
entropy

Article

A General Symbolic Approach to
Kolmogorov-Sinai Entropy

Inga Stolz * and Karsten Keller

Institute of Mathematics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
keller@math.uni-luebeck.de
* Correspondence: stolz@math.uni-luebeck.de; Tel.: +49-451-3101-6050

Received: 31 October 2017; Accepted: 5 December 2017; Published: 9 December 2017

Abstract: It is popular to study a time-dependent nonlinear system by encoding outcomes
of measurements into sequences of symbols following certain symbolization schemes. Mostly,
symbolizations by threshold crossings or variants of it are applied, but also, the relatively new
symbolic approach, which goes back to innovative works of Bandt and Pompe—ordinal symbolic
dynamics—plays an increasing role. In this paper, we discuss both approaches novelly in one breath
with respect to the theoretical determination of the Kolmogorov-Sinai entropy (KS entropy). For this
purpose, we propose and investigate a unifying approach to formalize symbolizations. By doing so,
we can emphasize the main advantage of the ordinal approach if no symbolization scheme can be
found that characterizes KS entropy directly: the ordinal approach, as well as generalizations of it
provide, under very natural conditions, a direct route to KS entropy by default.
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1. Introduction

Using symbolizations to study observed data plays an important role in today’s time series
analysis (see for instance the review papers of Daw et al. [1], Zanin et al. [2], Amigó et al. [3], and the
examples in biology, medicine, artificial intelligence and data mining, just to mention a few, given
therein). Thereby, it is assumed that time series, given by measurements of a real-world time-dependent
system, store information about the complexity of the underlying system, which can be accessed by
symbolic dynamics. In this paper, we assume further that measurements provide n-dimensional
real-valued outcomes, that is a measuring process provides n time series.

Knowing the complexity is a key to classify systems and to predict future developments. A data
analyst can for instance quantify complexity by empirical entropy measures, in particular by estimating
the well-defined Kolmogorov-Sinai entropy (KS entropy). In order to estimate the KS entropy, however,
a data analyst is always faced with the problem of choosing an adequate symbolization scheme.

Symbolizing a time series could be done in a “classical” manner for example by subdividing the
data range into a finite number of intervals (see Section 2.1, often called the threshold crossing method
in symbolic dynamics) or in an ordinal manner for example by considering the up and down behavior
of subsequent measured values (see Section 2.2). The most ideal, however unrealistic, case is given if
the analyst knows the underlying dynamics and picks a generating (under the dynamics) partition (see
Sections 1.1 and 1.4 for the mathematical formulation of the general problem, as well as for instance
Crutchfield and Packard [4], Bollt et al. [5] and Kennel and Buhl [6]).

In the present paper, we show, by proposing a unifying approach to formalize symbolizations, that
under relatively week assumptions, the search for a generating partition can be skipped if one chooses
a symbolization scheme that regards a dependency between two measured values (see Section 2.2). In
fact, following some rules by picking such a symbolization scheme, a generating sequence of finite
partitions (see Sections 1.1 and 1.4) is provided by default and needs no further attention (see Section 2.3
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for an overview and Sections 3 and 4.1, as well as the Appendix for the mathematics behind this).
Moreover, the unifying approach allows one to consider “classical” and the relatively new ordinal
symbolic dynamics [3] hand in hand and therefore to study respective assets and drawbacks.

In terms of the analyst, we propose a supplementing pool of complexity measures, which are in a
certain sense approximations of the KS entropy and may be worth being compared in the finite setting
of application (see Figure 7). Moreover, the relatively new ordinal approach could benefit from results
achieved in “classical” symbolic dynamics, for instance to estimate a good symbolization scheme
(see our ending remarks of the paper in Section 5 and for instance Steuer et al. [7], Letellier [8] and,
published most recently, Li and Ray [9], as well as the references given therein). However, such topics
exceed the scope of this paper.

1.1. Mathematical Formulation of the General Problem

Let us describe the central problems of determining KS entropy and give the main concepts of the
paper without going into too much detail. The mathematical formulation is necessary at this point in
order to state the results of the paper adequately.

We model a real-world time-dependent system by a state space Ω, that is states ω of the system
are taken from the set Ω and events on the system from a σ-algebra A on Ω. We assume that the states
are distributed according to a probability distribution µ on (Ω,A). Moreover, considering states of
the system at times in N0 = {0, 1, 2, . . .}, the dynamics of the system is described by a map T with the
interpretation that the system is in state T(ω) at time t + 1 if it is in state ω at time t. For mathematical
correctness, T is required to be measurable with respect to A. We assume that the distribution of the
states does not change in time, meaning T is µ-invariant, which is defined by T−1(A) ∈ A for all
sets A ∈ A.

The KS entropy is based on entropy rates of finite partitions of the state space. Given a finite
partition C =

{
C(1), C(2), . . . , C(q)

}
⊂ A of Ω, the entropy rate hµ(T, C), roughly speaking, measures

the complexity of possible symbolic paths (see Section 4.1). A symbolic path is given by assigning to
each state of the orbit:

ω, T(ω), T◦2(ω), T◦3(ω), . . .

a symbol a when the state is contained in C(a). Here, T◦t(ω) denotes the t-th iterate of ω under T. We
emphasize that starting with a partition C =

{
C(1), C(2), . . . , C(q)

}
is equivalent to a start where to

each state in Ω a symbol in {1, 2, . . . , q} is assigned (in a measurable way). That is why we use the
term symbolic approach.

In order to obtain a complexity measure that is independent of the discretization determined by a
finite partition, one takes the supremum of the entropy rate hµ(T, C) over all finite partitions C ⊂ A of
Ω, that is the KS entropy hKS

µ (T) of T:

hKS
µ (T) := sup

C finite partition
hµ(T, C).

Since usually there are uncountably many finite partitions, the determination of KS entropy on
the basis of the definition is not feasible, so one is interested in finding natural partitions “carrying”
the KS entropy.

In the case of a generating partition C under T (see Section 4.1), KS entropy is already characterized
by this partition, meaning that:

hKS
µ (T) = hµ(T, C) (1)

(see, e.g., Walters [10], Theorem 4.18). Finding such suitable partitions, however, is impossible in most
cases. A more realistic way of approaching KS entropy is to look for a generating and increasing, i.e.,
refining (see Section 4.1), sequence (Cd)d∈N of finite partitions Cd ⊂ A of Ω, where:
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hKS
µ (T) = lim

d→∞
hµ(T, Cd) = sup

d∈N
hµ(T, Cd) (2)

(see, e.g., Walters [10], Theorem 4.22).
In the present paper, we discuss this countable increasing route to KS entropy in a framework

where all partitions considered are derived from a natural real-valued “measuring process” and
a symbolization scheme determined by a finite partition of the two-dimensional Euclidean space.
The discussion includes and generalizes ideas from “classical” symbolic dynamics and from ordinal
symbolic dynamics related to permutation entropy and sheds some new light on the latter one.

1.2. Observables and the Measuring Process

The modeling is completed by assuming that an n-dimensional outcome (here, n ∈ N =

{1, 2, 3, . . .}) of the system for each time is provided by observables X1, X2, . . . , Xn, which
mathematically are random variables on the probability space (Ω,A, µ) with values in the real numbers
R. It provides the link between the dynamical model and the given n-dimensional time series data.

Fixing some state ω ∈ Ω, we interpret the real numbers:

Xi(ω), Xi(T(ω)), Xi

(
T◦2(ω)

)
, Xi

(
T◦3(ω)

)
, . . .

as the values measured by Xi at times 0, 1, 2, 3, . . . when the given system is in state ω at the beginning.
Therefore, the random vector X = (Xi)

n
i=1 for the time-developing system provides

random vectors:

X = (Xi)
n
i=1, X ◦ T = (Xi ◦ T)n

i=1, X ◦ T◦2 =
(

Xi ◦ T◦2
)n

i=1
, X ◦ T◦3 =

(
Xi ◦ T◦3

)n

i=1
, . . .

forming the measuring process: (
X ◦ T◦t

)
t∈N0

=
((

Xi ◦ T◦t
)n

i=1

)
t∈N0

(3)

with the n time series
(
Xi
(
T◦t(ω)

))
t∈N0

for i = 1, 2, . . . , n as outcomes. Note that the symbolizations
we consider in the following are given at the observational level, i.e., with respect to the values of Xi;
this complies with symbolizing a time series in real-world data analysis.

Let us regard (Ω,A, µ), T, n ∈ N and X = (Xi)
n
i=1 as fixed in the following.

1.3. Information Contents in the Language of Event Systems

It is a central question of the given paper whether a description of a system, for instance by a
measurement or by a symbolization, provides the same information as another one. In information
theory, this is a matter of the richness of the event systems associated with the descriptions, more
precisely a relation between sub-σ-algebras F and F ′ of A defined by (compare to Walters [10],
Definition 4.5):

F ′
µ
⊂ F if for each F′ ∈ F ′ there exists some F ∈ F with µ(F4 F′) = 0.

The inclusion F ′
µ
⊂ F means that for each event in F ′, there exists an event in F being distinct

from the first one with probability zero and that is interpreted as meaning that F preserves all
information contained in F ′.

The σ-algebra A on Ω consists of all events related to the given system, those events accessed
by the given observables and the whole measuring process (3) form the sub-σ-algebras σ(X) and
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σ
((

X ◦ T◦t
)

t∈N

)
of A, respectively. Mathematically, σ(X) is the smallest σ-algebra built from all

preimages of Borel sets in R for:
X1, X2, . . . , Xn, . . . ,

and σ
((

X ◦ T◦t
)

t∈N

)
is the smallest σ-algebra built from all preimages of Borel sets in R for:

X1, X2, . . . , Xn, X1 ◦ T, X2, ◦T . . . , Xn ◦ T, X1 ◦ T◦2, X2 ◦ T◦2 . . . , Xn ◦ T◦2, . . . .

In these definitions, it is enough to take only intervals I instead of Borel sets. Here, (Xi ◦ T◦t)−1(I)
describes the event that the value of the i-th measurement at time t is in I.

The sub-σ-algebra σ((Cd)d∈N), which is the smallest σ-algebra built from all events contained in
some of the partitions Cd for d ∈ N, provides the events accessed by the corresponding symbolization
(see Section 4.1). Our goal is to construct an increasing sequence (Cd)d∈N of finite partitions, i.e., Cd+1
refines Cd (see Section 4.1), which preserves the information given by the measuring process (3), i.e.,

σ
((

X ◦ T◦t
)

t∈N

) µ
⊂ σ((Cd)d∈N), (4)

or weaker by the observables themselves, i.e.,

σ(X)
µ
⊂ σ((Cd)d∈N). (5)

If (4) holds and the measuring process preserves the information of the original system, i.e., if:

A
µ
⊂ σ

((
X ◦ T◦t

)
t∈N

)
, (6)

or if just (5) holds, but the observables preserve already the information of the original system, i.e., if:

A
µ
⊂ σ(X), (7)

then:

A
µ
⊂ σ((Cd)d∈N) ⊂ A,

meaning that (Cd)d∈N is generating (see Section 4.1 and compare to Walters [10]), which provides (2).

Conditions (6) and (7) are not as artificial as they appear at first glance:

1. There is a very natural set of observables satisfying (7), hence (6). If Ω is a Borel subset of
Rn, it is very plausible to assume that states and vectors of measured values are coinciding.
This can be modeled by observables Xi; i = 1, 2 . . . , n with Xi being the i-th coordinate
projection, i.e., Xi(ω) = xi for ω = (x1, x2, . . . , xn). Clearly, in this simplest variant of modeling
measurements, observables basically are superfluous in the modeling.

2. In the case of only one observable, the separation of states is natural in a certain sense according
to Takens’ theory (see Takens [11] and Gutman [12]).

1.4. A “Two-Dimensional” Way of Symbolizations

The partitions Cd with d ∈ N that we want to study in the following are formed on the basis
of a finite partition R of the two-dimensional Euclidean space R2 and finite sets Ed ⊂ N0 × N0 of
time pairs:

Cd = CR,Ed(T, X) :=
n∨

i=1

∨
(s,t)∈Ed

(
Xi ◦ T◦s, Xi ◦ T◦t

)−1
(R) ⊂ A, (8)
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i.e., Cd is the coarsest partition refining all partitions:(
Xi ◦ T◦s, Xi ◦ T◦t

)−1
(R) =

{{
ω ∈ Ω |

(
Xi(T◦s(ω)), Xi(T◦t(ω))

)
∈ R

}
| R ∈ R

}
for (s, t) ∈ Ed (see Section 4.1 for the definition of the join

∨m
r=1 Cr of finite partitions Cr ⊂ A of Ω).

Here,R specifies the symbolization scheme for classifying the mutual position of measurements
by Xi at two times s and t (see Figures 1 and 2, as well as the next section). We call R the basic
symbolization scheme in the following. Note that we display the two-dimensional Euclidean space R2

by a square for illustrative purposes.
Further, the choice of (Ed)d∈N complies with Definition 1, in particular in order to realize that

Cd+1 refines Cd (see Section 4.1), Cd is finite (see Definition 1(i)), and each time point that is relevant for
the symbolization is accessed (see Definition 1(ii)).

0 5 10 15 20

4

3

2

1

Sequence of symbols from the alphabet {1, 2, 3, 4}:

4, 2, 4, 1, 1, 2, 4, 4, 4, 2, 2, 3, 3, 2, 2, 2, 2, . . .

1 2 3 4

Figure 1. Transforming a time series in the “classical” way. Left: intervals are turned into symbols from
the alphabet {1, 2, 3, 4}. Right: two-dimensional view of the symbolization (see Sections 1.4 and 2.1).

0 2 4 6 8 10 12 14 16 18 20
Sequence of ordinal patterns:

x < y

x ≥ y

Figure 2. Transforming a time series in the “ordinal” way. Left: vectors are transformed into ordinal
patterns. Right: the basic symbolization scheme (see Sections 1.4 and 2.2).

Definition 1. We call a sequence (Ed)d∈N of sets Ed with E1 ⊂ E2 ⊂ · · · ⊂ {(s, t) | s, t ∈ N0, s < t} a
timing if there exists a set {v0, v1, . . . } ⊆ N0 with v0 < v1 < v2 < . . . such that:

(i) for each d ∈ N, it holds Ed ⊂ {v0, v1, . . . , vd}2, and
(ii) for each s ∈ {v0, v1, . . . , vd}, there exists some t ∈ {v0, v1, . . . , vd} such that (s, t) ∈ Ed or (t, s) ∈ Ed.

A timing is for instance given by the sets:

Ed = {(s, t) | s, t ∈ {0, 1, 2, . . . , d} with s < t} ; d ∈ N, (9)

or by (11) and (17) (see below). It is suggestive to call the timing defined by (9) full timing in
the following.
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Subsequently, we discuss the following two questions:

1. Why is the approach given natural and sufficiently general?
2. Under which conditions on the basic symbolization scheme R and the timing Ed does the

sequence (Cd)d∈N =
(
CR,Ed(T, X)

)
d∈N satisfy Statement (5) or even (4)?

Section 2 is devoted to the first question. In the first part of Section 3, we summarize our results
to the second question and give some examples of basic symbolization schemes. Sufficient conditions
that answer the second question including known results are presented for the interested reader in the
second part of Section 3 and proven in Section 4 (see also the Appendix). We close this paper with
some remarks about further theoretical and practical scientific issues (see Section 5).

2. Two Examples

At first glance, the above approach gives a rather exaggerated impression. The aim of the following
examples is to convince the reader that sequences (Cd)d∈N formed on the basis of basic symbolization
schemesR and timings (Ed)d∈N are natural and are unifying known symbolic approaches.

2.1. “Classical” Symbolic Dynamics

First, we discuss “classical” symbolic dynamics with a fixed partition (see for instance Daw
et al. [1], Kurths et al. [13] and the references given therein). For convenience, we assume that the
dynamics is living on the real line, i.e., Ω = R, and restrict ourselves to the simple case that R is
subdivided into a finite number of intervals I1, I2, . . . , Ik (see for instance Figure 1).

The determination of the entropy rate of the partition C = {I1, I2, . . . , Ik} is based on the partitions:

(C)t = {C(a1,a2,...,at) | a1, a2, . . . , at ∈ {1, 2, . . . , k}}

increasing with t ∈ N, where:

C(a1,a2,...,at) = {ω ∈ Ω | ω ∈ Ia1 , T(ω) ∈ Ia2 , . . . , T◦t−1(ω) ∈ Iat}

consists of those states ω ∈ Ω successively visiting Ia1 , Ia2 , . . . , Iat , i.e., having the symbolic itinerary
a1, a2, . . . , at. Compare to Section 4.1, in particular for the deliberate notation used in this subsection,
and see Figure 3, where we illustrate the symbolization process underlying the determination of the
entropy rate for t = 3.

C

ω

T(ω)

T◦2(ω)

(C)3

• C(1,2,3)

• C(4,1,1)

• C(4,1,4)classifying states ω ∈
Ω with respect to
their itinerary

Figure 3. Symbolization process underlying the determination of the entropy rate hµ(T, C) for t = 3
(see Section 4.1).

For all t ∈ N, it holds:

(C)t =
t−1∨
s=0

(T◦s)−1(C).
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In order to rewrite the “classical” approach into a form compatible with the proposed one, we need
an artificial two-dimensional “blow-up” of the partitions (C)t; t ∈ N, which is given by the partition:

R := {I1 ×R, I2 ×R, . . . , Ik ×R} (see Figure 1), (10)

of R2 and the sets of time pairs:

Et := {(0, 1), (1, 2), (2, 3), . . . , (t− 1, t)}; t ∈ N, (11)

that is:

(C)t =
t−1∨
s=0

(X ◦ T◦s)−1((C)1) =
∨

(s,u)∈Et

(X ◦ T◦s, X ◦ T◦u)−1(R) = CR,Et(T, X).

Here, we consider, motivated by our general procedure, the single observable X (meaning X = X
in the general framework) with X(ω) = ω for all ω ∈ Ω, which fits the situation described at the end
of Section 1.3.

This means in the other direction that the partitions Cd = CR,Ed(T, X) are coinciding with the
partitions (C)d. In particular, it holds:

hµ(T, Cd) = hµ(T, (C)d)

for all d ∈ N, and since hµ(T, (C)t) = hµ(T, C) for all t ∈ N (see for instance Einsiedler and Schmidt [14],
Satz 3.13), we obtain:

hµ(T, Cd) = hµ(T, C)

for all d ∈ N. This fact implying that the sequence (Cd)d∈N =
(
CR,Ed(T, X)

)
d∈N is generating iff C is

generating under T (see the final remarks in Section 4.1) says thatR as given by (10) has no generating
potential when C fails to be generating under T. This is not surprising since R is no more than a
two-dimensional “blow-up” of C. The second example shows the existence of good choices ofR with
generating properties under certain assumptions.

In Figure 4, we study (compare to Section 4.1) two different initial partitions, that is C =

{[0, 1/2), [1/2, 1)} and D = {[0, 1/4), [1/4, 1)}, under the transformation T : ([0, 1))←↩, defined by:

T(ω) =

{
2ω if 0 ≤ ω < 1

2 ,

2− 2ω if 1
2 ≤ ω < 1,

(12)

i.e., T is the full tent map on Ω := [0, 1). The KS entropy is ln(2) (see for instance Bollt et al. [5] and
the references given therein), and in fact, it holds:

Hµ(C) = 1
2 Hµ((C)2) =

1
3 Hµ((C)3) = · · · = 1

t Hµ((C)t) = · · · = ln(2),

whereby:
Hµ(D) = − 1

4 ln( 1
4 )−

3
4 ln( 3

4 ) < ln(2)

(see Section 4.1). Since 1
t Hµ((C)t) decreases to hµ(T, C) for any finite partition C ⊂ A of Ω (see

Walters [10], Chapter 4) and by Theorem 4.18 of [10] (see Equation (1)), we have by C a generating
and by D a non-generating (misplaced) partition under T (see Bollt et al. [5] and Steuer et al. [7] for
detailed information about possible consequences if a non-generating partition is used in time series
analysis, as well as Figure 7).
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0 1
8

1
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3
8

1
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5
8

3
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7
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0 1
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0 1
4

1

0 1
8

1
4

7
8

1

0 1
16

1
8

1
4

7
16

9
16

7
8

15
16

1

Figure 4. Different partition sequences on [0, 1) with respect to the full tent map (see Equation (12)).
Left: initial partition C = (C)1 = {[0, 1

2 ), [
1
2 , 1)}, (C)2 and (C)3, which are generating under T. Right:

initial partition D = (D)1 = {[0, 1
4 ), [

1
4 , 1)}, (D)2 and (D)3, which are not generating under T (see

Section 2.1). Detailed information about possible consequences if a non-generating partition is used in
time series analysis is given by Bollt et al. [5].

2.2. Ordinal Symbolic Dynamics

Ordinal symbolic dynamics is a relatively new symbolic approach going back to Bandt and
Pompe [15] and applied in various fields (see for instance Zanin et al. [2], Amigó et al. [3] and the
references given therein). The idea of the symbolization scheme is to partition the state space according
to ordinal patterns of orders d ∈ N. For fixed d and a random vector X = (Xi)

n
i=1, two states ω1, ω2 ∈ Ω

belong to the same part of a partition if for each i = 1, 2, . . . , n, the observable Xi provides the same
order relations on the orbits of length d + 1 of ω1 and ω2:

For all s, t with 0 ≤ s < t ≤ d, it holds:

Xi(T◦s(ω1)) ≥ Xi(T◦t(ω1)) iff Xi(T◦s(ω2)) ≥ Xi(T◦t(ω2)).

One easily sees that the obtained partitions can be written in the form Cd = CR,Ed(T, X) with:

R = {{(x, y) ∈ R×R | x ≥ y} , {(x, y) ∈ R×R | x < y}} (see Figure 2) (13)

and the full timing (see Equation (9)).
The sequence (Cd)d∈N is obviously increasing. Antoniouk et al. [16] show the following statement

forR as given by (13) and the full timing (Ed)d∈N given by (9), here formulated in the language of our
general approach:

If T is ergodic and X satisfies (6) or weaker (7), then

(Cd)d∈N =
(
CR,Ed(T, X)

)
d∈N

is generating, hence hKS
µ (T) = lim

d→∞
hµ(T, Cd) = sup

d∈N
hµ(T, Cd).

(14)

Unlike the “classical” approach, the basic symbolization scheme R, as given by (13), regards
a kind of dependency between two measurements by Xi. The statement (14) shows the substantial
difference between “classical” and ordinal symbolic dynamics: by usingR as given in (13), we obtain
a generating sequence (Cd)d∈N, regardless of whether C1 = C is generating under T.
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2.3. An Extension of Ordinal Symbolic Dynamics

In the rest of the paper, we discuss for which R and (Ed)d∈N the statement (14) remains true;
whereby, this section is dedicated to those readers who are mainly interested in the idea and results
of our study. Since the corresponding considerations to validate our subsequent statement are fairly
technical and due to even more general results, we refer here only to the statements and proofs in
the later discussion (Section 3 and the Appendix). First of all, obviously, (14) remains true whenR is
substituted by a refinement of (13) (see Figure 5). Moreover, in the case that Ω is a Borel subset of Rn

and Xi, i = 1, 2, . . . , n is the i-th coordinate projection (see the closing remarks of Section 1.3), as well
as µ(A) > 0 for all open subsets A of Ω, Statement (14) remains true if we modifyR even more (see
the closing remarks of Section 3.1):

x < y

x ≥ y

!

Figure 5. Statement (14) obviously remains true ifR is substituted by a refinement of (13).

Theorem 1. Let Ω be a Borel subset of Rn and Xi; i = 1, 2, . . . , n be the i-th coordinate projection. Further, let
R be a basic symbolization scheme defined by:

R = {{(x, y) ∈ R×R | g(x) ≥ y} , {(x, y) ∈ R×R | g(x) < y}} , (15)

or finer, where g : R←↩ is a one-to-one B(R)-B(R) measurable map with B(R) being the Borel σ-algebra on
R (see for instance Figure 6). If µ(A) > 0 for all open subsets A of Ω, then for the full timing (Ed)d∈N (see
Equation (9)), Statement (14) is fulfilled.

x < y

x ≥ y

?

Figure 6. Does Statement (14) remain true if arbitrary symbolization schemes are considered along
with the timing given by (9) (see Sections 2.3 and 3)?

3. Main Mathematical Results

Antoniouk et al. [16] show that the search for a generating partition under T can be bypassed by
choosing ordinal symbolic dynamics. It namely provides, in the ergodic case and if X satisfies (6) or
weaker (7), a generating sequence of finite partitions by default, that is the generating property is valid
regardless of the properties of the original system considered (see Statement (14) in Section 2.2).

The question arises if other symbolic approaches deliver similar results. In fact, by generalizing
the ideas and results of Antoniouk et al. [16], we give sufficient conditions onR and (Ed)d∈N for (14).
This we present the interested reader in the next sections.

3.1. Preserving the Information of Observables

The following is quite technical, but shows under which conditions the information given by
the observables is preserved if basic symbolization schemes R such as given by (15), or finer, are

considered. Hence, if Theorem 2 holds and A
µ
⊂ σ(X), then (Cd)d∈N is generating.
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Theorem 2. Let T be ergodic, X = (Xi)
n
i=1 a random vector,R a basic symbolization scheme, (Ed)d∈N a timing

and (Cd)d∈N a sequence of finite partitions constructed fromR and (Ed)d∈N (see Equation (8)). If further:

(i) g is admissible with respect to Xi for all i = 1, 2, . . . , n,
(ii) FXi is admissible with respect to g ◦ Xi for all i = 1, 2, . . . , n and

(iii)
{

g ◦ Xi ≥ Xi ◦ T◦t
}
∈ σ

((
CR,Ed(T, Xi)

)
d∈N

)
for all i = 1, 2, . . . , n and t ∈ N0,

then:
σ(X)

µ
⊂ σ((Cd)d∈N).

We call a function φ : R←↩ admissible with respect to a random variable Y on Ω if σ(Y)
µ
⊂ σ(φ ◦Y);

this is for example the case if φ is a one-to-one B(R)-B(R) measurable map (see the closing remarks of
the Appendix on one-to-one maps and Lemma A3 for general conditions on φ such that φ is admissible).
Requiring that FXi has to be admissible with respect to g ◦ Xi means that g has to be constructed in
such a way that:

σ(g ◦ Xi)
µ
⊂ σ(FXi ◦ g ◦ Xi)

holds (compare to the proof of Lemma A3 and subsequent remarks). This assumption is redundant
if Ω is a Borel subset of Rn; each Xi; i = 1, 2, . . . , n is the i-th coordinate projection (see the closing
remarks of Section 1.3); and µ(A) > 0 for all open subsets A of Ω, because then, FXi is one-to-one (see
the closing remarks of the Appendix on one-to-one maps). Finally, note that symbolizations based
on R as given by (15), or finer, have the property (iii) of Theorem 2 (in particular, compare (iii) of
Theorem 2 to the structure of (15)). Summarizing, the assumptions of Theorem 2 are generalizations of
the assumptions of Theorem 1, and thus, Theorem 1 follows by Theorem 2.

3.2. Preserving the Information of the Measuring Process

In this section, we state sufficient conditions such that the information given by the measuring

process is preserved. Therefore, if these conditions are fulfilled and A
µ
⊂ σ

((
X ◦ T◦t

)
t∈N

)
, then

(Cd)d∈N is generating. Define:

CR,Ed(T, Y) :=
n∨

i=1

∨
(s,t)∈Ed

(
Yi ◦ T◦s, Yi ◦ T◦t

)−1
(R) ⊂ A,

where Y = (Yi)
n
i=1 is an arbitrary random vector (compare to Equation (8)), and consider the special

case Y = (Yi)
n
i=1 = X ◦ T◦l =

(
Xi ◦ T◦l

)n

i=1
for some l ∈ N in the following.

Definition 2. LetR be a basic symbolization scheme and (Ed)d∈N be a timing. We call the tuple (R, (Ed)d∈N)

consistent if for all t > 1 and d ∈ N, it holds:

t−1∨
s=0
CR,Ed(T, X ◦ T◦s) ≺

t−2∨
s=0
CR,Ed+1(T, X ◦ T◦s). (16)

Compare to Keller et al. [17], who regard the ordinal approach: observe that, in the consistent
case, by applying (16) repeatedly, one shows that:

t−1∨
s=0
CR,Ed(T, X ◦ T◦s) ≺ CR,Ed+t−1(T, X)

for all t, d ∈ N. Consistency ensures that for all t ∈ N0, it holds:

σ
((
CR,Ed(T, X ◦ T◦t)

)
d∈N

)
⊂ σ((Cd)d∈N).
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In other words, if the information given by a measurement at a time t ∈ N is preserved by(
CR,Ed(T, X ◦ T◦t)

)
d∈N, then it also is preserved by (Cd)d∈N (compare to the proof of Theorem 3).

Consistency depends on the interplay of the underlying system, the considered random vector
X = (Xi)

n
i=1,R and (Ed)d∈N; however, a skillful choice of the timing guarantees that (R, (Ed)d∈N) is

consistent independent of the system and X. This we discuss in Section 4.3. Note here that (R, (Ed)d∈N)

is always consistent if (Ed)d∈N is the full timing (see Equation (9)); however, the tuple is not consistent
in general if a timing given by:

Ed = {(0, t) | t ∈ {0, 1, 2, . . . , d}} ; d ∈ N (17)

is considered.

Theorem 3. Let X = (Xi)
n
i=1 be a random vector, R a basic symbolization scheme, (Ed)d∈N a timing and

(Cd)d∈N a sequence of finite partitions constructed byR and (Ed)d∈N (see Equation (8)). If further:

(i) σ(X)
µ
⊂ σ((Cd)d∈N) and

(ii) (R, (Ed)d∈N) is consistent,

then:
σ
((

X ◦ T◦t
)

t∈N

) µ
⊂ σ((Cd)d∈N).

Recall that (i) of Theorem 3 particularly holds if Conditions (i)–(iii) of Theorem 2 are fulfilled.

4. Proofs

We begin by summarizing some basic notations and concepts. Thereafter, we prove Theorem 2
and Theorem 3, whereby quite technical and complicated lemmas can be found in the Appendix.

4.1. Preliminaries

Our whole discussion is concerned with finite partitions C ⊂ A of Ω and with sequences of finite
partitions (Cd)d∈N. A finite partition C of Ω is a set system:

C :=
{

C(1), C(2), . . . , C(q)
}
⊂ A; q ∈ N,

where:
q⋃

l=1

C(l) = Ω and C(l) ∩ C(k) = ∅ for any l 6= k ∈ {1, 2, . . . , q}.

Particularly, we are interested in such sequences that are increasing, meaning that Cd+1 is finer
than Cd for all d ∈ N:

A partition D =
{

D(1), D(2), . . . , D(p)
}

is finer than a partition C =
{

C(1), C(2), . . . , C(q)
}

; we
write C ≺ D, or, equivalently, C is coarser than D if for all l ∈ {1, 2, . . . , q} there exists a nonempty
K ⊂ {1, 2, . . . , p} such that:

C(l) =
⋃

k∈K

D(k).

Moreover, we consider the join
∨m

r=1 Cr of finite partitions Cr ⊂ A of Ω with m ∈ N and r =

1, 2, . . . , m, which is defined by:

m∨
r=1

Cr =

{
m⋂

r=1

C(lr)
r 6= ∅

∣∣∣∣ lr ∈ {1, 2, . . . , |Cr|} for r = 1, 2, . . . , m

}
,

that is the coarsest partition refining all Cr.
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Furthermore, sub-σ-algebras ofA are central to us, especially the ones σ(M) generated by subsets
M of A, i.e., the smallest sub-σ-algebra containingM:

σ(M) =
⋂

F⊂A is σ-algebra
andM⊂F

F .

We consider also the join of σ-algebras Fi ⊂ A; i ∈ I defined by:

∨
i∈I
Fi = σ

(⋃
i∈I
Fi

)
.

Overall, we have a special interest in the following sub-σ-algebras of A:

σ((Cd)d∈N) =
∨

d∈N
σ(Cd)

for (Cd)d∈N being a finite partition sequence of Ω,

σ(X) =
n∨

i=1

σ(Xi) =
n∨

i=1

{
X−1

i (B) | B ∈ B(R)
}

,

σ(X ◦ T◦s) =
n∨

i=1

σ(Xi ◦ T◦s) =
n∨

i=1

{
(Xi ◦ T◦s)−1(B) | B ∈ B(R)

}
,

σ
((

X ◦ T◦t
)

t∈N0

)
=

∨
t∈N0

σ
(
X ◦ T◦t

)
=

n∨
i=1

∨
t∈N0

σ
(
Xi ◦ T◦t

)
for X = (Xi)

n
i=1 being a random vector on Ω and s ∈ N.

We close this subsection by giving an exact definition of the entropy rate hµ(T, C) of a finite

partition C (see Figure 3): one assigns to every part C(i) of the partition C =
{

C(1), C(2), . . . , C(q)
}

the
letter i of the alphabet A = {1, 2, . . . , q}. Each word (a1, a2, . . . , at) of length t ∈ N over A defines a set:

C(a1,a2,...,at) =
{

ω ∈ Ω
∣∣∣ (ω, T(ω), . . . , T◦t−1(ω)

)
∈ C(a1) × C(a2) × . . .× C(at)

}
.

All non-empty sets C(a1a2 ...at) provide a partition (C)t ⊂ A of Ω. We use the notation (C)t to
emphasize that the partition is constructed with respect to T. In particular, (C)1 = C. The entropy rate
of T with respect to C is given by:

hµ(T, C) = lim
t→∞

1
t

Hµ((C)t) = lim
t→∞

(
Hµ((C)t)− Hµ((C)t−1)

)
, (18)

where Hµ((C)t) is the Shannon entropy of (C)t, that is for a finite partition D =
{

D(1), D(2), . . . , D(p)
}

:

Hµ(D) = −
p

∑
l=1

µ(D(l)) ln(µ(D(l))) (with 0 ln(0) := 0).

For a fuller treatment, e.g., for statements that the limit in Equation (18) exists and 1
t Hµ((C)t), as

well as Hµ((C)t)− Hµ((C)t−1) decreases to hµ(T, C), we refer the reader to Chapter 4 of Walters [10].
Note that for all t ∈ N, it holds (C)t−1 ≺ (C)t, and:

Hµ((C)t)− Hµ((C)t−1) ≤
1
t

t

∑
s=1

Hµ((C)s)− Hµ((C)s−1) =
1
t

Hµ((C)s). (19)



Entropy 2017, 19, 675 13 of 19

Moreover, we say that C is generating under T if:

A
µ
⊂ σ(((C)t)t∈N).

If we consider instead an arbitrary sequence of finite partitions (Cd)d∈N for which:

A
µ
⊂ σ((Cd)d∈N)

holds, then we call (Cd)d∈N just generating.

4.2. Proof of Theorem 2

In order to prove Theorem 2, we generalize the results of Antoniouk et al. [16] (Lemmas 3.2, 3.3
and Corollary 3.4) and extend their proofs. Thereby, we utilize properties of the distribution function
FXi : R→ [0, 1] of a random variable Xi : Ω→ R, i.e.,

FXi (a) = µ({ω ∈ Ω | Xi(ω) ≤ a})

for all a ∈ R (see Lemmas A1 and A2 in the Appendix) and show:

σ(Xi)
µ
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
by the detour:

σ(Xi)
µ
⊂ σ(g ◦ Xi)

µ
⊂ σ(FXi ◦ g ◦ Xi)

µ
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
.

Proof of Theorem 2. Note that it is enough to show that:

σ(Xi)
µ
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
holds for all i = 1, 2, . . . , n since the sub-σ-algebras σ

((
CR,Ed(T, Xi)

)
d∈N

)
generate the sub-σ-algebra:

σ((Cd)d∈N) = σ
((
CR,Ed(T, X)

)
d∈N

)
.

Thus, let us regard i ∈ N as fixed. By the assumptions Theorem 2(i) and (ii) (compare also to
Lemma A3), we obtain:

σ(Xi)
µ
⊂ σ(g ◦ Xi)

µ
⊂ σ(FXi ◦ g ◦ Xi).

Moreover, by Theorem 2(iii) and Lemma A2, we have that:

σ(FXi ◦ g ◦ Xi)
µ
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
.

Hence:
σ(Xi)

µ
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
,

which completes the proof.
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4.3. Proof of Theorem 3

The main additional property needed in Theorem 3 is that (R, (Ed)d∈N) is consistent (see
Definition 2). In order to see how a timing has to be constructed such that (R, (Ed)d∈N) is generally
consistent, let us regard t, d ∈ N as fixed and consider states ω1, ω2 ∈ Ω, which are in different parts of:

t−1∨
s=0
CR,Ed(T, X ◦ T◦s).

Then, there exists at least one s ∈ {0, 1, . . . , t− 1}, one i = 1, 2, . . . , n and a time pair (u, v) ∈ Ed
such that: (

Xi(T◦s+u(ω1)), Xi(T◦s+v(ω1))
)

and
(
Xi(T◦s+u(ω2)), Xi(T◦s+v(ω2))

)
are in different parts ofR. If now for any s ∈ {0, 1, . . . , t− 1} and (u, v) ∈ Ed, it holds that (s + u, s +
v) ∈ Ed+t−1, then: (

Xi ◦ T◦s+u, Xi ◦ T◦s+v)−1
(R) ≺ Cd+t−1.

Hence, (R, (Ed)d∈N) is consistent if the previous holds for all t, d ∈ N.

Proof of Theorem 3. Compare to [16] (Corollary 3.5). By Theorem 3(ii), i.e., (R, (Ed)d∈N) is consistent,
it holds:

CR,Ed(T, X ◦ T) ≺ CR,Ed+1(T, X)

for all d ∈ N. These refinements imply:

σ
((
CR,Ed(T, X ◦ T◦t)

)
d∈N

)
⊂ σ((Cd)d∈N)

for all t ∈ N0 (see Walters [10], Chapter 4, Section 1). Moreover, by Theorem 3(i), it holds:

σ
(
X ◦ T◦t

) µ
⊂ σ

((
CR,Ed(T, X ◦ T◦t)

)
d∈N

)
for all t ∈ N0. Hence:

σ
((

X ◦ T◦t
)

t∈N0

) µ
⊂ σ((Cd)d∈N),

which proves the theorem.

5. Some Remarks

In proposing and studying our universal symbolic approach toward KS entropy, we have
restricted ourselves to the kernel ideas. In particular, we have attached importance to point out
that a “two-dimensional” symbolization, that is linking two observations, can provide a better basic
symbolization scheme than symbolizing only on a one-dimensional observational level. The obtained
results can be simply generalized in two directions:

On the one hand, infinitely many observables instead of finitely many ones can be considered.
Here, the results obtained by Keller et al. [18] (see also the references given in the paper) can directly
be adapted, which leads to a description of the KS entropy by a double limit substituting the limit
in (2). On the other hand, some of our results remain true when relaxing ergodicity by some rather
general conditions on the dynamics considered. For this, the ergodic decomposition theorem can be
utilized. We refer to the discussion in Keller et al. [18] and the references given therein.

Our study does not touch aspects as the speed of convergence in (2), as a general comparison
of basic symbolic schemes and as an entropy estimation, which are, incontestably, very interesting
both from the theoretical and practical viewpoint. Our approach provides some theoretical framework
within concrete methods for time series and system analysis and can be specified in accordance with
requirements given in practice.
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In order to give a brief perspective on the matter, we decoded a finite orbit (xt)Tt=0; T ∈ N of the
tent map (see Section 2.1), that is:

xt+1 =

{
2xt if 0 ≤ xt <

1
2 ,

2− 2xt if 1
2 ≤ xt < 1

(20)

for all t = 0, 1, . . . , T − 1 and x0 uniformly distributed, into a sequence of symbols, fixed a word length
t ∈ N and naively estimated the difference Hµ((C)t)− Hµ((C)t−1) by replacing the probabilities by
relative frequencies of symbol word occurrences.

Figure 7 shows the results for different t ∈ N and symbolization schemes in dependence of the
orbit length T , here between 102 and 106. We chose to take the difference because of (19), i.e., the
difference for fixed t is a better approximation of the entropy rate hµ(T, C) than 1

t Hµ((C)t). For a
fuller treatment, we refer the reader to Keller et al. [19], in particular for more information of how to
construct a symbol sequence with respect to ordinal symbolic dynamics with fixed order d ∈ N and
word length t ∈ N.

102 103 104 105 106
0

0.2

0.4

0.6

Figure 7. Different estimates of the Kolmogorov-Sinai entropy (black line: ln(2)) of the tent map (see
Equation (20)) for different orbit lengths by naively estimating Hµ((Cd)t)− Hµ((Cd)t−1). Dark blue,
red, yellow: ordinal symbolization scheme with respect to (13) and (9) for d = 3, 6, 8 and t = 12, 6, 2
(see Keller et al. [19] for a fuller treatment). Green, purple, light blue: “classical” symbolization scheme
with respect to misplaced partitions {[0, 0.9), [0.9, 1)}, {[0, 0.4), [0.4, 1)} and to the generating (under
the dynamics) partition {[0, 0.5), [0.5, 1)} for d = 1 and t = 8.

Clearly, Figure 7 emphasizes common problems of time series analysis, which have to be faced, as,
for example, the trade-off between computational capacity and computation accuracy, which includes
undersampling problems, the choice of parameters, stationarity assumptions, and so forth (see for
instance Keller et al. [19]). A discussion of all these aspects would be beyond the scope of this paper,
but is planned for the future.
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Appendix

Lemma A1. Let X, Y : Ω→ R be two random variables, FX : R→ [0, 1] the distribution function of X and
IX,Y
d : Ω→ [0, 1] be the counting map of X and Y, given by:

IX,Y
d (ω) :=

1
d

d

∑
t=1

1{X ◦ T◦t ≤ Y}(ω)
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for all ω ∈ Ω. If T is ergodic, then:

lim
d→∞

IX,Y
d = FX ◦Y µ almost everywhere.

Proof of Lemma A1. Let Aa = X−1((−∞, a]) for any a ∈ R. By Birkhoff’s ergodic theorem (see for
instance Walters [10]), there exists a set Na ⊂ Ω such that µ(Na) = 0 and:

FX(a) = µ(Aa) = lim
d→∞

1
d

d

∑
t=1

1{X ◦ T◦t ≤ a}(ω) (A1)

for any a ∈ R and ω ∈ Ω \ Na. Let B be a countable dense subset of R such that it includes all a ∈ R
for which FX is discontinuous, and let N =

⋃
a∈B Na. Then, µ(N) = 0, and Equation (A1) holds for

each a ∈ B and ω ∈ Ω \ N. Our next claim is that for all ω ∈ Ω \ N, it holds:

lim
d→∞

IX,Y
d (ω) = FX(Y(ω)).

By (A1), this is true if ω ∈ Ω \ N satisfies a := Y(ω) ∈ B. It is moreover true if ω ∈ Ω \ N and
a := Y(ω) ∈ R \ B, which we show in the following:

Let (bi)i∈N and (ci)i∈N be two sequences converging to a with:

bi ∈ B ∩ (−∞, a) and ci ∈ B ∩ (a, ∞)

for all i ∈ N. Hence, bi < a < ci, and for all i ∈ N, it holds:

FX(bi) = lim
d→∞

1
d

d

∑
t=1

1{X ◦ T◦t ≤ bi}(ω) and FX(ci) = lim
d→∞

1
d

d

∑
t=1

1{X ◦ T◦t ≤ ci}(ω)

since ω ∈ Ω \ N. Thus, for all d ∈ N, we have:

d

∑
t=1

1{X ◦ T◦t ≤ bi}(ω) ≤
d

∑
t=1

1{X ◦ T◦t ≤ Y}(ω) ≤
d

∑
t=1

1{X ◦ T◦t ≤ ci}(ω).

Furthermore, since FX is continuous at a, we obtain:

FX(a) = lim
i→∞

FX(bi) ≤ lim inf
d→∞

IX,Y
d ≤ lim sup

d→∞
IX,Y
d ≤ lim

i→∞
FX(ci) = FX(a).

Hence, we can summarize that for all ω ∈ Ω \ N, it holds lim
d→∞

IX,Y
d (ω) = FX(Y(ω)), which is the

desired conclusion.

Lemma A2. Let X = (Xi)
n
i=1 and Y = (Yi)

n
i=1 be two random vectors. If T is ergodic and:

{
Yi ≥ Xi ◦ T◦t

}
∈ σ

((
CR,Ed(T, Xi)

)
d∈N

)
for all i = 1, 2, . . . , n and t ∈ N0, then:

σ((FXi ◦Yi)
n
i=1)

µ
⊂ σ((Cd)d∈N).

Proof of Lemma A2. Since the sub-σ-algebras σ
((
CR,Ed(T, Xi)

)
d∈N

)
generate the sub-σ-algebra:

σ((Cd)d∈N) = σ
((
CR,Ed(T, X)

)
d∈N

)
,
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it is enough to show that for all i = 1, 2, . . . , n, it holds:

σ(FXi ◦Yi)
µ
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
.

Hence, let us regard i as fixed. By the assumption given, that is:{
Yi ≥ Xi ◦ T◦t

}
∈ σ

((
CR,Ed(T, Xi)

)
d∈N

)
for all t ∈ No, it holds that IXi ,Yi

d is σ
((
CR,Ed(T, Xi)

)
d∈N

)
-B([0, 1])-measurable for any d ∈ N (see for

instance Billingsley [20], remarks on simple real functions in Section 13). Hence:

σ
((

IXi ,Yi
d

)
d∈N

)
⊂ σ

((
CR,Ed(T, Xi)

)
d∈N

)
.

Moreover, the limit of IXi ,Yi
d as d approaches infinity exists for each ω ∈ Ω since IXi ,Yi

d ≤ IXi ,Yi
d+1 and

0 ≤ IXi ,Yi
d ≤ 1, hence:

σ

(
lim

d→∞
IXi ,Yi
d

)
⊂ σ

((
IXi ,Yi
d

)
d∈N

)
(see for instance Billingsley [20], Theorem 13.4.(ii)). Furthermore, by Lemma A1, there exists a set
N ⊂ Ω with µ(N) = 0 such that:

lim
d→∞

IXi ,Yi
d (ω) = FXi (Yi(ω))

for all ω ∈ Ω \ N. Hence, for any B ∈ B([0, 1]), it holds:

µ

(
(FXi ◦Yi)

−1(B)4
(

lim
d→∞

IXi ,Yi
d

)−1
(B)

)
≤ µ(N) = 0,

which gives:

σ(FXi ◦Yi)
µ
⊂ σ

((
IXi ,Yi
d

)
d∈N

)
,

and the lemma follows.

The following lemma yields sufficient conditions for (i) and (ii) of Theorem 2.

Lemma A3. Let X : (Ω,A, µ) → (R,B(R)) be a random variable, φ : R ←↩ a B(R)-B(R) a measurable
map and G a family of subsets of R that generates the Borel σ-algebra B(R). If φ has the two properties:

(i) φ(G) ∈ B(R) and
(ii) µ

(
X−1 ((φ−1φ(G)

)
\ G
))

= 0

for all G ∈ G, then σ(X)
µ
⊂ σ(φ ◦ X).

Proof of Lemma A3. Since G generates B(R), it holds that σ(X) is generated by the sets X−1(G) (see
for instance Elstrodt [21], Kapitel 1, Satz 4.4). Hence, the Lemma is proven if for any G ∈ G, there
exists some G′ ∈ σ(φ ◦ X) such that µ

(
X−1(G)4 G′

)
= 0. In order to show this, choose:

G′ = X−1
(

φ−1φ(G)
)
= (φ ◦ X)−1φ(G).

By Lemma A3(i), it holds that G′ ∈ σ(φ ◦ X), and by (ii), we see that:

µ
(

X−1(G) 4 G′
)
= µ

(
X−1

(
(φ−1φ(G)) \ G

))
= 0,
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which completes the proof.

Note that since φ is a B(R)-B(R) measurable map in Lemma A3, it holds in particular:

σ(X) ⊃ σ(φ ◦ X)

for any random variable X : Ω→ R: Let A ∈ σ(φ ◦ X), then:

A = (φ ◦ X)−1(B) = X−1φ−1(B)

for some B ∈ B(R). Hence, by φ−1(B) ∈ B(R), it follows that A ∈ σ(X).
Lemma A3 is evident if φ is a one-to-one B(R)-B(R) measurable map since then:(

φ−1φ(B)
)
\ B = ∅

and φ(B) ∈ B(R) for all B ∈ B(R) (see for instance Cantón et al. [22]); nevertheless, it also includes
self-maps such as the distribution function FX of a random variable X (see Antoniouk et al. [16],
Lemma 3.2), i.e.,

σ(X)
µ
⊂ σ(FX ◦ X) :

Let G = {(−∞, a) | a ∈ R}; since FX is increasing, Lemma A3(i) holds for all G ∈ G. Assumption
Lemma A3(ii) is proven by Antoniouk et al. [16] (Lemma 3.1(3)) by showing firstly that:

F−1
X FX((−∞, a)) \ (−∞, a)

coincides either with the interval [a, a∗] or with [a, a∗) for any a ∈ R, where a∗ = sup
(

F−1
X FX(a)

)
and

subsequently that µ
(
X−1([a, a∗])

)
= 0. Hence, the inclusion (compare to Theorem 2(ii)):

σ(g ◦ X)
µ
⊂ σ(FX ◦ g ◦ X),

where g : R←↩ is a self-map, holds if we obtain:

µ(X−1g−1([a, a∗])) = 0

for any a ∈ R. This is true if, for instance, either FX is one-to-one or g(ω) = ω for all ω ∈ Ω where FX
is not one-to-one.
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