stochastic dynamics, we decompose the
MIR into two parts: the time-reversible and time-irreversible parts, respectively. The time-reversible
part measures the part of the correlations between the two marginal chains in both forward
and backward processes of BMC. The time-irreversible part measures the difference between the
correlations in forward and backward processes of BMC, respectively. We can see that a non-vanishing
time-irreversible part of the MIR must be driven by a non-vanishing flux in the steady state, and it can
be seen as the sufficient condition for a BMC to be time-irreversible.

We also reveal the important fact that the time-irreversible parts of MIR contribute to the
nonequilibrium Entropy Production Rate (EPR) of the BMC by the simple equality:

EPR o f BMC = EPR o f 1st marginal chain + EPR o f 2nd marginal chain + 2× time-irreversible part o f MIR.

The decomposition of the MIR and the relation between the time-irreversible part of MIR and
EPRs can also be found in stationary and ergodic non-Markovian cases, which will be given in
the discussions in the Appendix. This may help to develop a general theory of nonequilibrium
non-Markovian interacting information systems.

3. Information Landscape and Information Flux for Determining the Information Dynamics,
Time-Irreversibility

Consider the case that two interacting information systems form a finite-state, discrete-time,
ergodic and irreducible bivariate Markov chain,

Z = (X, S) = {(X(t), S(t)), t ≥ 1}, (1)

We assume that the information state space of X is given by X = {1, ..., d} and the information state
space of S is given by S = {1, ..., l}. The information state space of Z is then given by Z = X × S .
The stochastic information dynamics can then be quantitatively described by the time evolution of the
probability distribution of information state space Z, characterized by the following master equation
(or the information system dynamics) in discrete time,

pz(z; t + 1) = ∑
z′

qz(z|z′)pz(z′; t), for t ≥ 1, and z ∈ Z (2)

where pz(z; t) = pz(x, s; t) is the probability of observing state z (or joint probability of X = x and
S = s) at time t; qz(z|z′) = qz(x, s|x′, s′) ≥ 0 are the transition probabilities from z′ = (x′, s′) to
z = (x, s), respectively, and have ∑z qz(z|z′) = 1.

We assume that there exists a unique stationary distribution πz such that πz(z) = ∑z′ qz(z|z′)πz(z′).
Then, given an arbitrary initial probability distribution, the probability distribution goes to πz

exponentially fast in time. If the initial distribution is πz, we say that Z is in Steady State (SS), and our
discussion is based on this SS.

The marginal chains of Z, i.e., X and S, do not need to be Markov chains in general. For the
simplicity of analysis, we assume that both marginal chains are Markov chains, and the corresponding
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transition probabilities are given by qx(x|x′) and qs(s|s′) (for x, x′ ∈ X and s, s′ ∈ S), respectively.
Then, we have the following master equations (or the information system dynamics) for X and
S, respectively,

px(x; t + 1) = ∑
x′

qx(x|x′)px(x′; t), (3)

and,

ps(s; t + 1) = ∑
s′

qs(s|s′)ps(s′; t), (4)

where px(x; t) and ps(s; t) are the probabilities of observing X = x and S = s at time t, respectively.
We consider that both Equations (3) and (4) have unique stationary solutions πx and πs, which

satisfy πx(x) = ∑x′ qx(x|x′)πx(x′) and πs(s) = ∑s′ qs(s|s′)πs(s′) respectively. Furthermore, we assume
that when Z is in SS, πx and πs are also achieved. The relations between πx, πs and πz read,{

πx(x) = ∑s πz(x, s),

πs(s) = ∑x πz(x, s).
(5)

In the rest of this paper, we let XT = {X(1), X(2), ..., X(T)}, ST = {S(1), S(2), ..., S(T)}, and
ZT = {Z(1), Z(2), ..., Z(T)} = (XT , ST) denote the time sequences of X, S and Z in time T, respectively.

To characterize the time-irreversibility of the Markov chain C in information dynamics in SS,
we introduce the concept of probability flux. Here, we let C denote the arbitrary Markov chain
in {Z, X, S}, and let c, πc, qc and CT denote arbitrary state of C, the stationary distribution of C,
the transition probabilities of C and a time sequence of C in time T and in SS, respectively.

The averaged number transitions from the state c′ to state c, denoted by N(c′ → c), in unit time
in SS can be obtained as:

N(c′ → c) = πc(c′)qc(c|c′).

This is also the probability of the time sequence CT = {C(1) = c′, C(2) = c}, (T = 2). Correspondingly,
the averaged number of reverse transitions, denoted by N(c→ c′), reads:

N(c→ c′) = πc(c)qc(c′|c).

This is also the probability of the time-reverse sequence C̃T = {C(1) = c, C(2) = c′}, (T = 2).
The difference between these two transition numbers measures the time-reversibility of the forward
sequence CT in SS,

Jc(c′ → c) = N(c′ → c)− N(c→ c′)

= P(CT)− P(C̃T) (6)

= πc(c′)qc(c|c′)− πc(c)qc(c′|c), for C = X, S, or Z.

Then, Jc(c′ → c) is said to be the probability flux from c′ to c in SS. If Jc(c′ → c) = 0 for arbitrary c′ and
c, then CT (T = 2) is time-reversible; otherwise, when Jc(c′ → c) 6= 0, CT is time-irreversible. Clearly,
we have from Equation (6) that:

Jc(c′ → c) = −Jc(c→ c′). (7)
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The transition probability determines the evolution dynamics of the information system. We can
decompose the transition probabilities qc(c|c′) into two parts: the time-reversible part Dc and
time-irreversible part Bc, which read:

qc(c|c′) = Dc(c′ → c) + Bc(c′ → c), withDc(c′ → c) = 1
2πc(c′)

(πc(c′)qc(c|c′) + πc(c)qc(c′|c)),

Bc(c′ → c) = 1
2πc(c′)

Jc(c′ → c).

(8)

From this decomposition, we can see that the information system dynamics is determined
by two driving forces. One of the driving forces is determined by the steady state probability
distribution. This part of the driving force is time-reversible. The other driving force for the
information dynamics is the steady state probability flux, which breaks the detailed balance and
quantifies the time-irreversibility. Since the steady state probability distribution measures the
weight of the information state, therefore it can be used to quantify the information landscape. If we
define the potential landscape for the information system as φ = − logπ, then the driving force
Dc(c′ → c) = 1

2 (qc(c|c′) + πc(c)
πc(c′)

qc(c′|c)) = 1
2 (qc(c|c′) + exp[−(φc(c)− φc(c′)]qc(c′|c)) is expressed in

term of the difference of the potential landscape. This is analogous to the landscape-flux decomposition
of Langevin dynamics in [15]. Notice that the information landscape is directly related to the steady
state probability distribution of the information system. In general, the information landscape is
at nonequilibrium since the detailed balance is often broken for general cases. Only when the
detailed balance is preserved, the nonequilibrium information landscape is reduced to the equilibrium
information landscape. Even though the information landscape is not at equilibrium in general, the
driving force Dc(c′ → c) is time-reversible due to the decomposition construction. The steady state
probability flux measures the information flow in the dynamics and therefore can be termed as the
information flux. In fact, the nonzero information flux explicitly breaks the detailed balance because of
the net flow to or from the system. It is therefore a direct measure of the degree of the nonequilibrium
or time-irreversibility in terms of the detailed balance breaking.

Note that the decomposition for the discrete Markovian information process can be viewed as the
separation of the current corresponding to the 2Bc(c′ → c)πc(c′) here and the activity corresponding
to the 2Dc(c′ → c)πc(c′) in a previous study [19]. The landscape and flux decomposition here for
the reduced information dynamics are in a similar spirit as the whole state space decomposition
with the information system and the associated environments. When the detailed balance is
broken, the information landscape (defined as the negative logarithm of the steady state probability
φ = − logπ) is not the same as the equilibrium landscape under the detailed balance. There can be
uniqueness issue related to the decomposition. To avoid the confusion, we make a physical choice,
or in other words, we can fix the gauge so that the information landscape always coincides with the
equilibrium landscape when the detailed balance is satisfied. In other words, we want to make sure
the Boltzmann law applies at equilibrium with detailed balance. In this way, we can decompose the
information landscape and information flux for nonequilibrium information systems without detailed
balance. By solving the linear master equation for the steady state, we can quantify the nonequilibrium
information landscape, and from that, we can obtain the corresponding steady state probability flux.
Some studies discussed various aspects of this issue [18,19,27,28].

By Equations (7) and (8), we have the following relations:{
πc(c′)Dc(c′ → c) = πc(c)Dc(c→ c′),

πc(c′)Bc(c′ → c) = −πc(c)Bc(c→ c′).
(9)

As we can see in the next section, Dc and Bc are useful for us to quantify time-reversible and
time-irreversible observables of C, respectively.
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We give the interpretation that the non-vanishing information flux Jc fully measures the
time-irreversibility of the chain C in time T for T ≥ 2. Let CT be an arbitrary sequence of C in SS, and
without loss of generality, we let T = 3. Similar to Equation (6), the measure of the time-irreversibility
of CT can be given by the difference between the probability of CT = {C(1), C(2), C(3)} and that of its
time-reversal C̃T = {C(3), C(2), C(1)}, such as:

P(CT)− P(C̃T)

= πc(C(1))qc(C(2)|C(1))qc(C(3)|C(2))− πc(C(3))qc(C(2)|C(3))qc(C(1)|C(2))
= πc(C(1)) (Dc(C(1)→ C(2)) + Bc(C(1)→ C(2))) (Dc(C(2)→ C(3)) + Bc(C(2)→ C(3)))−
πc(C(3)) (Dc(C(3)→ C(2)) + Bc(C(3)→ C(2))) (Dc(C(2)→ C(1)) + Bc(C(2)→ C(1))) ,
for C = X, S or Z.

Then, by the relations given in Equation (9), we have that P(CT)− P(C̃T) = 0 holds for arbitrary
CT if and only if Bc(C(1) → C(2)) = Bc(C(2) → C(3)) = 0 or equivalently Jc(C(1) → C(2)) =

Jc(C(2) → C(3)) = 0. This conclusion can be made for arbitrary T > 3. Thus, non-vanishing Jc can
fully describe the time-irreversibility of C for C = X, S or Z.

We show the relations between the fluxes of the whole system Jz and of the subsystem Jx as follows:

Jx(x′ → x) = πx(x′)qx(x|x′)− πx(x)qx(x′|x)
= P({x′, x})− P({x, x′})
= ∑

s,s′

(
P({(x′, s′), (x, s)})− P({(x, s), (x′, s′)})

)
(10)

= ∑
s,s′

(
πz(x′, s′)qz(x, s|x′, s′)− πz(x, s)qz(x′, s′|x, s)

)
= ∑

s,s′
Jz((x′, s′)→ (x, s)).

Similarly, we have:

Js(s′ → s) = ∑
x,x′

Jz((x′, s′)→ (x, s)). (11)

These relations indicate that the subsystem fluxes Jx and Js can be seen as the coarse-grained levels of
total system flux Jz by averaging over the other parts of the system S and X, respectively. We should
emphasize that non-vanishing Jz does not mean X or S is time-irreversible and vice versa.

4. Mutual Information Decomposition to Time-Reversible and Time-Irreversible Parts

According to information theory, the two interacting information systems represented by bivariate
Markov chain Z can be characterized by the Mutual Information Rate (MIR) between the marginal
chains X and S in SS. The mutual information rates represent the correlation between two interacting
information systems. The MIR is defined on the probabilities of all possible time sequences, P(ZT),
P(XT) and P(ST) and is given by [24],

I(X, S) = lim
T→∞

1
T ∑

ZT

P(ZT) log
P(ZT)

P(XT)P(ST)
. (12)

It measures the correlation between X and S in unit time, or say, the efficient bits of information that X
and S exchange with each other in unit time. The MIR must be non-negative, and a vanishing I(X, S)
indicates that X and S are independent of each other. More explicitly, the corresponding probabilities
of these sequences can be evaluated by using Equations (2)–(4); we have:
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P(XT) = πx(X(1))∏T−1

t=1 qx(X(t + 1)|X(t)),

P(ST) = πs(S(1))∏T−1
t=1 qs(S(t + 1)|S(t)),

P(ZT) = πz(Z(1))∏T−1
t=1 qz(Z(t + 1)|Z(t)).

By substituting these probabilities into Equation (12) (see Appendix A), we have the exact expression
of MIR as:

I(X, S) = ∑z,z′ πz(z′)qz(z|z′) log qz(z|z′)
qx(x|x′)qs(s|s′)

=
〈
i(z|z′)〉z′ ,z ≥ 0, for z = (x, s), and z′ = (x′, s′).

(13)

where i(z|z′) = log qz(z|z′)
qx(x|x′)qs(s|s′) is the conditional (Markovian) correlation between the states x and

s when the transition z′ = (x′, s′) → z = (x, s) occurs. This indicates that when the two marginal
processes are both Markovian, the MIR is the average of the conditional (Markovian) correlations.
These correlations are measurable when transitions occur, and they can be seen as the observables of Z.

By noting the decomposition of transition probabilities in Equation (8), we have a corresponding
decomposition of I(X, S) such as:

I(X, S) = ID(X, S) + IB(X, S), withID(X, S) = ∑z,z′ πz(z′)Dz(z|z′)i(z|z′) = 1
2 ∑z,z′(πz(z′)qz(z|z′) + πz(z)qz(z′|z))i(z|z′),

IB(X, S) = ∑z,z′ πz(z′)Bz(z|z′)i(z|z′) = 1
2 ∑z,z′ Jz(z|z′)i(z|z′) = 1

4 ∑z,z′ Jz(z|z′)(i(z|z′)− i(z′|z)).

(14)

This means that the mutual information representing the correlations between the two interacting
systems can be decomposed into the time-reversible equilibrium part and the time-irreversible
nonequilibrium part. The origin of this is from the fact that the underlying information system
dynamics is determined by both the time-reversible information landscape and time-irreversible
information flux. These equations are very important to establish the link to the time-irreversibility.
We now give further interpretation for ID(X, S) and IB(X, S):

Consider a bivariate Markov chain Z in SS wherein X and S are dependent on each other,
i.e., I(X, S) = ID(X, S) + IB(X, S) > 0. By the ergodicity of Z, we have the MIR, which measures
the averaged conditional correlation along the time sequences ZT ,

lim
T→∞

1
T
〈
i(Z(t + 1)|Z(t))〉ZT = I(X, S), for 1 < t < T.

Then, IB(X, S) measures the change of the averaged conditional correlation between X and S when
a sequence of Z turns back in time,

lim
T→∞

1
T
〈
i(Z(t + 1)|Z(t))− i(Z(t)|Z(t + 1))

〉
ZT = 2IB(X, S).

A negative IB(X, S) shows that the correlation between X and S becomes strong in the time-reversal
process of Z; A positive IB(X, S) shows that the correlation becomes weak in the time-reversal process
of Z. Both cases show that the Z is time-irreversible since we have a non-vanishing Jz. However,
the case of IB(X, S) = 0 is complicated, since it indicates either a vanishing Jz or a non-vanishing Jz.
Anyway, we see that a non-vanishing IB(X, S) is a sufficient condition for Z to be time-irreversible.
On the other hand, ID(X, S) = I(X, S)− IB(X, S) measures the correlation remaining in the backward
process of Z.

The definition of MIR in Equation (12) turns out to be appropriate for even more general stationary
and ergodic (Markovian or non-Markovian) processes. Consequentially, the decomposition of MIR is
useful to quantify the correlation between two stationary and ergodic processes in a wider sense, i.e.,
to monitor the changes of the correlation in the forward and the backward processes. As a special case,
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the analytical expressions in Equation (14) are the reduced results, which are valid for Markovian cases.
A brief discussion of the decomposition of MIR of more general processes can be found in Appendix B.

5. Relationship between Mutual Information and Entropy Production

The Entropy Production Rates (EPR) or energy dissipation (cost) rate at steady state is a quantitative
nonequilibrium measure, which characterizes the time-irreversibility of the underlying processes.
The EPR of a stationary and ergodic process C (here C = Z, X or S) can be given by the difference
between the averaged surprisal (negative logarithmic probability) of the backward sequences C̃T and
that of forward sequences CT in the long time limit, i.e.,

Rc = lim
T→∞

1
T
〈

log P(CT)− log P(C̃T)
〉

CT

= lim
T→∞

1
T

〈
log

P(CT)

P(C̃T)

〉
CT
≥ 0,

(15)

where Rc is said to be the EPR of C [25]; − log P(CT) and − log P(C̃T) are said to be the surprisal of a
forward and a backward sequence of C, respectively. We see that C is time-reversible (i.e., P(CT) =

P(C̃T) for arbitrary CT for large T) if and only if Rc = 0. Additionally, this is due to the form of
Rc, which is exactly a Kullback–Leibler divergence. When C is Markovian, then Rc reduces into the
following form when Z, X or S is assigned to C, respectively [17,26],

Rz =
1
2 ∑z,z′ Jz(z′ → z) log qz(z|z′)

qz(z′ |z) ,

Rx = 1
2 ∑x,x′ Jx(x′ → x) log qx(x|x′)

qx(x′ |x) ,

Rs =
1
2 ∑s,s′ Js(s′ → s) log qs(s|s′)

qs(s′ |s) ,

(16)

where total and subsystem entropy productions Rz, Rx and Rs correspond to Z, X and S, respectively.
Here, Rz usually contains the detailed interaction information of the system (or subsystems) and
environments; Rx and Rs provide the coarse-grained information of time-irreversible observables
of X and Z, respectively. Each non-vanishing EPR indicates that the corresponding Markov chain
is time-irreversible. Again, we emphasize that a non-vanishing Rz does not mean X or S is
time-irreversible and vice versa.

We are interested in the connection between these EPRs and mutual information. We can associate
them with IB(X, S) by noting Equations (10), (11) and (14). We have:

IB(X, S) =
1
4 ∑

z,z′
Jz(z|z′)(i(z|z′)− i(z′|z))

=
1
4 ∑

z,z′
Jz(z|z′) log

qz(z|z′)
qz(z′|z)

− 1
4 ∑

x,x′
Jx(x|x′) log

qx(x|x′)
qx(x′|x) −

1
4 ∑

s,s′
Js(s|s′) log

qs(s|s′)
qs(s′|s)

=
1
2
(Rz − Rx − Rs).

(17)

We note that IB(X, S) is intimately related to the EPRs. This builds up a bridge between these
EPRs and the irreversible part of the mutual information. Moreover, we also have:

Rz = Rx + Rs + 2IB(X, S) ≥ 0,

Rx + Rs ≥ −2IB(X, S),

Rz ≥ 2IB(X, S).

(18)

This indicates that the time-irreversible MIR contributes to the detailed EPRs. In other words,
the differences of the entropy production rate of the whole system and subsystems provide the origin of
the time-irreversible part of the mutual information. This reveals the nonequilibrium thermodynamic
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origin of the irreversible mutual information or correlations. Of course, since the EPR is related
to the flux directly as is seen from the above definitions, the origin of the EPR or nonequilibrium
thermodynamics is from the non-vanishing information flux for the nonequilibrium dynamics. On the
other hand, the irreversible part of the mutual information measures the correlations, and it contributes
to the EPRs of the correlated subsystems.

Furthermore, the last expression in Equation (17) (also the expressions in Equation (18)) can be
generalized to more general stationary and ergodic processes. A related discussion and demonstration
of this can be seen in Appendix B.

6. A Simple Case: The Blind Demon

As a concrete example, we consider a two-state system coupled to two information baths a and
b. The states of the system are denoted by X = {x : x = 0, 1}, respectively. Each bath sends an
instruction to the system. If the system adopts one of them, it then follows the instruction and makes
the change of the state. The instructions generated from one bath are independently and identically
distributed (Bernoulli trials). Both the probability distributions of the instructions corresponding to
the baths follow Bernoulli distributions and read {εa(x) : x ∈ X , εa(x) ≥ 0, ∑x εa(x) = 1} for bath a
and {εb(x) : x ∈ X , εb(x) ≥ 0, ∑x εb(x) = 1} for bath b, respectively. Since the system cannot execute
two instructions simultaneously, there exists an information demon that makes choices for the system.
The demon is blind to caring about the system, and it makes choices independently and identically
distributed. The choices of the demon are denoted by S = {s : s = a, b}, respectively. The probability
distribution of the demon’s choices reads {P(s) : s ∈ S , P(a) = p, P(b) = 1− p, p ∈ [0, 1]}. Still,
we use Z = (X, S) with X ∈ X and S ∈ S to denote the BMC of the system and the demon.

Consequentially, the transition probabilities of the system read:

qx(x|x′) = pεa(x) + (1− p)εb(x).

The transition probabilities of the demon read:

qs(s|s′) = P(s).

Additionally, the transition probabilities of the joint chain read:

qz(x, s|x′, s′) = P(s)εs′(x).

We have the corresponding steady state distributions or the information landscapes as,
πx(x) = pεa(x) + (1− p)εb(x),

πs(s) = P(s),

πz(x, s) = P(s)πx(x).

We obtain the information fluxes as,
Jx(x′ → x) = 0, for all x, x′ ∈ X
Js(s′ → s) = 0, for all s, s′ ∈ S
Jz((x′, s′)→ (x, s)) = P(s)P(s′)(πx(x′)εs′(x)− πx(x)εs(x′)).

Here, we use the notations εs(x′) and εs′(x) (s, s′ = a or b) to denote the probabilities of the instructions
x′ or x from bath a or b briefly. We obtain the EPRs as:
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Rx = 0,

Rs = 0,

Rz = ∑x p(1− p)(εa(x)− εb(x))(log εa(x)− log εb(x)).

We evaluate the MIR as:

I(X, S) = −∑
x
πx(x) logπx(x) + p ∑

x
εa(x) log εa(x) + (1− p)∑

x
εb(x) log εb(x).

The time-irreversible part of I(X, S) reads,

IB(X, S) =
1
2

Rz.

7. Conclusions

In this work, we identify the driving forces for the information system dynamics. We show
that for marginal Markovian information systems, the information dynamics is determined by both
the information landscape and information flux. While the information landscape can be used to
construct the driving force for describing the time-reversible behavior of the information dynamics,
the information flux can be used to describe the time-irreversible behavior of the information dynamics.
The information flux explicitly breaks the detailed balance and provides a quantitative measure of
the degree of the nonequilibrium or time-irreversibility. We further demonstrate that the mutual
information rate, which represents the correlations, can be decomposed into the time-reversible
part and the time-irreversible part originated from the landscape and flux decomposition of the
information dynamics. Finally, we uncover the intimate relationship between the difference of the
entropy productions of the whole system and those of the subsystems and the time-irreversible part
of the mutual information. This will help with understanding the non-equilibrium behavior of the
interacting information system dynamics in stochastic environments. Furthermore, we verify that our
conclusions on the mutual information rate and entropy production rate decomposition can be made
more general for the stationary and ergodic processes.
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Appendix A

Here, we derive the exact form of the Mutual Information Rate (MIR, Equation (13)) in the steady
state by using the cumulant-generating function.

We write an arbitrary time sequence of Z in time T in the following form:

ZT = {Z(1), ..., Z(i), ..., Z(T)}, for T ≥ 2,
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where Z(i) (for i ≥ 1) denotes the state at time i. The corresponding probability of ZT is in the
following form:

P(ZT) = πz(Z1)

{
T−1

∏
i=1

qz(Zi+1|Zi)

}
. (A1)

We let the chain U = (X, S) denote a process that X and S follow the same Markov dynamics in
Z, but are independent of each other. Then, we have that the transition probabilities of U read:

qu(u|u′) = q(x, s|x′, s′) = qx(x|x′)qs(s|s′). (A2)

Then, the probability of a time sequence of U, UT , with the same trajectory of ZT reads:

P(UT) = πu(Z1)

{
T−1

∏
i=1

qu(Zi+1|Zi)

}
, (A3)

with πu(x, s) = πx(x)πs(s) being the stationary probability of U.
For evaluating the exact form of MIR, we introduce the cumulant-generating function of the

random variable log P(ZT)
P(UT)

,

K(m, T) = log
〈

exp
(

m log
P(ZT)

P(UT)

)〉
ZT

. (A4)

We can see that:

lim
T→∞

lim
m→0

1
T

∂K(m, T)
∂m

= lim
T→∞

1
T

〈
log

P(ZT)

P(UT)

〉
ZT

= I(X, S).

(A5)

Thus, our idea is to evaluate K(m, T) at first. We have:

K(m, T) = log
〈

exp
(

m log
P(ZT)

P(UT)

)〉
ZT

= log

{
∑
ZT

(P(ZT))m+1

(P(UT))m

}

= log

 ∑
{Z(0),Z(1),...,Z(T)}

(πm+1
z (Z0))

(πm
u (Z0))

T−1

∏
i=0

qm+1
z (Zi+1|Zi)

qm
u (Zi+1|Zi)

 ,

(A6)

where we realize that the last equality can be rewritten in the form of matrix multiplication.
We introduce the following matrices and vectors for Equation (A6) such that:

QQQz =
{
(QzQzQz)(z,z′) = qz(z|z′), for z, z′ ∈ Z

}
,

GGG(m) =
{
(GGG(m))(z,z′) =

qm+1
z (z|z′)
qm

u (z|z′) , for z, z′ ∈ Z
}

,

πππz = {(πππz)z = πz(z), for z ∈ Z} ,

vvv(m) =
{
(vvv(m))z =

πm+1
z (z)
πm

u (z)

}
,

(A7)

where QQQz is the transition matrix of Z; πππz is the stationary distribution of Z. It can be also verified that:
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QQQz = GGG(0),

πππz = vvv(0),

πππz = QQQzπππz,

111†QQQz = 111†,

lim
m→0

dGGG(m)

dm
=

{(
lim
m→0

dGGG(m)

dm

)
(z,z′)

= qz(z|z′) log
qz(z|z′)
qu(z|z′)

, for z, z′ ∈ Z
}

,

lim
m→0

dvvv(m)

dm
=

{(
lim
m→0

dvvv(m)

dm

)
z
= πz(z) log

πz(z)
πu(z)

, for z ∈ Z
}

,

(A8)

where 111† is the vector of all ones with appropriate dimension.
Then, K(m, T) can be rewritten in a compact form such that:

K(m, T) = log
{

111†GGGT−1(m)vvv(m)
}

. (A9)

Then, we substitute Equation (A9) into Equation (A5) and have:

I(X, S) = lim
T→∞

lim
m→0

1
T

∂K(m, T)
∂m

= lim
T→∞

lim
m→0

1
T

∂ log
{

111†GGGT−1(m)vvv(m)
}

∂m

= lim
T→∞

lim
m→0

1
T

{
(T − 1)111†GGGT−2(m)

dGGG(m)

dm
vvv(m) + 111†GGGT−1(m)

dvvv(m)

dm

}
= lim

T→∞

1
T

{
(T − 1)111†GGGT−2(0)

(
lim
m→0

dGGG(m)

dm

)
vvv(0) + 111†GGGT−1(0)

(
lim
m→0

dvvv(m)

dm

)}
.

(A10)

By noting Equation (A8) and T ≥ 2, we obtain Equation (13) from Equation (A10) such that:

I(X, S) = lim
T→∞

1
T

{
(T − 1)111†GGGT−2(0)

(
lim
m→0

dGGG(m)

dm

)
vvv(0) + 111†GGGT−1(0)

(
lim
m→0

dvvv(m)

dm

)}
= lim

T→∞

{(
1− 1

T

)
111†
(

lim
m→0

dGGG(m)

dm

)
πππz +

1
T

111†
(

lim
m→0

dvvv(m)

dm

)}
= 111†

(
lim
m→0

dGGG(m)

dm

)
πππz

= ∑
(x,s),(x′ ,s′)

πz(x′, s′)qz(x, s|x′, s′) log
qz(x, s|x′, s′)

qx(x|x′)qs(s|s′)
.

(A11)

Appendix B

Appendix B.1 Discussions on the Generality of Mutual Information Rate Decomposition and Connections to
Entropy Production in Terms of Equations (14), (17), and (18)

For general cases, indeed, we do not expect that both X and S are Markovian. Even the joint
chain Z may be non-Markovian. This means that Equation (2) may fail to depict the dynamics of Z.
Then, the landscape-flux decomposition needs to be generalized to this situation. Such decomposition
was not developed yet for the non-Markovian cases. This will be discussed in a separate work.
However, when Z is a stationary and ergodic process (also assume that both X and S are stationary
and ergodic), we show that the MIR can be decomposed into two parts as is shown in Equation (14),
and an interesting relation between the MIR and EPRs can still be found in the same form of the last
expression in Equation (17).
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We are interested in the correlation between the forward sequences of X and S, which can be

measured by log P(ZT)
P(XT)P(ST)

(ZT = (XT , ST)), then the MIR can be used to quantify the average rate of
this correlation in the long time limit as shown in Equation (12). Furthermore, we are interested in
the averaged difference between the rate of the correlation of the backward processes and that of the
forward processes. This comes to the time-irreversible part of the MIR defined by:

IB(X, S) = lim
T→∞

1
2T

〈
log

P(ZT)

P(XT)P(ST)
− log

P(Z̃T)

P(X̃T)P(S̃T)

〉
ZT

, (A12)

where log P(Z̃T)

P(X̃T)P(S̃T)
quantifies the correlation between the backward sequences of X and S.

Clearly, the time-irreversible part of MIR depicting the correlation of the forward processes of X
and S is enhanced (IB(X, S) > 0) or weakened (IB(X, S) < 0) compared to that of the backward
processes. The other important part of the MIR, namely the time-reversible part, shows that the
averaged rate of the correlation that remains in both forward and backward processes,

ID(X, S) = lim
T→∞

1
2T

〈
log

P(ZT)

P(XT)P(ST)
+ log

P(Z̃T)

P(X̃T)P(S̃T)

〉
ZT

, (A13)

Consequentially, the MIR I(X, S) is decomposed into two parts shown as I(X, S) = ID(X, S)+ IB(X, S).
In Markovian cases, each part of the MIR reduces to the form in Equation (14) respectively.

The relation between the time-irreversible part of the MIR and EPRs can be shown as follows,

IB(X, S) = lim
T→∞

1
2T

〈
log

P(ZT)

P(XT)P(ST)
− log

P(Z̃T)

P(X̃T)P(S̃T)

〉
ZT

= lim
T→∞

1
2T

{〈
log

P(ZT)

P(Z̃T)

〉
ZT
−
〈

log
P(XT)

P(X̃T)

〉
XT
−
〈

log
P(ST)

P(S̃T)

〉
ST

}
(A14)

=
1
2
(Rz − Rx − Rs) ,

which is in the same form as Equation (17). Additionally, due to the non-negativity of the EPRs, the
inequalities in (18) still hold for general cases.

Appendix B.2. The Smart Demon

To verify the conclusions in more general cases, we constructed a model of a smart demon,
which reflects a more general situation in the nature: the two information subsystems play feedback
to each other. A three-state information system is connected to two information baths labeled a
and b, respectively. The states of the system are denoted by X = {x : x = 0, 1, 2}, respectively.
Each bath sends an instruction to the system. If the system adopts one of them, it then follows
the instruction and makes a change of the state. The instructions generated from one arbitrary
bath are independent and identically distributed. The probability distributions of the instructions
corresponding to the baths read {εs(x) : εs(x) ≥ 0, ∑x∈X εs(x) = 1} (for s = a, b), respectively.
Since the system cannot execute the two incoming instructions simultaneously, there exists an
information demon making choices for the system. The choices of the demon are denoted by
the labels of the baths S = {s : s = a, b}, respectively. The demon observes the state of the
system and plays feedback. The (conditional) probability distribution of the demon’s choices reads
{d(s|x′, s′) : d(s|x′, s′) ≥ 0, ∑s∈S d(s|x′, s′) = 1, x′ ∈ X , s′ ∈ S}. Still, we use X, S and Z = (X, S) to
denote the processes of the system, the demon and the corresponding joint chain, a BMC, respectively.

The transition probabilities of the BMC read:

qz(z|z′) = qz(x, s|x′, s′) = d(s|x′, s′)εs(x),



Entropy 2017, 19, 678 14 of 16

where εs(x) denotes the probability of the instruction x from bath s = a, b. We assume that there is
a unique stationary distribution of z, πz such that:

πz(z) = ∑
z′

qz(z|z′)πz(z′).

The stationary distributions of S and X then read:{
πs(s) = ∑x πz(x, s),

πx(x) = ∑s πz(x, s).

The behavior of the demon can be seen as a Markovian process in the steady state. The corresponding
transition probabilities of the system read:

qs(s|s′) =
1

πs(s′)
∑
x′

d(s|x′, s′)πz(x′, s′).

It can be verified that πs is the unique stationary distribution of S. However, the dynamics of the
system always behaves as a non-Markovian process in general.

To characterize the time-irreversibility of Z, X and S, we use the definition of EPR in Equation (15)
and have: 

Rz =
1
2 ∑z,z′ Jz(z′ → z) log qz(z|z′)

qz(z′ |z) ,

Rs =
1
2 ∑s,s′ Js(s′ → s) log qs(s|s′)

qs(s′ |s) = 0,

Rx = limT→∞
1
T ∑XT P(XT) log P(XT)

P(X̃T)
,

where:

P(XT) = ∑
ST

P(ZT = (XT , ST)).

To quantify the correlation between the system and demon, we use the definition of MIR in Equation (12).
We are also interested in the time-irreversible part of MIR, IB(X, S), which influences the EPR

of the system, Rx. This can be seen from Equation (A14) such that:

Rx = Rz − Rs − 2IB(X, S).

We use numerical simulations, which evaluate Rx, I(X, S) and IB(X, S) directly from the typical
sequences of Z (see [7,8]). The corresponding results can be given by:

Rx ≈ 1
T log P(XT)

P(X̃T)
, for large T,

I(X, S) ≈ 1
T log P(ZT)

P(XT)P(ST)
, for large T,

IB(X, S) ≈ 1
2T log P(ZT)

P(XT)P(ST)
− 1

2T log P(Z̃T)

P(X̃T)P(S̃T)
, for large T,

where ZT = (XT , ST) is a typical sequence of Z (hence, XT and ST are typical sequences of X and S,
respectively). The convergence of this numerical simulation can be observed as T increases. To confirm
the result Rx = Rz − Rs − 2IB(X, S), we use different typical sequences in calculating Rx and IB(X, S),
respectively. Rz and Rs are calculated by using the corresponding analytical results shown above.

For numerical simulations, we randomly choose two groups of the parameters: the probabilities of
the instructions of the baths εa and εb and the probabilities of the demon’s choices d (see Tables A1 and A2).
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We evaluate Rx, I(X, S) and IB(X, S) for both groups. The values of the numerical results are listed in
Table A3.

Table A1. Two groups of εa and εb.

{εa(x = 0), εa(x = 1), εa(x = 2)} {εb(x = 0), εb(x = 1), εb(x = 2)}

Group 1 {0.2344, 0.2730, 0.4926} {0.4217, 0.4094, 0.1689}
Group 2 {0.1305, 0.3972, 0.4723} {0.3358, 0.0010, 0.6633}

Table A2. Two groups of d.

{d(s = a|x = 0, s = a), d(s = b|x = 0, s = a)} {d(s = a|x = 1, s = b), d(s = b|x = 0, s = b)}

Group 1 {0.3844, 0.6156} {0.6811, 0.3189}
Group 2 {0.1072, 0.8928} {0.7473, 0.2527}

{d(s = a|x = 1, s = a), d(s = b|x = 1, s = a)} {d(s = a|x = 1, s = b), d(s = b|x = 1, s = b)}

Group 1 {0.5195, 0.4805} {0.8088, 0.1912}
Group 2 {0.6595, 0.3405} {0.1600, 0.8400}

{d(s = a|x = 2, s = a), d(s = b|x = 2, s = a)} {d(s = a|x = 2, s = b), d(s = b|x = 2, s = b)}

Group 1 {0.3775, 0.6225} {0.3340, 0.6660}
Group 2 {0.0232, 0.9768} {0.0814, 0.9186}

Table A3. Numerical results of Rz, Rx, I(X, S) and IB(X, S).

Rz Rx I(X,S) IB(X,S)

Group 1 0.0645 0.0018 0.0885 0.0313
Group 2 0.5485 0.1291 0.3385 0.2097
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