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Abstract: Bayesian network classifiers (BNCs) have demonstrated competitive classification accuracy
in a variety of real-world applications. However, it is error-prone for BNCs to discriminate among
high-confidence labels. To address this issue, we propose the label-driven learning framework,
which incorporates instance-based learning and ensemble learning. For each testing instance,
high-confidence labels are first selected by a generalist classifier, e.g., the tree-augmented naive
Bayes (TAN) classifier. Then, by focusing on these labels, conditional mutual information is redefined
to more precisely measure mutual dependence between attributes, thus leading to a refined generalist
with a more reasonable network structure. To enable finer discrimination, an expert classifier is
tailored for each high-confidence label. Finally, the predictions of the refined generalist and the
experts are aggregated. We extend TAN to LTAN (Label-driven TAN) by applying the proposed
framework. Extensive experimental results demonstrate that LTAN delivers superior classification
accuracy to not only several state-of-the-art single-structure BNCs but also some established ensemble
BNCs at the expense of reasonable computation overhead.

Keywords: Bayesian network classifiers; label-driven learning framework; instance-based learning;
ensemble learning; information theory

1. Introduction

Supervised classification is a fundamental issue in machine learning and data mining. The task of
supervised classification can be described as given a labelled training set T with t training instances,
predicting a class label c ∈ ΩC = {c1, . . . , cl} for a testing instance x= (x1, . . . , xn) (xi ∈ ΩXi ), where xi
is the value of an attribute Xi and ci is a value of the class variable C. Among numerous classification
techniques, Bayesian network classifiers (BNCs) are well-known for their model interpretability,
comparable classification performance and the ability to directly handle multi-class classification
problems [1]. A BNC B provides a confidence measure in the form of a posterior probability for each
class label and performs a classification by assigning the label with the maximum posterior probability
to x, that is:

ĉ = arg max
c∈ΩC

PB(c|x). (1)

By learning a more reasonable network structure, a BNC can often achieve higher classification
accuracy. Naive Bayes (NB) assumes all the attributes are independent given the class. When dealing
with large datasets with complex attribute dependencies, its performance degrades dramatically.
To mine significant attribute dependencies in training data, the tree-augmented naive Bayes (TAN)
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classifier [2] models 1-dependence relations between attributes by building a maximal weighted
spanning tree. The k-dependence Bayesian classifier (KDB) [3] allows us to construct classifiers at
arbitrary points along the attribute dependence spectrum by varying the value of k. To explore
possible attribute dependencies that exist in testing data, instance-based BNCs [4] learn the most
appropriate network structure for each testing instance at classification time. The local KDB
(LKDB) [5] captures local dependence relations between attributes. The lazy subsumption resolution [6]
identifies occurrences of the specialization-generalization relationship and eliminates generalizations
at classification time. By combining predictions from multiple BNCs, ensemble learning can
help to achieve better overall accuracy, on average, than any individual member. The averaged
one-dependence estimators (AODE) [7] learns a restricted class of one-dependence estimators. The
weighted averaged TAN (WATAN) [8] constructs a set of TANs by choosing each attribute as the root
of the tree and uses the mutual information between the root attribute and the class variable as the
aggregation weight. The averaged KDB (AKDB) [5] is an ensemble of KDB and LKDB.

From the viewpoint of entropy, the uncertainty of a prediction will be highest when all estimated
posterior probabilities are equiprobable. It can thus be inferred that BNCs are prone to making a wrong
prediction when some labels bear high confidence degrees (or posterior probabilities) close to that of
the predicted label. We propose to improve classification accuracy of BNCs by alleviating this problem.
To the best of our knowledge, it has not previously been explored. To further discriminate among
high-confidence labels, we resort to multistage classification. Multistage classification is characterized
by the property that a prediction is made using a sequence of classifiers that operate in cascade [9]. It
has been widely applied in many domains of pattern recognition, such as character recognition [10],
age estimation [11] and face recognition [12]. The multistage classification methodology proposed
in [13] aims at reducing mutual misclassifications among easily confused labels and consists of two
stages. Firstly, an inexpensive classifier, which can discriminate among all labels, coarsely classifies a
testing instance. If the predicted label ĉ has some labels that tend to be confused with it (denoted as
F(ĉ)), the testing instance will be fed to a localized and more sophisticated classifier which concentrates
on {ĉ} ∪ F(ĉ), thus obtaining a refined prediction.

Following the learning paradigm proposed in [13], we devise the label-driven learning framework,
where instance-based learning and ensemble learning work in concert. To deal with the potential
misclassification problem of BNCs, the framework learns three models, each built in a different
stage. In the preprocessing stage, a generalist classifier carries out a first classification to obtain
high-confidence labels. If there exists more than one such label, the testing instance will be reconsidered
in following two stages. In the label filtering stage, by exploiting credible information derived from
high-confidence labels, a refined generalist with a more accurate network structure is deduced for each
reconsidered testing instance. Innovatively, we add an extra hierarchy level to the structure proposed
in [13] by increasing the degree of localisation. In the label specialization stage, a Bayesian multinet
classifier (BMC) is built to model label-specific causal relationships in the context of a particular
reconsidered testing instance. Each local network of the BMC is an expert classifier, which targets
a specific high-confidence label. Finally, rather than relying on the decision of a single classifier,
the framework averages the predictions of the refined generalist and the experts, which possesses the
merits of ensemble learning.

TAN has demonstrated satisfactory classification accuracy, while maintaining efficiency and
simplicity. Hence, as a first attempt, we apply the proposed label-driven learning framework to
TAN and name the resulting model LTAN (Label-driven TAN). Through extensive experiments on 40
datasets from the UCI (University of California, Irvine) machine learning repository [14], we prove that
the proposed framework can alleviate the potential misclassification problem of TAN without causing
too many offsetting errors or incurring very high computation overhead. Empirical comparisons also
reveal that LTAN outperforms several state-of-the-art single-structure BNCs (NB, TAN and KDB),
as well as three established ensemble BNCs (AODE, WATAN and AKDB) in terms of classification
accuracy.
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The remainder of the paper is organized as follows: Section 2 provides a short background to
information theory and reviews the related BNCs and BMC. In Section 3, we describe our label-driven
learning framework in detail. The extensive empirical results of the proposed framework are presented
in Section 4. In Section 5, we analyze why LTAN degrades the classification accuracy of TAN on a few
datasets. To summarize, Section 6 shows the main conclusions and outlines future work.

2. Preliminaries

2.1. Information Theory

Although information theory was primarily concerned with the problem of digital communication
when it was first introduced by Claude E. Shannon in the 1940s [15], the theory has much broader
applicability in the field of classification [16,17]. Here, we review several commonly used definitions.
In the following discussion, upper-case letters denote random variables (attributes or the class variable
in the context of classification), lower-case letters denote specific values taken by corresponding
variables, and the set of all possible values of a random variable, say X, is represented by ΩX .

Definition 1 ([18]). The entropy H(X) of X measures its unpredictability. It is defined as:

H(X) = − ∑
x∈ΩX

P(x)log2P(x). (2)

Definition 2 ([18]). Conditional entropy H(X|Y) measures the amount of information needed to describe X
when the value of Y is known. It is defined as:

H(X|Y) = − ∑
x∈ΩX

∑
y∈ΩY

P(x, y)log2P(x|y). (3)

Definition 3 ([18]). Mutual information (MI) I(X; Y) measures how much information X bears on Y. More
specifically, it quantifies the reduction of the entropy of X after observing the value of Y. It is defined as:

I(X; Y) = H(X)− H(X|Y) = ∑
x∈ΩX

∑
y∈ΩY

P(x, y)log2
P(x, y)

P(x)P(y)
. (4)

Definition 4 ([18]). Conditional mutual information (CMI) I(X; Y|Z) measures the information that X
provides about Y given the value of a third variable Z. It is defined as:

I(X; Y|Z) = ∑
x∈ΩX

∑
y∈ΩY

∑
z∈ΩZ

P(x, y, z)log2
P(x, y|z)

P(x|z)P(y|z) . (5)

2.2. Bayesian Network Classifiers

A Bayesian network (BN) B can be formalized as a pair B =< G, Θ > [19]. The structure G
is a directed acyclic graph, where vertices correspond to the class variable or attributes and edges
represent dependencies between child nodes and their parent nodes. The parameter set Θ contains
a conditional probability distribution for each vertex in G, namely PB(c|pa(c)) or PB(xi|pa(xi)),
where pa(xi) is the set of values of the attributes that are parents of node Xi in structure G and the
same applies for c. In our present work, the class variable does not have any parents, so we have
pa(c) = ∅. Thus, a BN B defines a joint probability distribution as:

PB(c, x) = PB(c)
n

∏
i=1

PB(xi|pa(xi)). (6)
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Taking advantage of the underlying BN B, a BNC computes PB(c|x) in Equation (1) by

PB(c|x) =
PB(c, x)
PB(x)

=
PB(c, x)

∑l
j=1 PB(cj, x)

=
PB(c)∏n

i=1 PB(xi|pa(xi))

∑l
j=1 PB(cj)∏n

i=1 PB(xi|pa(xi))
. (7)

In practice, the conditional probability distributions in Θ are stored in conditional probability
tables (CPTs), which are obtained from the training set T .

2.2.1. Naive Bayes

Unfortunately, it has been proved that learning an optimal BN is NP-hard [20]. One practical
approach to dealing with the intractable complexity is to learn a constrained or totally pre-fixed
network structure. The simplest of these structures is the one used by NB. NB assumes all the attributes
are independent given the class variable (see Figure 1a). Consequently, NB calculates PB(c, x) using
the following formula:

PB(c, x) = PB(c)
n

∏
i=1

PB(xi|c). (8)

As indicated in Section 1, the attribute independence assumption of NB is often violated in the
real world, which may deteriorate its classification performance.

Figure 1. Examples of network structures with four attributes for the following BN classifiers: (a) NB;
(b) TAN; (c) KDB (k = 2).

2.2.2. TAN and WATAN

One extension of NB is TAN, which relaxes the independence assumption of NB. TAN imposes
a tree structure on NB, where each attribute has the class variable and one other attribute as its
parents, except a single attribute, which has only the class variable as its parent and is the root of the
tree (see Figure 1b). TAN uses CMI between two attributes given the class variable to construct the
maximum likelihood tree by finding a maximal weighted spanning tree (MST) in a graph. Prim’s
algorithm [21], which is one of the most popular MST searching algorithms, is selected in our current
work for its low time complexity and easy implementation. The learning algorithm of TAN is depicted
in Algorithm 1.

ATAN is proposed to enhance the class probability estimation performance of TAN, in terms of
conditional log likelihood [8]. In ATAN, all attributes take turns to be the root node, resulting in a set
of TANs. To make a prediction, the estimated class-membership probabilities of each built TAN are
averaged. ATAN is further improved by using the MI between the root attribute and the class variable
as the aggregation weight. The improved ATAN is referred to as weighted ATAN (WATAN) [8].
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Algorithm 1: The TAN learning algorithm.
Input: CPTs.
Output: The built TAN model BTAN .

1 Let N be a n× n matrix of CMI, where Nij = I(Xi; Xj|C), if i 6= j;
2 Y ← treeConstrction(N ); // Algorithm 2
3 BTAN ← add the class node C to Y and add an arc from C to each attribute node;
4 return BTAN ;

Algorithm 2: treeConstruction(W).
Input: The n× n edge weight matrixW , whose element is denoted asWij.
Output: The built directed MST D.

1 Let Y be a complete undirected graph where vertices are the attributes and the weight of the
edge connecting Xi to Xj is annotated byWij;

2 U ← Prim(Y); // perform Prim’s algotithm to find an MST in Y
3 Transform the resulting undirected tree U to a directed tree D by choosing a root attribute and

setting the direction of all edges to be outward from it.;
4 return D;

2.2.3. KDB and LKDB

To alleviate the independence assumption of NB, KDB allows each attribute to have at most k
attributes as its parents (see Figure 1c). Learning a KDB structure first involves ranking attributes
using MI between an attribute and the class variable. Then, for attribute Ai being placed in position
i of the ranking, the k attributes taken from {A1, . . . , Ai−1} with the highest CMI I(·; Ai|C) are set
as parents. Finally, the class variable C is added as a parent for all the attributes. Given a certain k,
the time complexity of training KDB is O(tn2 + tnk) [22], where t is the number of training instances
and n is the number of attributes.

Dependence relations between attributes may vary from one testing instance to another [5].
The conventional KDB structure can not automatically adapt to different testing instances. To remedy
this limitation, LKDB is proposed. To identify dynamic changes of dependence relations between
attributes, LMI and CLMI are defined in [5] as follows:

Definition 5. Local mutual information (LMI) I(xi; C) is defined to measure the reduction of entropy about
the class variable C after observing that Xi = xi, as follows:

I(xi; C) = ∑
c∈ΩC

P(xi, c) log
P(xi, c)

P(xi)P(c)
. (9)

Definition 6. Conditional local mutual information (CLMI) I(xi; xj|C) is defined to measure the amount of
information shared between two attribute values xi and xj given the class variable C, as follows:

I(xi; xj|C) = ∑
c∈ΩC

P(xi, xj, c) log
P(xi, xj|c)

P(xi|c)P(xj|c)
. (10)

Instead of MI and CMI, LKDB uses LMI for attribute ranking and CLMI for parent assignment.
At classification time, a LKDB model is built for each testing instance to capture local dependence
relations between attributes. Calculating LMI between attributes and the class variable takes
time O(ln). Computing CLMI between every pair of attributes given the class variable is of time
complexity O(ln2). Attribute ranking and parent assignment are O(nlogn) and O(kn2), respectively.
Hence, classifying a testing instance using LKDB has time complexity O((l + k)n2). By combining
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the predictions of the robust KDB model and the flexible LKDB model, the averaged KDB (AKDB)
achieves even higher classification performance [5].

2.3. Bayesian Multinet Classifiers

A BN forces dependence relations between attributes to be the same for all labels, thus cannot
handle the problem of asymmetric independence, which refers to conditional independence
relationships only held for some but not all the values that the class variable takes [23].
Bayesian multinets (BMs) [24] offer a solution. Formally, a BM is a tupleM =< PC,Bc1 , . . . ,Bcl >,
where PC is the probability distribution of C, and Bci is the local BN corresponding to label
ci. Conditioned on each label, attributes can form different local BNs with different structures,
thereby enabling the representation of asymmetric independence assertions. A BM M defines
a joint distribution:

PM(c, x) = PM(c)
n

∏
i=1

PBc(xi|pac(xi)), (11)

where pac(xi) is the set of values of the attributes that are parents of node Xi in the local BN Bc.
Consequently, a Bayesian multinet classifier (BMC)M classifies a testing instance x using:

ĉ = arg max
c∈ΩC

PM(c|x) = arg max
c∈ΩC

PM(c, x)
PM(x)

= arg max
c∈ΩC

PM(c, x)

∑l
j=1 PM(cj, x)

= arg max
c∈ΩC

PM(c)∏n
i=1 PBc(xi|pac(xi))

∑l
j=1 PM(cj)∏n

i=1 PBcj (xi|pacj(xi))
.

(12)

The Bayesian Chow–Liu tree multinet classifier [25], or BMCCL for short, is a typical BMC which
performs as well as TAN [2]. Figure 2 illustrates a BMCCL structure. Each local BN of a BMCCL is
a Chow–Liu tree that is built using the procedure proposed by Chow and Liu [26]. The procedure is
essentially the same as the one outlined in Algorithm 1 with the exception that CMI I(Xi; Xj|C) in step
1 is replaced by MI I(Xi; Xj). The procedure is executed separately for each label ci using the training
set Tci , where Tci is the set of training instances labelled ci in T . Note that, since we compute the MI in
each Tci , the label conditional mutual information (LCMI) I(Xi; Xj|c) is actually computed, which is
defined as:

I(Xi; Xj|c) = ∑
xi∈ΩXi

∑
xj∈ΩXj

P(xi, xj|c)log2
P(xi, xj|c)

P(xi|c)P(xj|c)
. (13)

Taking advantage of LCMI, Algorithm 3 gives a more efficient implementation of BMCCL

compared with the one in [26], as there is no need to partition the training set.

Algorithm 3: The BMCCL learning algorithm.
Input: CPTs.
Output: The built BMCCL modelM.

1 M← ∅;
2 for c ∈ ΩC do
3 Let S be a n× n matrix of LCMI, where Sij = I(Xi; Xj|c), if i 6= j;
4 L ← treeConstruction(S); // Algorithm 2
5 Bc ← add the class node c to L and add an arc from c to each attribute node;
6 M←M∪{Bc};
7 end
8 returnM;
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Figure 2. An example of a BMCCL with two local BNs.

3. Label-Driven Learning Framework

3.1. Motivation

As mentioned in Section 1, BNCs (e.g., TAN) are probabilistic classifiers that produce an
interpretable confidence value for each class label in the form of a posterior probability. Table 1
presents two examples where TAN is utilized to classify two testing instances in the Nursery dataset.
The Nursery dataset is collected from the UCI machine learning repository and has five class labels
[14]. The class membership probabilities of the testing instances in Table 1 estimated by TAN are listed
in Table 2.

Table 1. Two testing instances in the Nursery dataset.

No. x = (x1, x2, x3, x4, x5, x6, x7, x8)

1 x = (usual, very_crit, completed, 3, convenient, inconv, problematic, priority)
2 x = (great_pret, proper, incomplete, 2, less_conv, convenient, nonprob, priority)

Table 2. The class membership probabilities of the testing instances in Table 1 estimated by TAN.

No. Pθ(c1|x) Pθ(c2|x) Pθ(c3|x) Pθ(c4|x) Pθ(c5|x) ĉ c̃

1 2.8394×10−4 1.7242×10−5 5.8891×10−5 1.2269×10−3 0.9984 c5 c5
2 3.9812×10−4 2.5073×10−5 5.3492×10−7 0.5051 0.4945 c4 c5

θ is a TAN model, ĉ is the label predicted by θ and c̃ is the true label of x.

For the first instance, the high posterior probability of c5 (0.9984) provides strong evidence for
choosing c5 as the predicted label. The classifier is very confident in this choice and in fact it is
a correct one. For the second instance, the posterior probability of c5 (0.4945) is very close to that
of c4 (0.5051). The label with the maximum posterior probability is always chosen as the predicted
label. According to this rule, although Pθ(c4|x) is only slightly greater than Pθ(c5|x) by 0.0106, c4 is
still chosen to be the predicted label. However, it turns out that c5 is the true label. The reason for
this misclassification may be that the small advantage of Pθ(c4|x) over Pθ(c5|x) has little credibility.
In practice, posterior probabilities are hard to be accurately estimated especially when the training
data is scarce, so the small advantage of the maximum posterior probability of a testing instance can
often only be attributed to chance. Predictions based upon these coincidental advantages are hardly
reliable. We can thus infer:

• When posterior probabilities of some class labels are close to the maximum posterior probability,
there is a high risk of misclassification.

• When the maximum posterior probability is far greater than the posterior probabilities of other
labels, the classification result is more credible—in other words, more likely to be correct.
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Here, a criterion to quantify how close the maximum posterior probability is to the posterior
probabilities of other labels is desired. A simple and straightforward choice is the ratio between them.
Hence, given a testing instance x, the set of labels Ω

′
C whose posterior probabilities are close to or

equal to the maximum posterior probability can be obtained by:

Ω
′
C = {c|c ∈ ΩC ∧

PB(c|x)
PB(ĉ|x)

≥ δ}, (14)

where ĉ is the label predicted by a Bayesian classifier B and δ is a user-specified threshold (0% < δ ≤
100%). Note that ĉ is always included in Ω

′
C, so |Ω′

C| ≥ 1 always holds, where | · | is the cardinality of
a set.

According to the above two inferences, |Ω′
C| > 1 alerts us that ĉ has some strong competitors who

are also very likely to be the true label. A hasty decision of directly choosing ĉ may be error-prone.
To address this problem, we augment the classification process of a BNC with an extra reconsideration
process for each testing instance whose Ω

′
C includes not only ĉ. In this process, labels in Ω

′
C are

reevaluated using the proposed label-driven learning framework. As for instances whose Ω
′
C includes

only ĉ, we can somewhat trust the decision made by the classifier. Therefore, there is no need to
reconsider such instances with the label-driven learning framework.

The proposed label-driven learning framework consists of three stages: preprocessing,
label filtering and label specialization. In the preprocessing stage, a conventional BNC is utilized as the
generalist to provide initial, coarse predictions. If a testing instance satisfies Ω

′
C = {ĉ}, the prediction

of the generalist (denoted as ĉG) will be accepted; otherwise, it is deemed unreliable and the testing
instance will be reconsidered. For reconsidered testing instances for which the generalist fails to make
reliable predictions, the latter two stages will come into play to further discriminate among labels in
Ω
′
C, which are discussed in Sections 3.2 and 3.3, respectively.

3.2. Label Filtering Stage

As TAN provides a good trade-off between computation complexity and classification accuracy,
we choose it as the generalist in this work. The generalist classifier TAN uses the CMI metric to build
an MST. From the definition of CMI, we can derive the following equation:

I(Xi; Xj|C) = ∑
c∈ΩC

∑
xi∈ΩXi

∑
xj∈ΩXj

P(xi, xj, c)log2
P(xi, xj|c)

P(xi|c)P(xj|c)

= ∑
c∈(ΩC−Ω′C)

∑
xi∈ΩXi

∑
xj∈ΩXj

P(xi, xj, c)log2
P(xi, xj|c)

P(xi|c)P(xj|c)

+ ∑
c∈Ω′C

∑
xi∈ΩXi

∑
xj∈ΩXj

P(xi, xj, c)log2
P(xi, xj|c)

P(xi|c)P(xj|c)
.

(15)

Equation (15) indicates that CMI can be decomposed into two parts: information derived from
labels in (ΩC−Ω

′
C) (if (ΩC−Ω

′
C) 6= ∅) and information derived from labels in Ω

′
C. Since the posterior

probabilities of classes in (ΩC −Ω
′
C) are quite small, it is almost impossible for the class variable

to take the values in (ΩC −Ω
′
C). Therefore, the former part of CMI has low confidence and may

lead to imprecise measurements of mutual dependence between attributes. In light of this, for each
reconsidered testing instance, labels in (ΩC −Ω

′
C) are first removed, i.e., eliminated from further

consideration and then the MST of TAN is reconstructed with information derived from labels in Ω
′
C

only. δ in Equation (14) is a crucial threshold to judge whether a label should be filtered out or not. We
will perform an empirical study to determine δ in Section 4.1.

After removing labels in (ΩC −Ω
′
C), the label space of a reconsidered testing instance is reduced

from ΩC to Ω
′
C. The remaining part (the latter part) of CMI is formalized as:
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Definition 7. Given a testing instance x, a Bayesian network classifier B and a user-specified threshold δ

(0% < δ ≤ 100%), the reduced conditional mutual information (RCMI) Ĩ(Xi; Xj|C) is the CMI between two
attributes Xi and Xj given the class variable C, who can take values only from Ω

′
C. It can be calculated using:

Ĩ(Xi; Xj|C) = ∑
c∈Ω′C

∑
xi∈ΩXi

∑
xj∈ΩXj

P(xi, xj, c)log2
P(xi, xj|c)

P(xi|c)P(xj|c)
, (16)

where Ω
′
C can be obtained by

Ω
′
C = {c|c ∈ ΩC ∧

PB(c|x)
PB(ĉ|x)

≥ δ}, (17)

where ĉ is the label predicted by B.

The label filtering stage reconstructs the MST of TAN using RCMI in replacement of CMI as
the metric for edge weight computations. By eliminating low-confidence information derived from
removed labels, the reconstructed MST can capture the dependence relations between attributes more
accurately. Furthermore, as Ω

′
C varies from testing instance to testing instance, RCMI also changes

accordingly. Consequently, each reconsidered testing instance may have a different tree structure that
is the most appropriate for it. Compared with the uniform MST structure that TAN builds for all
testing instances, the reconstructed MST structure is not only more accurate but also more flexible.

By reconstructing the MST of TAN using the RCMI edge weighting scheme, a refined TAN model
can be learned, which we call Information Elimination TAN, or TANIE for short. TANIE serves as a
refined generalist. The refined generalist can provide more accurate estimations of posterior probabilities
for labels in Ω

′
C.

3.3. Label Specialization Stage

Due to the problem of asymmetric independence (introduced in Section 2.3), the refined generalist
that learns a single structure is unable to express different dependence relations between attributes
when C takes different values. To address this deficiency and further discriminate among labels in
Ω
′
C, the label specialization stage learns a BMC for each reconsidered testing instance. As mentioned

in Section 2.3, BMCCL achieves classification performance comparable to TAN. Hence, we consider
adopting BMCCL. However, it can not be immediately applied to our current problem. As pointed
out in Section 2.2.3, dependence relations between attributes of different testing instances may differ
significantly. However, the LCMI I(Xi; Xj|c) metric that is adopted by BMCCL for computing edge
weights of local Chow–Liu trees is invariant for all testing instances. Consequently, BMCCL is unable
to adjust its local network structures dynamically to fit different testing instances. Encouraged by
the success of LMI I(xi; C) and CLMI I(xi; xj|C) on LKDB, we generalize the definition of LCMI
to remedy this limitation. The new metric conditional pointwise mutual information (CPMI) is
defined as:

Definition 8. Conditional pointwise mutual information CPMI I(xi; xj|c) measures the amount of information
shared between two attribute values xi and xj conditioned on the label c. CPMI can be calculated using:

I(xi; xj|c) = log2
P(xi, xj|c)

P(xi|c)P(xj|c)
. (18)

BMCCL can be improved by using CPMI in replacement of LCMI as the edge weighting scheme
for local Chow–Liu tree construction. We refer to the improved BMCCL as instance-based BMCCL,
or IBMCCL for short.

Each local network of IBMCCL can be regarded as an expert oriented to a single label in Ω
′
C.

Let Expertci be the local network corresponding to a label ci. Expertci can encode label-specific
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correlations between attributes, thereby providing an accurate posterior probability estimation for ci.
Eventually, for each label ci ∈ Ω

′
C, the posterior probabilities estimated by the refined generalist and the

corresponding expert, denoted as PRG(ci|x) and PEci (ci|x), respectively, are averaged. The label-driven
learning framework then assigns the most probable a posteriori (MAP) class (denoted as ĉL) in Ω

′
C to a

reconsidered testing instance.

3.4. Overall Structure and Complexity Analysis

To provide a general view, we depict the architecture of the label-driven learning framework in
Figure 3. We extend TAN to LTAN by applying the proposed framework. The framework leaves the
training procedure of TAN (described in Algorithm 1) unchanged and only extends the classification
procedure. The revised classification procedure is presented in Algorithm 4.

Figure 3. Architecture of the label-driven learning framework.

At training time, LTAN directly employs Algorithm 1 to train a TAN model, which has time
complexity O(tn2) [2], where t is the number of training instances. At classification time, the label-
driven learning framework is introduced. In the preprocessing stage, the time complexity of classifying
a single testing instance with the generalist TAN is O(ln). Calculating Ω

′
C to decide whether a testing

instance needs to be reconsidered or not requires time O(l). For testing instances whose Ω
′
C includes

ĉG only, ĉG will be returned as the predicted label and Algorithm 4 is terminated, resulting in the
same classification time complexity as TAN O(ln). As for testing instances satisfying |Ω′

C| > 1, the
label filtering stage and the label specialization stage will be carried out. In the label filtering stage,
firstly, the RCMI matrix is calculated, an operation of time complexity O(rv2n2), where r = |Ω′

C| and
v is the maximum number of values that an attribute may take. Then, the refined generalist TANIE is
built, which can be accomplished in O(n2). Finally, utilizing TANIE to estimate posterior probabilities
of labels in Ω

′
C is of time complexity O(rn). In the label specialization stage, Algorithm 4 loops over

each label in Ω
′
C to learn IBMCCL. Inside the loop, computing the CPMI matrix and learning to

be an expert of the given label both require time O(n2). Therefore, the overall time complexity of
learning experts is O(rn2). Estimating posterior probabilities with experts takes time O(rn). Finally,
predictions of the refined generalist and experts are aggregated, with time complexity O(r). From the
above analysis, we can see that the time complexity of Algorithm 4 is dominated by the RCMI matrix
calculation. Consequently, classifying a reconsidered testing instance with the label-driven learning
framework has time complexity O(rv2n2), while the time complexity of classifying a testing instance
whose Ω

′
C includes ĉG only is identical to that of TAN.
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Algorithm 4: The label-driven learning framework applied to TAN.
Input: CPTs, the built TAN model BTAN , a testing instance x and the threshold for label

filtering δ.
Output: The predicted label ĉL.

1 Preprocessing stage begin
2 G ← BTAN ; // set TAN to be the generalist
3 ĉG ← arg max

c∈ΩC

PG(c|x);

4 Ω
′
C ← ∅;

5 for c ∈ ΩC do
6 if PG(c|x)

PG(ĉG |x)
≥ δ then

7 Ω
′
C ← Ω

′
C ∪ {c};

8 end
9 end

10 if Ω
′
C = {ĉG} then

11 return ĉG;
12 end
13 end
14 Label filtering stage begin
15 Reduce the label space of x from ΩC to Ω

′
C;

16 LetR be a n× n matrix of RCMI, whereRij = Ĩ(Xi; Xj|C), if i 6= j;
17 V ← treeConstruction(R); // Algorithm 2
18 BTAN IE ← add the class node C to V and add an arc from C to each attribute node;
19 RG ← BTAN IE ; // set TANIE to be the refined generalist
20 end
21 Label specialization stage begin
22 E← ∅; // E is the set of experts.
23 for c ∈ Ω

′
C do

24 LetW be a n× n matrix of CPMI, whereWij = I(xi; xj|c), if i 6= j;
25 L ← treeConstruction(W); // Algorithm 2
26 Bc ← add the class node c to L and add an arc from c to each attribute node;
27 Ec ← Bc; // Ec is the expert corresponding to the label c.
28 E← E ∪ {Ec};
29 end
30 ĉL ← arg max

c∈Ω′C

(PRG(c|x) + PEc(c|x))/2;

31 return ĉL;
32 end

The label-driven learning framework takes time O(rv2n2) to classify a reconsidered testing
instance, which is higher than O(ln) of TAN. However, in practice, a large portion of testing instances
will not be reconsidered (the detailed statistics are presented in Section 4.3). As a result, the framework
will not incur too much computation overhead. Furthermore, we will show in Section 4.3.1 that given
a proper δ, O(rv2n2) can be reduced to O(v2n2). Therefore, the label-driven learning framework
embodies a good trade-off between computational efficiency and classification accuracy.

4. Empirical Study

We organize our extensive experiments from the following three aspects. To begin with,
the threshold for label filtering of LTAN (δ) is determined empirically in Section 4.1.
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Subsequently, to validate the effectiveness of the proposed label-driven learning framework, LTAN
with the chosen threshold is compared with three single-structure BNCs: NB, TAN and KDB, as well
as three ensemble BNCs: AODE, WATAN and AKDB in Section 4.2. Then, we analyze the performance
of our novel label-driven learning framework in Section 4.3. Effects of the label filtering stage and
the label specialization stage are investigated in Sections 4.3.1 and 4.3.2, respectively. Training and
classification time comparisons of TAN, LTAN and AKDB are provided in Section 4.4.

Table 3. Datasets

No. Dataset Instance Att. Class No. Dataset Instance Att. Class

1 Lung Cancer 32 56 3 21 Segment 2310 19 7
2 Labor-negotiations 57 16 2 22 Hypothyroid 3163 25 2
3 Post-operative 90 8 3 23 Kr-vs-Kp 3196 36 2
4 Zoo 101 16 7 24 Hypo 3772 29 4
5 Promoters 106 57 2 25 Waveform-5000 5000 40 3
6 Iris 150 4 3 26 Phoneme 5438 7 50
7 Teaching-ae 151 5 3 27 Page-blocks 5473 10 5
8 Sonar 208 60 2 28 Optdigits 5620 64 10
9 Heart 270 13 2 29 Mushrooms 8124 22 2

10 Hungarian 294 13 2 30 Thyroid 9169 29 20
11 Heart-disease-c 303 13 2 31 Pendigits 10,992 16 10
12 Dermatology 366 34 6 32 Sign 12,546 8 3
13 Musk1 476 166 2 33 Nursery 12,960 8 5
14 Cylinder-bands 540 39 2 34 Letter-recog 20,000 16 26
15 Chess 551 39 2 35 Shuttle 58,000 9 7
16 Syncon 600 60 6 36 Waveform 100,000 21 3
17 Soybean 683 35 19 37 Census-income 299,285 41 2
18 Breast-cancer-w 699 9 2 38 Covtype 581,012 54 7
19 Tic-Tac-Toe 958 9 2 39 Poker-hand 1,025,010 10 10
20 Vowel 990 13 11 40 Donation 5,749,132 11 2

We run the above experiments on 40 benchmark datasets from the UCI machine learning
repository [14]. Table 3 describes the detailed characteristics of these datasets in ascending order of
their sizes, including the number of instances, attributes and classes. As listed in the table, the dataset
size ranges from 32 instances of Lung Cancer to 5,749,132 instances of Donation, enabling us to examine
classifiers on datasets with various sizes. Meanwhile, the number of class labels also spans from 2
to 50, allowing us to observe the performance of our label-driven learning framework on datasets
with a wide range of label numbers. For each dataset, numeric attributes, if any, are discretized using
Minimum Description Length Discretization (MDL) [27] as BNCs discussed in this paper cannot handle
continuous attributes directly. Missing values are regarded as a distinct value. All of our experimental
results are obtained via 10-fold cross-validation. Since some researchers report that the m-estimation
leads to more accurate probabilities than the Laplace estimation [6,28,29], probability estimates are
smoothed using the m-estimation (m = 1).

4.1. Selection of the Threshold for Label Filtering

To apply our label-driven learning framework, we must first choose a threshold for label filtering,
i.e., δ in Equation (14). As there does not appear to be any formal method to select an appropriate
value for δ, we perform an empirical study to select it. Figure 4 presents the average zero-one loss
results of LTAN across 40 datasets with different δ values. The standard error of each average zero-one
loss is shown as well. To appreciate the effects of applying different δ, only the upper halves of the
error lines are depicted. The experimental results of TAN are also shown in Figure 4 for comparison.

Figure 4 displays that, for all settings of δ, LTAN enjoys lower average zero-one loss compared to
TAN. As δ decreases from 90% to 10%, the average zero-one loss declines steadily. This performance
gain can be attributed to the fact that a smaller δ value can reduce the risk of leaving out the true label
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by retaining more labels, meanwhile enabling the label-driven learning framework to be applied to
more testing instances. However, when δ is smaller than 10%, the average zero-one loss demonstrates
a slight upward trend. One possible reason for this performance degradation is that, if δ is too
small, many untrue class labels that carry low-confidence information will be retained, leading to
unreasonable network structures.

It is empirically shown that LTAN achieves the lowest average zero-one loss when δ is set to 10%.
Consequently, the setting δ = 10% is selected in our current work.

Figure 4. The average zero-one loss of LTAN across 40 datasets with different δ values.

4.2. Comparisons in Terms of Zero-One Loss

In order to validate the effectiveness of the proposed label-driven learning framework, we conduct
zero-one loss comparisons for related models that are divided into two groups: single-structure models
and ensemble models. We compare LTAN with NB, TAN and KDB in the first group. Since at most
one attribute parent is allowed for each attribute in LTAN, to make a fair comparison, we restrict KDB
to a one-dependence classifier (k = 1). Technically speaking, LTAN is an ensemble of TANIE and
IBMCCL. Hence, this raises the issue that the advantage of LTAN over single-structure classifiers can
be attributed to the superiority of its aggregation mechanism. To guard against this, we also compare
LTAN with three ensemble classifiers in the second group: AODE, WATAN and AKDB (k = 1).

Table 4 reports for each dataset the average zero-one loss, which is assessed by 10-fold cross-
validation. The symbols ◦ and • in Table 4, respectively, represent whether LTAN has zero-one loss
improvement or degradation of at least 5% over TAN. In addition, the corresponding win/draw/loss
records are summarized in Table 5. Cell [i; j] in the table contains the number of wins/draws/losses
for the classifier on row i against the classifier on column j. A win indicates that an algorithm
reduces the zero-one loss of its opponent by at least 5%. A loss suggests the opposite situation.
Otherwise, we consider that two classifiers perform equally well. Furthermore, standard binomial
sign tests, assuming that wins and losses are equiprobable, are applied to these records. We assess a
difference as significant if the outcome p of a one-tailed binomial sign test is less than 0.05. Significant
win/draw/loss records are shown in bold in Table 5.
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As shown in Tables 4 and 5, in the single-structure classifier group, LTAN significantly
outperforms NB and KDB. Most importantly, LTAN substantially improves upon the zero-one loss of
TAN with 27 wins and only 4 losses, providing solid evidence for the effectiveness of the proposed
label-driven learning framework. This advantage is even stronger for large datasets (20 datasets with
more than 2000 instances). From Table 4, we can see that LTAN never loses on large datasets and
exhibits significantly higher accuracy on 16 out of 20 large datasets.

Table 4. Experimental results of zero-one loss.

No. Dataset LTAN NB TAN KDB AODE WATAN AKDB

1 Lung Cancer 0.5938 0.4375 0.5938 0.5938 0.4688 0.6250 0.6562
2 Labor-negotiations 0.0702 ◦ 0.0702 0.1053 0.0351 0.0526 0.1053 0.0702
3 Post-operative 0.3444 ◦ 0.3444 0.3667 0.3444 0.3444 0.3667 0.3333
4 Zoo 0.0099 0.0297 0.0099 0.0495 0.0198 0.0198 0.0297
5 Promoters 0.0849 ◦ 0.0755 0.1321 0.1321 0.1038 0.1132 0.0943
6 Iris 0.0867 • 0.0867 0.0800 0.0867 0.0867 0.0800 0.0867
7 Teaching-ae 0.5099 ◦ 0.4967 0.5497 0.5430 0.4570 0.5364 0.5033
8 Sonar 0.2115 0.2308 0.2212 0.2308 0.2260 0.2212 0.2212
9 Heart 0.1778 ◦ 0.1778 0.1926 0.1963 0.1704 0.1926 0.2037

10 Hungarian 0.1565 ◦ 0.1599 0.1701 0.1701 0.1667 0.1735 0.1497
11 Heart-disease-c 0.1980 0.1815 0.2079 0.2079 0.1947 0.2046 0.2013
12 Dermatology 0.0137 ◦ 0.0191 0.0328 0.0301 0.0219 0.0328 0.0219
13 Musk1 0.1071 ◦ 0.1660 0.1134 0.1113 0.1366 0.1134 0.1071
14 Cylinder-bands 0.1704 ◦ 0.2148 0.2833 0.2278 0.1889 0.2463 0.2148
15 Chess 0.0980 • 0.1125 0.0926 0.0998 0.1053 0.0926 0.0998
16 Syncon 0.0117 • 0.0283 0.0083 0.0100 0.0133 0.0083 0.0150
17 Soybean 0.0425 ◦ 0.0893 0.0469 0.0644 0.0542 0.0527 0.0498
18 Breast-cancer-w 0.0372 ◦ 0.0258 0.0415 0.0486 0.0386 0.0415 0.0300
19 Tic-Tac-Toe 0.2328 0.3069 0.2286 0.2463 0.2683 0.2265 0.2683
20 Vowel 0.1394 • 0.4242 0.1303 0.2343 0.1747 0.1263 0.2182
21 Segment 0.0364 ◦ 0.0788 0.0390 0.0403 0.0329 0.0394 0.0385
22 Hypothyroid 0.0092 ◦ 0.0149 0.0104 0.0107 0.0130 0.0104 0.0092
23 Kr-vs-Kp 0.0576 ◦ 0.1214 0.0776 0.0544 0.0854 0.0776 0.0507
24 Hypo 0.0130 ◦ 0.0138 0.0141 0.0077 0.0106 0.0130 0.0087
25 Waveform-5000 0.1630 ◦ 0.2006 0.1844 0.1820 0.1462 0.1844 0.1644
26 Phoneme 0.2378 ◦ 0.2615 0.2733 0.2120 0.2100 0.2345 0.1885
27 Page-blocks 0.0369 ◦ 0.0619 0.0415 0.0433 0.0322 0.0418 0.0347
28 Optdigits 0.0345 ◦ 0.0767 0.0407 0.0416 0.0278 0.0406 0.0400
29 Mushrooms 0.0001 0.0196 0.0001 0.0006 0.0002 0.0001 0.0006
30 Thyroid 0.0681 ◦ 0.1111 0.0720 0.0693 0.0719 0.0723 0.0674
31 Pendigits 0.0225 ◦ 0.1181 0.0321 0.0362 0.0187 0.0328 0.0286
32 Sign 0.2659 0.3586 0.2755 0.2881 0.2822 0.2752 0.2826
33 Nursery 0.0590 ◦ 0.0973 0.0654 0.0654 0.0733 0.0654 0.0633
34 Letter-recog 0.1043 ◦ 0.2525 0.1300 0.1285 0.0863 0.1300 0.1203
35 Shuttle 0.0009 ◦ 0.0039 0.0015 0.0015 0.0011 0.0014 0.0010
36 Waveform 0.0195 0.0220 0.0202 0.0226 0.0180 0.0202 0.0200
37 Census-income 0.0542 ◦ 0.2363 0.0628 0.0619 0.1013 0.0628 0.0513
38 Covtype 0.2378 ◦ 0.3158 0.2517 0.2451 0.2385 0.2516 0.2445
39 Poker-hand 0.2266 ◦ 0.4988 0.3295 0.3291 0.4812 0.3295 0.0763
40 Donation 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000

LTAN: label-driven tree-augmented naive Bayes. NB: naive Bayes. TAN: tree-augmented naive Bayes. KDB:
k-dependence Bayesian classifier. AODE: averaged one-dependence estimators. WATAN: weighted averaged
TAN. AKDB: averaged KDB. ◦, • denote significant improvement or degradation of LTAN over TAN. All results
are rounded to four decimal places.

When it comes to the ensemble group, LTAN still has a significant advantage over WATAN
and AKDB. In addition, the comparison result with AODE is almost significant (p = 0.0607).
Although WATAN delivers significantly larger conditional log likelihood than TAN, when evaluated
on zero-one loss, draws account for the majority of all comparisons (33 draws out of 40 datasets).
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Barely any zero-one loss advantage of WATAN over TAN is shown. Based on this fact, we argue that
our LTAN is a more effective ensemble of TAN in terms of classification accuracy.

Table 5. Win/Draw/Loss records of zero-one loss on all datasets.

W/D/L NB TAN KDB AODE WATAN AKDB

TAN 26/3/11
KDB 26/4/10 7/22/11

AODE 28/7/5 21/4/15 20/8/12
WATAN 28/1/11 5/33/2 13/20/7 13/7/20
AKDB 27/7/6 21/9/10 20/15/5 16/8/16 22/10/8
LTAN 30/6/4 27/9/4 26/9/5 22/6/12 25/11/4 18/15/7

Significant (α = 0.05) win/draw/loss records are shown in bold.

Demšar recommends the Friedman test [30] for comparisons of multiple algorithms over multiple
data sets [31]. It ranks the algorithms for each data set separately: the best performing algorithm
getting the rank of 1, the second best ranking 2, and so on. In case of ties, average ranks are assigned.
The null-hypothesis is that all of the algorithms perform almost equivalently and there is no significant
difference in terms of average ranks. The Friedman statistic can be computed as follows:

χ2
F =

12
Nt(t + 1)

t

∑
j=1

R2
j − 3N(t + 1), (19)

where Rj = ∑i rj
i and rj

i is the rank of the j-th of t algorithms on the i-th of N datasets. The Friedman
statistic is distributed according to χ2

F with t− 1 degrees of freedom. Thus, for any pre-determined
level of significance α, the null hypothesis will be rejected if χ2

F > χ2
α. The critical value of χ2

α for
α = 0.05 with six degrees of freedom is 12.592. The Friedman statistic of experimental results in Table 4
is 57.806, which is larger than 12.592. Hence, the null-hypotheses is rejected.

Since the null-hypotheses is rejected, the Nemenyi test [32] is used to further analyze which pairs
of algorithms are significantly different in terms of average ranks of the Friedman test. The performance
of two classifiers is significantly different if their corresponding average ranks of the Friedman test
differ by at least the critical difference (CD):

CD = qα

√
t(t + 1)

6N
, (20)

where the critical value qα for α = 0.05 and t = 7 is 2.949 [31]. Given seven algorithms and 40 datasets,
CD can be calculated with Equation (20) and is equal to 1.4245. Following the graphical presentation
proposed by Demšar [31], we show the comparison of these algorithms against each other with the
Nemenyi test in Figure 5. We plot the algorithms on the bottom line according to their average ranks,
which are indicated on the parallel upper axis. The axis is turned so that the lowest (best) ranks are to
the right since we perceive the methods on the right side as better. The algorithms are connected by a
line if their differences are not significant. CD is also presented in the graph. As shown in Figure 5,
the average rank of LTAN is significantly better than that of TAN, proving the effectiveness of the
proposed label-driven learning framework. Although LTAN ranks first, its advantage is not significant
compared to AKDB or AODE.
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Figure 5. Zero-one loss comparison with the Nemenyi test. CD = 1.4245.

4.3. Analysis of the Label-Driven Learning Framework

As specified in Section 3.4, the time complexity of classifying a reconsidered testing instance with
the label-driven learning framework is O(rv2n2), which is higher than O(ln) of TAN. If a large portion
of testing instances are reconsidered, on one hand the label-driven learning framework can exert
a strong influence on the classification task; on the other hand, considerable computation overhead
will be incurred. This is essentially a trade-off between computational efficiency and classification
accuracy. The set of testing instances satisfying the reconsideration condition in testing cases of a
dataset can be denoted as:

R = {x|x ∈ Q∧ |Ω′
C| > 1}, (21)

where x is a testing instance, Q is the testing set and Ω
′
C can be obtained using Equation (14).

Thus, label-driven learning percentage (LLP) can be defined as follows:

Definition 9. The label-driven learning percentage (LLP) for a dataset is the proportion of reconsidered testing
instances in the testing set. It can be calculated by

LLP =
|R|
|Q| × 100%, (22)

where R is the reconsidered testing instance set obtained using Equation (21), and Q is the testing set.

Figure 6 presents LLP values of all datasets. We can see that LLP differs greatly from dataset to
dataset, ranging from 0.01% of Mushrooms (No. 29) to 99.86% of Poker-hand (No. 39). To give
an intuitive illustration, percentages of datasets whose LLP values fall in different ranges are
depicted in Figure 7. The chart shows that, for 85% of datasets, less than half of testing instances
are reconsidered and, for 62.5% of datasets, less than 30% of testing instances are reconsidered.
These facts suggest that, in many datasets, a large portion of testing instances just simply employ a
TAN classifier. Therefore, the label-driven learning framework will not incur too much computation
overhead. Although the framework is applied to less than 30% of testing instances on 62.5% of datasets,
it still manages to improve the classification accuracy of TAN significantly on 17 out of 25 such datasets.
The LLP values on six datasets are greater than 50%. An extreme example is Poker-hand, whose
LLP is surprisingly high (99.86%). Almost all of the testing instances in Poker-hand are reconsidered,
dramatically reducing the classification error of TAN by 31.23% at the cost of computational efficiency.

The above LLP analysis shows that our label-driven learning framework can offer a trade-off
between computational efficiency and classification accuracy. However, the LLP analysis is not
sufficient. As specified above, BNCs tend to misclassify testing instances where some labels bear high
confidence degrees close to that of the predicted label. Such instances are included in R, which is
defined in Equation (21). Our framework is intended to alleviate this problem. To determine whether it
is successful at this goal, we propose two new criteria: correction percentage (CP) and loss percentage
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(LP). They can evaluate the ability of the framework to correct misclassifications of the generalist and
meanwhile avoid causing offsetting errors in R. CP and LP are defined as follows:

Definition 10. The correction percentage (CP) for a dataset measures the proportion of instances in R, which are
misclassified by the generalist, but correctly classified by the label-driven learning framework. It can be
calculated by

CP =
|{x|x ∈ R ∧ ĉG 6= c̃ ∧ ĉL = c̃}|

|R| × 100%, (23)

where c̃ is the true class label of x, ĉG and ĉL is the label predicted by TAN and LTAN, respectively.

Definition 11. The loss percentage (LP) for a dataset measures the proportion of instances in R, which are
correctly classified by the generalist, but misclassified by the label-driven learning framework. It can be
calculated by

LP =
|{x|x ∈ R ∧ ĉG = c̃ ∧ ĉL 6= c̃}|

|R| × 100%. (24)

Figure 6. The LLP value of each dataset.

Figure 8 compares CP with LP on each dataset. In addition, percentages of datasets whose
(CP− LP) values fall in different ranges are summarized in Figure 9. For the majority of datasets
(85%), CP is higher than LP, suggesting that our label-driven learning framework can correct incorrect
predictions of TAN more often than making new mistakes in R. Most notably, CP is evidently higher
than LP for over 10% in 10 datasets. In all 10 of these datasets, LTAN obtains significantly lower error
than TAN. A notable case is Cylinder-bands (No. 14), where the learning framework reduces the
classification error of TAN by 39.85% with a difference of 40.67% between CP and LP. For 17.5% of
datasets, although the difference between CP and LP is less obvious (5% to 10%), similar results that
LTAN wins on all these datasets in terms of zero-one loss are still observed. For 42.5% of datasets,
CP is slightly higher than LP, resulting in 10 wins out of 17 datasets with respect to zero-one loss.
However, there are 15% of datasets whose CP is lower than LP. TAN is affected negatively by the
learning framework on these datasets. A typical example is Syncon (No. 16). Disappointingly, its LP
reaches 66.67% with a 0% CP value. However, we must notice that the LLP value of Syncon is only
0.5%, indicating that merely 3 out of its 600 instances are reconsidered. Among these three instances,
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two instances are misclassified by LTAN although TAN can correctly classify them. Considering the
outstanding performance of our learning framework on other datasets, failures for two instances of
Syncon are tolerable.

The above results prove that our framework can alleviate the misclassification problem of the
generalist TAN and meanwhile make a few new mistakes on testing instances in R, leading to the
substantially higher classification accuracy of LTAN over TAN.

Figure 7. Distribution of datasets whose LLP values fall in a certain range.

Figure 8. Comparisons of CP against LP per dataset.
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Figure 9. Distribution of datasets whose (CP− LP) values fall in a certain range.

4.3.1. Effects of the Label Filtering Stage

In the label filtering stage, our framework removes labels that are highly unlikely to be the true
label, reducing the label space from ΩC to Ω

′
C. As specified in Section 3.4, for reconsidered testing

instances, the time complexity of LTAN at classification time is O(rn2v2), where n is the number of
attributes, v is the maximum number of values that an attribute may take and r = |Ω′

C|. With n and v
in O(rn2v2) both determined by a dataset, the number of remaining labels, r, plays a vital role in the
classification time complexity. In this subsection, we will discuss r in detail.

It is worth mentioning that, for binary classification problems, LTAN either degrades to TAN
when |Ω′

C| = 1, or removes no labels at all in the opposite situation. Thus, for a binary classification
problem, r is always equal to 2. For each multi-class dataset, we compute the average r value of
reconsidered testing instances, denoted as r. Figure 10 presents the r result along with the original
number of class labels l for each multi-class dataset. Note that the 24 multi-class datasets in Figure 10
are ordered according to l.

As shown in Figure 10, the growth rate of r is not in proportion to the growth rate of l. Instead,
r fluctuates slightly between two and three regardless of how many labels a dataset originally has,
indicating that, on average, only two or three labels require further discrimination. Especially for
Phoneme (No. 26), only 3 out of 50 class labels survive the label filtering. Consequently, we can
consider r as a constant, reducing the classification time complexity of LTAN for reconsidered testing
instances from O(rn2v2) to O(n2v2). Although O(n2v2) is still higher than O(ln) of TAN, considering
the superiority of LTAN over TAN from the viewpoint of classification accuracy, this computation
overhead is reasonable.

After filtering out low-confidence labels, TANIE reconstructs the MST of TAN with information
derived from remaining labels. For binary classification problems, no class labels of instances in R
are deleted at all. As a result, TANIE has exactly the same structure as TAN, leading to the same
classification accuracy as TAN. We can thus conclude that the label filtering stage has no effect for
binary classification problems. This, however, does not mean that our label-driven learning framework
is invalid for binary classification problems. On the contrary, thanks to IBMCCL, LTAN achieves
substantially lower error than TAN on 10 out of 16 binary-label datasets. To reveal whether the label
filtering stage can really increase the classification accuracy of TAN on multi-class datasets, we compare
the zero-one loss of TANIE with that of TAN in Figure 11 in these datasets.
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Figure 10. Comparisons of l against r per multi-class dataset.

Figure 11. Zero-one loss comparisons between TAN and TANIE per multi-class dataset.

Figure 11 shows that the label filtering stage significantly improves the classification accuracy
of TAN on 8 out of 24 multi-class datasets. A notable case is Poker-hand (No. 39) where the label
filtering stage achieves a 31.02% zero-one loss improvement. In addition, the performance degradation
of TANIE over TAN is significant only in two datasets. The inferiority of TANIE on Zoo (No. 4) and
Soybean (No. 17) may result from lacking enough training data. TANIE are trained using instances
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belonging to remaining labels only. The average number of remaining labels of reconsidered testing
instances, namely r, on Zoo is 2.4444. Zoo has 101 instances and 7 class labels. Hence, TANIE of Zoo
only has approximately 31.74 instances for training on average. Similarly, TANIE of Soybean has
67.48 instances for training on average. Accurate estimations of edge weights of TANIE, i.e., RCMI in
Equation (16), is determined by precise probability estimation, which is hard to ensure with limited
training data. Therefore, the reconstruction of MST is affected negatively by inaccurate estimations of
RCMI on Zoo and Soybean, leading to unreasonable network structures. With 8 wins and 2 losses, we
can infer that the label filtering stage can help reduce the classification error of TAN to some extent. For
the rest of 24 datasets (14 datasets), the performance of TANIE compared to TAN is similar, indicating
that the label filtering stage has few effects on these datasets. The reason may be that some attributes
are strongly related to each other. Eliminating information derived from low-confidence labels can
not affect their dependence. Consequently, same dependence relations between these attributes may
appear in both TAN and TANIE. On datasets with such attributes, TAN and TANIE may have similar
structures and thus show equivalent performance.

4.3.2. Effects of the Label Specialization Stage

The label filtering stage has no effect on binary classification problems. To address this deficiency
and further discriminate among high-confidence labels, our framework has an extra stage compared
with the two-stage learning paradigm proposed in [13], namely the label specialization stage,
wherein a set of experts is built. Then, LTAN, an ensemble of the refined generalist TANIE and the
expert set IBMCCL, is returned as the final classifier. To justify the addition of the label specialization
stage, we investigate whether the experts can work as an effective complementary part of the refined
generalist. For this purpose, the diversity between them can be an appropriate indicator. Diversity
has long been recognized as a necessary condition for improving ensemble performance, since,
if base classifiers are highly correlated, it is not possible to gain much by combining them [33].
Hence, the key to successful ensemble methods is to construct individual classifiers whose predictions
are uncorrelated.

Since WATAN is also a TAN ensemble classifier, we can compare the diversity between TANIE

and IBMCCL with the diversity of the subclassifiers of WATAN. In order to measure diversity, we
adopt the κ statistic [34], which is defined as follows:

Definition 12. Given a pair of classifiers, f1 and f2, the κ statistic measures their degree of agreement.
Suppose there are l class labels, and let D be a l × l square array such that Dij contains the number of testing
instances assigned to class label i by f1 and into class label j by f2. Thus, the κ statistic can be calculated as:

κ =
Θ1 −Θ2

1−Θ2
, (25)

where Θ1 is the probability that the two classifiers agree, and Θ2 is the probability that the two classifiers agree
by chance; they are respectively defined as:

Θ1 =

l
∑

i=1
Dii

m
, (26)

Θ2 =
l

∑
i=1

(
l

∑
j=1

Dij

m

l

∑
j=1

Dji

m
) , (27)

where m is the total number of testing instances. κ = 0 when the agreement of the two classifiers equals that
expected by chance, and κ = 1 when the two classifiers agree on every example. Negative values occur when
their agreement is weaker than expected by chance.
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For WATAN, the average of κ statistics between every two subclassifiers is computed, denoted as
κ. For LTAN, we calculate the κ statistic between TANIE and IBMCCL using only testing instances in R,
denoted as κ. Figure 12 compares κ with κ on each dataset.

Figure 12. Comparisons of κ against κ per dataset.

As shown in Figure 12, κ values on 31 datasets (40 datasets in total) are higher than 0.99, which is
very close to 1. The lowest κ is achieved on Cylinder-bands (No. 14). However, it is still as high as
0.898. It is evident that the subclassifiers of WATAN often reach very high agreement and demonstrate
poor diversity. There is little chance for a subclassifier of WATAN to revise wrong predictions made
by its counterparts. Owing to this reason, the zero-one loss improvement of WATAN over TAN is
only marginal (5 wins out of 40 datasets). Obviously, TANIE and IBMCCL have substantially larger
diversity than the subclassifers of WATAN.On dataset Cylinder-bands (No. 14), Syncon (No. 16)
and Mushrooms (No. 29), κ statistics are very close to 0, indicating that TANIE and IBMCCL agree
only by chance on these datasets. The κ statistic is negative (−0.186) on Promoters (No. 5). This
suggests that TANIE tends to disagree with IBMCCL on Promoters. By making different predictions,
some misclassifications of TANIE may be corrected by IBMCCL. As a matter of fact, experimental
results in Section 4.3.1 show that TANIE only wins on 8 out of 24 multi-class datasets compared with
TAN. Moreover, TANIE has the same network structures and same classification accuracy with TAN
on 16 binary-label datasets. With the help of IBMCCL, LTAN, the ensemble of TANIE and IBMCCL,
wins on 17 out of 24 multi-class datasets and 10 out of 16 binary-label datasets. We can thus conclude
that the classification accuracy of TANIE can be significantly enhanced by the addition of IBMCCL.

The refined generalist TANIE and the expert set IBMCCL often make different predictions and
demonstrate large diversity. By making different predictions, misclassifications of the refined generalist
may be corrected by the experts. Therefore, the experts can serve as an effective complementary part
of the refined generalist. Jointly applying both the label filtering stage and the label specialization
stage can achieve a significant improvement over TAN in terms of classification accuracy.

4.4. Time Comparisons of TAN, LTAN and AKDB

The label-driven learning framework leaves the training procedure of TAN unchanged and only
extends the classification procedure. Classifying a reconsidered testing instance with the framework is
of time complexity O(v2n2), which is higher than O(ln) of TAN. For those testing instances which do



Entropy 2017, 19, 661 23 of 28

not require reconsideration, the classification time complexity is identical to that of TAN. As introduced
in Section 2.2.3, similar to LTAN, AKDB also adopts instance-based learning. AKDB with k = 1
shares the same training time complexity as TAN. At classification time, AKDB with k = 1 learns
a one-dependence LKDB for each testing instance, a procedure with time complexity O((l + 1)n2),
which is usually a bit lower than O(v2n2). Figure 13 presents training time and classification time
comparisons of TAN, LTAN and AKDB per dataset. These experiments have been conducted on
a desktop computer with an Intel(R) Core(TM) i3-2310M CPU @ 2.10 GHz, 2.10 GHz, 64 bits and
8G of memory. No parallelization techniques have been used in any case. The reported training or
classification time is averaged over five runs of 10-fold cross validation. It is important to note that
logarithmic scale is used in Figure 13.

Figure 13. Time comparisons of TAN, LTAN and AKDB per dataset. TAN: tree-augmented naive Bayes. LTAN:
label-driven TAN. AKDB: averaged k-dependence Bayesian classifier. (a) training time; (b) classification time.
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As shown in Figure 13a, LTAN requires almost the same training time as TAN. AKDB takes
a bit more training time, due to its attribute ranking and parent assignment procedure. Although
the time complexity of classifying a reconsidered testing instance and classifying a testing instance
using AKDB are both quadratic with respect to the number of attributes n, as shown in Figure 13b,
LTAN often enjoys advantages over AKDB in terms of classification time while suffering classification
time disadvantages over TAN. The reason lies in that a large portion of testing instances on many
datasets are not reconsidered, in other words, LLP values (defined in Equation (22)) on many datasets
are low. A typical example is Musk1 (No. 13), which has 166 attributes. On Musk1, AKDB requires
substantially more classification time than TAN, 0.6139 s compared to 0.0658 s of TAN. As 14.08%
of testing instances are reconsidered on Musk1, LTAN spends 0.2729 s, which is twice as fast as
AKDB. Another outstanding example is Shuttle (No. 35). LTAN achieves a significant zero-one loss
improvement on Shuttle by reconsidering only 0.25% of testing instances, which merely takes extra
0.0380 s. AKDB, however, spends 0.6808 more seconds than TAN. However, when LLP is large, the
computation overhead of applying the label-driven learning framework will be high. For example,
almost all testing instances of Poker-hand (No. 39) are reconsidered. Hence, the classification time
of TAN increases sharply from 7.2917 s to 38.5678 s, whereas AKDB spends 32.8171 s. On Covtype
(No. 38) with 58.95% LLP and 54 attributes, it takes LTAN 170.1345 s and AKDB 196.6520 s to finish the
classification procedure, while TAN only takes 36.1403 s. Fortunately, as specified in Section 4.3, for
85% of datasets, less than half of testing instances are reconsidered and for 62.5% of datasets, less than
30% of testing instances are reconsidered. Consequently, the negative effect of using an algorithm with
classification time complexity quadratic in n can be greatly mitigated.

To conclude, compared to AKDB, LTAN not only has higher classification accuracy (although not
statistically significant using the Nemenyi test), but also generally lower classification time. Compared
to TAN, LTAN delivers significantly lower zero-one loss, without incurring too much computation
overhead on average.

5. Discussion

On datasets from Table 6, the classification accuracy of LTAN degrades significantly compared
to TAN. On these datasets, the label-driven learning framework makes new mistakes more
often than correcting incorrect predictions of TAN, i.e., CP < LP (CP and LP are defined in
Equations (23) and (24), respectively), and thus has negative effects . We believe that expert classifiers
are responsible for this problem. Theoretically, experts can provide more accurate posterior probability
estimations. However, in practice, their network structures are sometimes unreasonable due to lack of
enough training data and hence their performance of probability calibration is poor.

Table 6. Datasets where the classification accuracy of LTAN degrades significantly compared to TAN.

No. Dataset Instance Class CP LP

1 Iris 150 3 0.00% 7.14%
2 Chess 551 2 4.05% 5.41%
3 Syncon 600 6 0.00% 66.67%
4 Vowel 900 11 7.09% 10.14%

For ease of analysis, Table 7 presents a typical testing instance in Vowel that is misclassified by
LTAN but correctly classified by TAN. Additionally, its class membership probabilities estimated
by TAN, TANIE, IBMCCL and LTAN are shown in Table 8. Similar testing instances with the same
problem can be found in other datasets in Table 6. The true label of the testing instance in Table
7 is c5. The refined generalist TANIE predicts a reasonable posterior probability for c5 (0.8215).
However, the probability produced by the expert Ec5 is surprisingly low (0.0185), making the average
posterior probability for c5 0.42, which is smaller than that of c4. To investigate the reason for the
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incorrect probability estimation, the network structures of TANIE and Ec5 for the testing instance are
shown in Figure 14. Note that the class label is not depicted in Figure 14 for simplicity.

Figure 14. Network structures of TANIE and Ec5 on the testing instance in Table 7: (a) TANIE; (b) Ec5 .

Table 7. A testing instance in Vowel which is misclassified by LTAN but correctly classified by TAN.

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13) c̃

x = (1,14,1, (−2.3195,−2.1045], >3.1765,≤0.4725,≤−0.0225, (−0.7345,0.4995],
≤1.2250, (−1.1270,−0.6575], (−0.5970,0.1185],≤−0.9465,known) c5

Numerical attributes are discretized using MDL. c̃ is the true label of x.

Table 8. The class membership probabilities of the testing instance in Table 7 estimated by TAN, TANIE,
IBMCCL and LTAN.

Classifier Pθ(c5|x) Pθ(c4|x) ĉ

TAN 0.7783 0.1691 c5
TANIE 0.8215 0.1785 c5
IBMCCL 0.0185 0.9815 c4
LTAN 0.4200 0.5800 c4

θ is a classifier, ĉ is the label predicted by θ. For TAN, only posterior
probabilities of c5 and c4 are shown. After the label filtering, only c5 and c4
remain.

Figure 14 shows that the attributes (except X5, X6 and X10) have the same parents in the refined
generalist and Ec5 , leading to the same probability terms. In addition, the differences between
PRG(x6|x2, c5) and PEc5 (x6|x1, c5) or PRG(x10|x2, c5) and PEc5 (x10|x1, c5) are not large, where PRG(·)
and PEci (·) denote the probabilities estimated by the refined generalist and the expert of ci respectively.
However, PRG(x5|x2, c5) is equal to 0.1267, whereas PEc5 (x5|x1, c5) only has a value of 0.0028 because
F(x5, x1, c5) = 0, where F(·) denotes the frequency of a combination appears in the training set.
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Consequently, having X1 as the parent of X5 causes the posterior probability of c5 to drop sharply.
The arc connecting X1 and X5 is highlighted in red in Figure 14. As a matter of fact, the CMI between
X5 and X2 is much greater than X5 and any other attributes. Although Vowel has 990 testing instances,
it has 11 labels and thus each expert has only 84 instances for training (Vowel is a balanced dataset).
In the training set of Ec5 , (x2, x5, c5) only appears five times, resulting in a negative CPMI between X5

and X2 (the CPMI between X5 and X1 is 0). Ec5 severely underestimates the dependence between X5

and X2. If given enough training data, Ec5 can detect their dependence relationship and provides an
accurate posterior probability estimation for c5.

Similar to Vowel, experts on the Iris, Chess and Syncon datasets all suffer from the insufficient
training data problem. Learning an expert per class instead of one overall structure requires enough
training instances. When the dataset size is larger than 2000 instances, the label-driven learning
framework corrects possible misclassifications of reconsidered testing instances without making too
many offsetting errors.

6. Conclusions

To further discriminate among high-confidence labels, we develop the label-driven learning
framework, which is composed of three components: the generalist, the refined generalist and the
experts. They form a three-level hierarchy, with increasing degree of localisation. By providing solid
empirical comparisons with several state-of-the-art single-structure BNCs (NB, TAN and KDB), as well
as three established ensemble BNCs (AODE, WATAN and AKDB), we prove that this framework can
help correct possible misclassifications of TAN without causing too many offsetting errors or incurring
very high computation overhead.

There are two immediate directions for future work. Firstly, the label-driven learning framework
can be homogeneous or heterogeneous. Immediate future work for homogeneous label-driven learning
frameworks is to apply the framework to other BNCs like KDB. Heterogeneous label-driven learning
frameworks that are more flexible fall outside the scope of this paper and will be studied in our future
work. Furthermore, in our current work, the threshold for label filtering, i.e., δ in Equation (14), is
pre-determined using an empirical study. To optimize the parameter δ on a particular dataset, we can
randomly select a portion of the training data as a holdout set. After training the generalist using the
remaining training data, the performance of all δ candidates will be tested on the holdout set and the
one with the highest classification accuracy will be selected.
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