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Abstract: We discuss two examples of oscillations apparently hidden in some experimental results for
high-energy multiparticle production processes: (i) the log-periodic oscillatory pattern decorating the
power-like Tsallis distributions of transverse momenta; (ii) the oscillations of the modified combinants
obtained from the measured multiplicity distributions. Our calculations are confronted with pp data
from the Large Hadron Collider (LHC). We show that in both cases, these phenomena can provide
new insight into the dynamics of these processes.
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1. Introduction

In this work, we argue that closer scrutiny of the available experimental results from Large Hadron
Collider (LHC) experiments can result in some new, so-far unnoticed (or underrated) features, which
can provide new insight into the dynamics of the processes under consideration. More specifically,
we shall concentrate on multiparticle production processes at high energies and on two examples
of hidden oscillations apparently visible there: (i) the log-periodic oscillations in data on the large
transverse momenta spectra, f (pT) (presented in Section 2); (ii) the oscillations of some coefficients in
the recurrence relation defining the multiplicity distributions, P(N) (presented in Section 3).

As will be seen, the first phenomenon is connected with the fact that large pT distributions follow
a quasi power-like pattern, which is best described by the Tsallis distribution [1–3]:

f (pT) = C
(

1 +
pT
nT

)−n
, n =

1
q− 1

(1)

This is a quasi power-law distribution with two parameters: power index n (connected with the
nonextensivity parameter q) and scale parameter T (in many applications identified with temperature) [3].
In Figure 1, we present examples of applications of the nonextensive approach to multiparticle
distributions represented by Equation (1). Figure 1a,b show the high-quality Tsallis fit as well as
a kind of self-similarity of pT distributions of jets and hadrons [4]. Figure 1c demonstrates that the
values of the nonextensivity parameters q for particles in jets correspond rather closely to values of q
obtained from the inclusive distributions measured in pp collisions [4,5]. (This observation should be
connected with the fact that multiplicity distributions, P(N), are closely connected with the nonextensive
approach, and that q− 1 = Var(N)/ < N >2 −1/ < N > for negative binomial distributions (NBDs),
Poisson distributions (PDs) and binomial distributions (BDs) [5]). In general, one observes the self-similar
characteristics of the production process, in both cases originating from their cascading characteristic,
which always results in a Tsallis distribution. (In fact, this is a very old idea, introduced by Hagedorn
in [6,7], that the production of hadrons proceeds through the formation of fireballs, which produces
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a statistical equilibrium of an undetermined number of all kinds of fireballs, each of which in turn
is considered to be a fireball. This idea returned recently in the form of thermofractals introduced
in [8]. We note that the NBD discussed below also has a self-similar character [9]. We note also that
the self-similarity and fractality features of the multiparticle production process were exhaustively
discussed in [10,11].). In the pure dynamical QCD approach to hadronization, one could think of partons
fragmenting into final-state hadrons through multiple sub-jet production [11].
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Figure 1. (a) Transverse momentum spectra pT for jets (open symbols) compared with pT spectra for
hadrons (full symbols) from proton–proton collisions at

√
s = 7 TeV (with arbitrary normalization at

pT = 20 GeV; data are from [12–15]). The dashed line shows the fit using Equation (1). (b) The power
index n extracted from fits to the jet spectra shown in (a) (full symbols) compared with n from pT

distributions of charged particles (open symbols, data are from [14–16]. (c) Compilation of values of the
parameters q obtained from the pT spectra (triangles) and from the multiplicity distributions (circles).
Triangles at small 〈N〉 are obtained from [12,13]; those for larger 〈N〉 are from [17]. Full squares and
circles are from data on multiparticle production in p + p collisions: squares (inelastic data) are from
the compilation for beam energy 3.7−303 GeV presented in [18], full circles (non-single diffractive data)
are from the compilation in [19], and open-red circ les are from [20].

2. Log-Periodic Oscillations in Data on Large pT Momenta Distributions

To start with the first example, we note that, despite the exceptional quality of the Tsallis fit
presented in Figure 1a (in fact, only such a two-parameter quasi-power-like formula can fit the data
over the whole range of pT), the ratio R = data/ f it (which is expected to be a flat function of pT ,
R (pT) ∼ 1) presented in Figure 2a shows clear log-periodic oscillatory behaviour as a function of the
transverse momentum pT . In fact, it turns out that such behaviour occurs (at the same strength) in data
from all LHC experiments, at all energies (provided that the range of the measured pT is large enough),
and that its amplitude increases substantially for the nuclear collisions [21]. These observations
strongly suggest that closer scrutiny should be undertaken to understand its possible physical origin.
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Figure 2. (a) The R = data/ f it ratio for pp collisions at TeV from the CMS [14,15,22] and ATLAS [12]
experiments fitted by Equation (2) with parameters a = 0.909, b = 0.166, c = 1.86, d = 0.948 and
f = −1.462. (b) The log-periodic oscillations of T = T (pT) fitting R (pT) from panel (a) for pp
collisions at 0.9 and 7 TeV from the CMS experiment [14,15,22]. These can be fitted by Equation (3)
with parameters ã = 0.132, b̃ = 0.0035, c̃ = 2.2, d̃ = 2.0, and f̃ = −0.5 for 0.9 TeV and ã = 0.143,
b̃ = 0.0045, c̃ = 2.0, d̃ = 2.0, and f̃ = −0.4 for 7 TeV. (c) The results of the Fourier transform of T(pT)

from Figure 2b. The continuous line represents rT′(r) versus r, and the dashed line denotes the function
rT′(r) = 5.1 sin[(2π/3.2) ln(1.24r)] fitted for small values of r.

We note that we have two parameters in the Tsallis formula (Equation (1)), n and T, and each of
them (or both, but we do not consider such a situation) could be a priori responsible for the observed
effect. We start with the power index n. In this case, the observed oscillations may be related to some
scale invariance present in the system and are an immanent feature of any power-like distribution [23].
In [24], we showed that they also appear in quasi-power-like distributions of the Tsallis type. In general,
they are attributed to a discrete scale invariance (connected with a possible fractal structure of the
process under consideration) and are described by introducing a complex power index n (or q). This, in
turn, has a number of interesting consequences [25–27], such as a complex heat capacity of the system
or complex probability and complex multiplicative noise, all of these known already from other
branches of physics. In short, one relies on the fact that power-like distributions, say O(x) = Cx−m,
exhibit scale invariant behaviour, Q(λx) = µO(x), where parameters λ and µ are, in general, related
by the condition that µλm = 1 = exp(2πik), k = 0, 1, 2, . . . , which means that the power index
m can take complex values: m = − ln µ

ln λ + i 2πk
ln λ . In the case of a Tsallis distribution, this means that

Equation (1) is decorated by some oscillating factor R (pT), the form of which (when keeping only the
k = 0 and k = 1 terms) is

R (pT) = a + b [cos (pT + d) + f ] (2)
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As one can see in Figure 2, this perfectly fits the observed log-oscillatory pattern.
The second possibility is to keep n constant but allow the scale parameter T to vary with pT in

such a way as to allow a fit to the data on R (pT) [27]. The result is shown in Figure 2b. The resulting
T (pT) has the form of log-periodic oscillations in pT , which can be parameterized by

T (pT) = ã + b̃
[
sin
(

pT + d̃
)
+ f̃

]
(3)

Such behaviour of T (pT) can originate from the well-known stochastic equation for the
temperature evolution, which in the Langevin formulation has the following form:

dT
dt

+
1
τ

T + ξ(t) = Φ (4)

where τ is the relaxation time and ξ(t) is time-dependent white noise. Assuming additionally that we
have time-dependent transverse momentum pT = pT(t) increasing in a way following the scenario of
the preferential growth of networks [28],

dpT
dt

=
1
τ0

( pT
n
± T

)
(5)

where n is the power index and τ0 is some characteristic time-step, one may write

1
τ0

( pT
n
± T

) dT
dpT

+
1
τ

T + ξ(t) = Φ (6)

Equation (3) is obtained in two cases: (i) The noise term increases logarithmically with pT while
the relaxation time τ remains constant:

ξ (t, pT) = ξ0(t) +
ω2

n
ln (pT) (7)

(ii) The white noise is constant, ξ (t, pT) = ξ0(t), but the relaxation time becomes pT-dependent, for
example,

τ = τ (pT) =
nτ0

n + ω2 ln (pT)
(8)

In both cases ω is some new parameter [3,27]. (To fit data, one needs only a rather small admixture
of the stochastic processes with noise depending on pT . The main contribution comes from the usual
energy-independent Gaussian white noise. We note that whereas each of the proposed approaches is
based on a different dynamical picture, they are numerically equivalent.).

However, we can use Equation (3) in a way that allows us to look deeper into our dynamical
process. To this end, we calculate the Fourier transform of T (pT) presented there:

T(r) =

√
2
π

∫ ∞

0
T (pT) eipTrdpT = T0 + T′(r) (9)

One can see now how the temperature T (more exactly, its part that varies with r, T′(r)) changes
with distance r from the collision axis (defined in the plane perpendicular to the collision axis and
located at the collision point). The result of this operation is seen in Figure 2c as specific log-periodic
oscillations in pT . Such behaviour can be studied by considering the flow of a compressible fluid in
a cylindrical source. Assuming oscillations with small amplitude and velocity v, and introducing
the velocity potential f such that v = grad f , one finds that f must satisfy the following cylindrical
wave equation:

1
r

∂

∂r

(
r

∂ f
∂r

)
− 1

c2
∂2 f
∂t2 = 0 (10)
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It can be shown that this represents a travelling sound wave with velocity v in the direction of
propagation. Because the oscillating part of the temperature, T′, is related to the velocity v, then

T′ =
cκT
cP

v (11)

where κ = 1
V

(
∂V
∂T

)
P

is the coefficient of thermal expansion and cP denotes the specific heat at constant

pressure [29]; in the case of a monochromatic wave where f (r, t) = f (r) exp(−iωt), we have that

∂2 f (r)
∂r2 +

1
r

∂ f (r)
∂r

+ K2 f (r) = 0, K = K(r) =
ω

c(r)
(12)

with K being the wave number depending in general on r. For

K(r) =
α

r
(13)

the solution of Equation (12) takes the form of some log-periodic oscillation:

f (r) ∝ sin[α ln(r)] (14)

Because in our case f (r) ∝ vr, using Equation (11), we can write that

rT′(r) ∝
cκT0

cP
f (r) =

cκT0

cP
sin[α ln(r)] (15)

which is what we have used in describing the T′(r) presented in panel (c) of Figure 2. The space picture
of the collision (in the plane perpendicular to the collision axis and located at the collision point) that
emerges is some regular logarithmic structure for small distances, which disappears when r reaches
the dimension of the nucleon, that is, for r ∼ 1 fm. Whether it is connected with the parton structure of
the nucleon remains for the moment an open question.

To end this section, we note that Equation (12) with K(r) given by Equation (13) is scale invariant
and that f (λr) = f (r). We note also that in the variable ξ = ln r, Equation (12) is also self-similar
because in this variable, it takes the form of the traveling wave equation:

∂2F(ξ)
∂ξ2 + α2F(ξ) = 0 (16)

which has the self-similar solution
F(ξ) ∝ cos[αξ] (17)

for which F(ξ + ln λ) = F(ξ) (with α = 2πk
ln λ or λ = exp

(
2πk

α

)
, where k = 1, 2, 3, . . . ). This is

the self-similar solution of the second kind, usually encountered in the description of the intermediate
asymptotic. Such asymptotics are observed in phenomena that do not depend on the initial
conditions because sufficient time has already passed; nevertheless the system considered is still
out of equilibrium [30].

3. Oscillations Hidden in the Multiplicity Distributions Data

Whereas the previous section is concerned with oscillations hidden in the distributions of
produced particles in transverse momenta f (pT) (which by using the Fourier transformation allows
us to gain some insight into the space picture of the interaction process), in this section, we concentrate
on another important characteristic of the multiparticle production process, namely, on the question of
how many particles are produced and with what probability, that is, on the multiplicity distribution
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function P(N), where N is the observed number of particles. This is usually one of the first observables
measured in any multiparticle production experiment [11].

At first we note that any P(N) can be defined in terms of some recurrence relation, the most
popular takes the following form:

(N + 1)P(N + 1) = g(N)P(N) where g(N) = α + βN (18)

Such a linear form of g(N) leads to a NBD, BD or PD:

NBD : P(N) =
Γ(N + k)

Γ(N + 1)Γ(k)
pN(1− p)k with α = kp, β =

α

k
(19)

BD : P(N) =
K!

N!(K− N)!
pN(1− p)K−N with α =

Kp
1− p

, β = − α

K
(20)

PD : P(N) =
λN

N!
exp(−λ) with α = λ, β = 0 (21)

Suitable modifications of g(N) result in more involved distributions P(N) (cf. [31] for references).
The most popular form of P(N) is the NBD type of distribution, Equation (19). However, with a

growing energy and number of produced secondaries, the NBD starts to deviate from data for large N,
and one has to use combinations of NBDs (two [32], three [33] and multicomponent NBDs [34] were
proposed) or try to use some other form of P(N) [11,35,36]. For example, in Figure 3a, a single NBD is
compared with a two-NBD. However, as shown there, the improvement, although substantial, is not
completely adequate. It is best seen when looking at the ratio R = PCMS(N)/Pf it(N), which still shows
some wiggly structure (albeit substantially weaker than in the case of using only a single NBD to fit
the data). Taken seriously, this observation suggests that there is some additional information hidden
in the P(N). The question of how to retrieve this information was addressed in [31] by resorting to
a more general form of Equation (18) usually used in counting statistics when dealing with cascade
stochastic processes [37] in which all multiplicities are connected. In this case, one has coefficients Cj
defining the corresponding P(N) in the following way:

(N + 1)P(N + 1) = 〈N〉
N

∑
j=0

CjP(N − j) (22)

These coefficients contain the memory of particle N + 1 about all N − j previously produced
particles. Assuming now that all P(N) are given by experiment, one can reverse Equation (22) and
obtain a recurrence formula for the coefficients Cj:

〈N〉Cj = (j + 1)
[

P(j + 1)
P(0)

]
− 〈N〉

j−1

∑
i=0

[
P(j− i)

P(0)

]
(23)

As can be seen in Figure 3c, the coefficients Cj obtained from the data presented in Figure 3a show
oscillatory behaviour (with period roughly equal to 16) gradually disappearing with N. They can be
fitted by the following formula:

〈N〉Cj =
(

a2 + b2
)j/2

sin [c + j arctan(b/a)] + dj (24)

with parameters a = 0.89, b = 0.37, c = 5.36, and d = 0.95. Such oscillations do not appear in the
single NBD fit presented in Figure 3a, and there is only a small trace of oscillations for the two-NBD fit
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presented in Figure 3a. This is because for a single NBD, one has a smooth exponential dependence of
the corresponding Cj on the rank j:

Cj =
k
〈N〉 pj+1 =

k
k + m

exp(j ln p) (25)

and one can expect any structure only for the multi-NBD cases [31].
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Figure 3. (a) Charged hadron multiplicity distributions for the pseudorapidity range |η| < 2 at
√

s =
7 TeV, as given by the CMS experiment [38] (points), compared with the negative binomial distribution
(NBD) for parameters 〈N〉 = 25.5 and k = 1.45 (dashed line) and with the two-component NBD (solid
line) with parameters from [39]. (b) Multiplicity dependence of the ratio R = PCMS(N)/Pf it(N) for the
NBD (red circles) and for the two-component NBD for the same data as in panel (a) (green squares).
(c) Coefficients Cj emerging from the data and NBD fits presented in panel (a). The data points are
fitted by Equation (24); see text for details.

Before proceeding further we note that the coefficients Cj are closely related to the combinants C?
j ,

which were introduced in [40] (see also [11,41,42]) and are defined in terms of the generating function
G(z) as

C?
j =

1
j!

dj ln G(z)
dzj

∣∣∣∣
z=0

, where G(z) =
∞

∑
N=0

P(N)zN (26)

or by the following relation [31]:

ln G(z) = ln P(0) +
∞

∑
j=1

C?
j zj (27)
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From the above, one can deduce the following [31]:

Cj =
j + 1
〈N〉 C?

j+1 (28)

This means that one can rewrite the recurrence relation, Equation (22), in terms of the
combinants C?

j :

(N + 1)P(N + 1) =
N

∑
j=0

(j + 1)C?
j P(N − j) (29)

When compared with Equation (22), this allows us to express our coefficients Cj, which henceforth
we shall call modified combinants, by the generating function G(z) of P(N):

〈N〉Cj =
1
j!

dj+1 ln G(z)
dzj+1

∣∣∣∣
z=0

(30)

This is the relation we use in the following when calculating the Cj from distributions defined by
some G(z).

To continue our reasoning, we note first that whereas a single NBD does not lead to oscillatory
behaviour of the modified combinants Cj, there is a distribution for which the corresponding Cj
oscillate in a maximum way. This is the BD for which the modified combinants are given by the
following formula:

Cj = (−1)j K
〈N〉

(
〈N〉

K− 〈N〉

)(j+1)

=
(−1)j

1− p

(
p

1− p

)j
(31)

which oscillates rapidly with a period equal to 2. In Figure 4a, one can see that the amplitude of
these oscillations depends on p; generally the Cj increase with rank j for p > 0.5 and decrease for
p < 0.5. However, their general shape lacks the fading-down feature of the Cj observed experimentally.
This suggests that the BD alone is not enough to explain the data but must be somehow combined with
some other distribution. (In fact, in [43], we have already used a combination of elementary emitting cells
(EECs) producing particles following a geometrical distribution (our aim at that time was to explain
the phenomenon of Bose–Einstein correlations). For a constant number k of EECs, one obtains the
NBD as the resultant P(N), whereas for k distributed according to the BD, the resulting P(N) is a
modified NBD. However, we could not find a set of parameters providing both the observed P(N)

and oscillating Cj. We note that originally, the NBD was seen as a compound PD, with the number
of clusters given by a PD and the particle inside the clusters distributed according to a logarithmic
distribution [44].).
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We resort therefore to the idea of compound distributions (CDs) [45], which, from the point of view
of the physics involved in our case, could for example describe a production process in which a number
M of some objects (clusters, fireballs, etc.) are produced following, in general, some distribution f (M)

(with generating function F(z)), and subsequently decay independently into a number of secondaries,
ni=1,...,M, always following some other (the same for all) distribution g(n) (with a generating function
G(z)). The distribution h(N), where

N =
M

∑
i=0

ni (32)

is a CD of f and g: h = f ⊗ g. For CDs, we have that

〈N〉 = 〈M〉〈n〉 and Var(N) = 〈M〉Var(n) + Var(M)〈n〉2 (33)

and its generating function H(z) is equal to

H(z) = F[G(z)] (34)

It should be mentioned that for the class of distributions of M that satisfy our recursion relation,
Equation (18), the CD h = f ⊗ g is given by Panjer’s recursion relation [46]:

Nh(N) =
N

∑
j=1

[βN + (α− β)j]g(j)h(N − j) =
N

∑
j=1

C(P)
j (N)h(N − j) (35)

with the initial value h(0) = f (0). However, the coefficients C(P)
j occurring here depend on N, contrary

to our recursion given by Equation (22), for which the modified combinants, Cj, are independent of N.
Moreover, Equation (22) is not limited to the class of distributions satisfying Equation (18) but is valid
for any distribution P(N). For this reason, the recursion relation, Equation (35), is not suitable for us.

To visualize the CD in action, we take for f a BD with generating function F(z) = (pz + 1− p)K,
and for g we take a PD with generating function G(z) = exp[λ(z− 1)]. The generating function of the
resultant distribution is now equal to

H(z) = {p exp[λ(z− 1)] + 1− p}K (36)

and the corresponding modified combinants are

〈N〉Cj =
Kλj+2 exp(−λ)

j!

j+2

∑
i=1

[
p

1− p + p exp(−λ)

]i 1
i

i

∑
k=0

(−1)k+1
(

i
k

)
kj+1 =

=
Kλj+2 exp(−λ)

j!

j+2

∑
i=1

[
p

1− p + p exp(−λ)

]i
S(j + 1, i)

(37)

where

S(n, k) =

{
n
k

}
=

1
k!

k

∑
i=0

(−1)k−i
(

k
i

)
in (38)

is the Stirling number of the second kind. Figure 4b shows the above modified combinants for the
compound binomial distribution (CBD; a combination of a BD with a PD) with K = 3 and λ = 10
calculated for three different values of p in the BD: p = 0.54, 0.62, 0.66. We note that in general, the
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period of the oscillations is equal to 2λ, that is, in Figure 4b, where λ = 10 it is equal 20. The multiplicity
distribution in this case is

P(0) =
(

1− p + pe−λ
)K

(39)

P(N) =
1

N!
dN H(z)

dzN

∣∣∣∣
z=0

=
1

N!

K

∑
i=1

i!
(

K
i

)(
λpe−λ

)i (
1− p + pe−λ

)K−i
S(N, i) (40)

The proper normalization comes from the fact that H(1) = 1. This shows that the choice of a BD
as the basis of the CDs to be used seems to be crucial to obtain oscillatory Cj (e.g., a CD formed from a
NBD and some other NBD provides smooth Cj).

Unfortunately, such a single component CBD (depending on three parameters: p, K and λ;
P(N) = h(N; p, K, λ) does not describe the experimental P(N). We return therefore to the idea of
using a multicomponent version of the CBD, for example, a three-component CBD defined as follows
(with wi being weights):

P(N) = ∑
i=1,2,3

wih (N; pi, Ki, λi) ; ∑
i=1,2,3

wi = 1 (41)

As can be seen in Figure 5, in this case, the fit to P(N) is quite good, and the modified combinants
Cj follow an oscillatory pattern as far as the period of the oscillations is concerned, albeit their
amplitudes still decaying too slowly.
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Figure 5. Results of using the compound binomial distribution (CBD) approach given by Equation (41)
with parameters ω1 = 0.34, ω2 = 0.4, ω3 = 0.26; p1 = 0.22, p2 = 0.22, and p3 = 0.12; K1 = 10, K2 = 12,
and K2 = 30; and λ1 = 4, λ2 = 9, and λ3 = 14. (a) Charged hadron multiplicity distributions for |η| < 2
at
√
(s) = 7 TeV, as given by the CMS experiment [38] (points), compared with a three-component CBD

(3-CBD; Equation (41)). (b) Coefficients Cj emerging from the CMS data used in panel (a) compared
with the corresponding Cj obtained from the 3-CBD.

4. Summary

To summarize, we would like to mention that power law and quasi-power-law distributions are
ubiquitous in many different, apparently very disparate, branches of science (such as, e.g., earthquakes,
escape probabilities in chaotic maps close to crisis, biased diffusion of tracers in random systems,
kinetic and dynamic processes in random quenched and fractal media, diffusion limited aggregates,
growth models, or stock markets near financial crashes, to name only a few). Also ubiquitous is the
fact that, in most cases, they are decorated with log-periodic oscillations of different kinds [23,24,26,27].
It is then natural to expect that oscillations of certain variables constitute a universal phenomenon,
which should occur in a large class of stochastic processes, independently of the microscopic details.
In this paper, we have concentrated on some specific oscillation phenomena seen at LHC energies in
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transverse momentum distributions. Their log-periodic characteristics suggest that either the exponent
of the power-like behavior of these distributions is complex, or that there is a scale parameter that
exhibits specific log-periodic oscillations. Whereas the most natural thing seems to be attributing
the observed oscillations to some discrete scale invariance present in the system considered [23,24],
it turns out that such scale-invariant functions also satisfy some specific wave equations showing a
self-similarity property [21]. In both cases, these functions exhibit log-periodic behavior.

Concerning the second topic considered here, the presence of oscillations in counting statistics, one
should realize that it is also a well-established phenomenon. The known examples include oscillations
of the high-order cumulants of the probability distributions describing the transport through a double
quantum dot, oscillations in quantum optics (in the photon distribution function in slightly squeezed
states; see [47] for more information and references). In elementary particle physics, oscillations of
the Hq moments, which represent ratios of the cumulants to factorial moments, also have a long
history [11,35,36].

Our expectation that the oscillations discussed here could also be observed (and successfully
measured) in multiparticle production processes is new. To see these, one must first deduce from
the experimental data on the multiplicity distribution P(N) the modified combinants Cj (which are
defined by the recurrence relation presented in Equation (22); we note that, contrary to the Hq moments,
the Cj are independent of the multiplicity distribution P(N) for N > j). In the case for which these
modified combinants show oscillatory behavior, they can be used to search for some underlying
dynamical mechanism that could be responsible for it. The present situation is such that the measured
multiplicity distributions P(N) (for which, as we claim in [31], the corresponding modified combinants
Cj oscillate), are most frequently described by NBDs (the modified combinants of which do not
oscillate). Furthermore, with increasing collision energy and increasing multiplicity of produced
secondaries, some systematic discrepancies between the data and the NBD form of the P(N) used to
fit them become more and more apparent. We propose therefore to use a novel phenomenological
approach to the observed multiplicity distributions on the basis of the modified combinants Cj obtained
from the measured multiplicity distributions. Together with the fitted multiplicity distributions
P(N), these would allow for a more detailed quantitative description of the complex structure of the
multiparticle production process. We argue that the observed strong oscillations of the coefficients Cj
in the pp data at LHC energies indicate the compound characteristics of the measured distributions
P(N) with a central role played by the BD, which provides the oscillatory characteristics of the Cj.
This must be supplemented by some other distribution in such a way that the CD fits both the observed
P(N) and the Cj deduced from it. However, at the moment, we are not able to obtain fits to both P(N)

and Cj of acceptable quality. Therefore, these oscillations still await their physical justification, that
is, the identification of some physical process (or combination of such processes) that would result in
such phenomena.

We close by noting that both phenomena discussed here describe, in fact, different dynamical
aspects of the multiparticle production process at high energies. The quasi-power-like distributions
and the related log-periodic oscillations are related with events with rather small multiplicities of
secondaries with large and very large momenta; these are called hard collisions, and they essentially
probe the collision dynamics towards the edge of the phase space. The multiparticle distributions
collect instead all produced particles, the majority of which come from the soft collisions concentrated
in the middle of the phase space. In this sense, both the phenomena discussed provide us with
complementary new information on these processes and, because of this, they should be considered,
as much as possible, jointly. (Because of some similarities observed between hadronic, nuclear and
e+e− collisions [11,48,49] (see also Chapter 20 of [50]), one might expect that the phenomena discussed
above will also appear in these reactions. However, this is a separate problem, too extensive and not
yet sufficiently discussed to be presented here).
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