
entropy

Article

Entropy-Based Economic Denial of
Sustainability Detection

Marco Antonio Sotelo Monge †, Jorge Maestre Vidal † and Luis Javier García Villalba *,†

Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431,
Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases , 9, Ciudad Universitaria,
28040 Madrid, Spain; masotelo@ucm.es (M.A.S.M.); jmaestre@ucm.es (J.M.V.)
* Correspondence: javiergv@fdi.ucm.es; Tel.: +34-91-394-7638
† These authors contributed equally to this work.

Received: 11 November 2017; Accepted: 27 November 2017; Published: 29 November 2017

Abstract: In recent years, an important increase in the amount and impact of Distributed
Denial of Service (DDoS) threats has been reported by the different information security
organizations. They typically target the depletion of the computational resources of the victims,
hence drastically harming their operational capabilities. Inspired by these methods, Economic
Denial of Sustainability (EDoS) attacks pose a similar motivation, but adapted to Cloud computing
environments, where the denial is achieved by damaging the economy of both suppliers and
customers. Therefore, the most common EDoS approach is making the offered services unsustainable
by exploiting their auto-scaling algorithms. In order to contribute to their mitigation, this paper
introduces a novel EDoS detection method based on the study of entropy variations related with
metrics taken into account when deciding auto-scaling actuations. Through the prediction and
definition of adaptive thresholds, unexpected behaviors capable of fraudulently demand new
resource hiring are distinguished. With the purpose of demonstrate the effectiveness of the proposal,
an experimental scenario adapted to the singularities of the EDoS threats and the assumptions driven
by their original definition is described in depth. The preliminary results proved high accuracy.

Keywords: Cloud Computing; Denial of Service; Economic Denial of Sustainability; Entropy;
Intrusion Detection; Information Security

1. Introduction

The main goal of Denial of Service attacks (DoS) is to deplete the resources of the victim
systems with the purpose of their disabling. The abbreviation DoS typically refers to threats with
a single source; when they are originated in multiple sources, the expression Distributed Denial
of Service attacks (DDoS) is applied. In the last decades these threats have grown, become more
sophisticated and have acquired a greater intrusive capacity, which magnifies their impact and
hinder their mitigation. The different information security agencies have warned about this problem.
For example, the European Union Agency for Network and Information Security (ENISA) registered
a 30% increase of DDoS threads in the last year [1]. Given the magnitude of impact of the threads
registered at Autumn 2016 [2], both European Commission (EC) [3] and US Government [4] announced
an important reinforcement in their measures against these attacks. According to the European Police
(Europol), their harmful capabilities are propitiated by different circumstances: The rapid proliferation
of botnets, the emergence of novel vulnerabilities and amplifying elements, a greater offer of malicious
products as Crimeware-as-a-Service (CaaS) in the black market, the massive popularization of certain
technologies (e.g., mobile devices, Internet of Things (IoT), etc.), and the ignorance of users concerning
good practices related with data protection and information security [5].

Entropy 2017, 19, 649; doi:10.3390/e19120649 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19120649
http://www.mdpi.com/journal/entropy

Entropy 2017, 19, 649 2 of 16

The most common DDoS approach is based on flooding, which modus operandi is to inject several
requests in order to saturate the victim processing capabilities. As highlighted in [6], this is achieved
by the constant and continuous generation of large volumes of requests (i.e., high rate flooding), or by
seasonal injection of less noisy numbers of requests (i.e., low rate flooding). Consequently, the research
community assumed these behaviors and over the last decade has proposed solutions that facilitate
their prevention, detection, mitigation and identification of sources, some of them discussed in-depth
at [7]. However, the emergence of new monitoring environments, in particular those that adapt
the technologies that take part of the backbone of fifth generation networks, has led to a variation
of these threats that instead of compromising computing resources, has focused on damaging the
economic sustainability of the services they support [8]. They are well-known as Economic Denial of
Sustainability attacks (EDoS), and they are the object of study of the research described throughout the
rest of the paper. With the purpose of cooperate with the research community towards their mitigation,
the following main contributions are accomplished:

• An in-depth review of the EDoS threats and the efforts made by the research community for their
detection, mitigation and identification of sources.

• A multi-layered architecture for EDoS attack detection, which describes the management of the
acquired information from its monitoring to the notification of possible threats.

• A novel entropy-based EDoS detection approach, which assuming its original definition, allows to
discover unexpected behavior on local-level metrics related with the auto-scaling capabilities of
the victim system.

• An evaluation methodology adapted to the singularities of the EDoS threats and the assumptions
driven by their original definition.

• Comprehensive experimental studies that validate the proposed detection strategy, in this way
motivating its adaptation to future use cases.

The paper is organized into five sections, being the first of them the present introduction. Section 2
studies the main features of the EDoS attacks and their countermeasures. Section 3 introduces a
novel EDoS detection system based on entropy variations analysis. Section 4 describes the performed
experimentation. Section 5 describes and discusses the obtained results. Finally, Section 6 presents the
conclusions and future work.

2. Background

This section describes the main features of the Economic Denial of Sustainability threats and some
of the most relevant countermeasures in the bibliography.

2.1. Economic Denial of Sustainability Attacks

Hoff coined the term Economic Denial of Sustainability attacks (EDoS) in 2008 [9,10] and Cohen
extended its definition [11], which is currently adopted by the research community. EDoS attacks are
usually directed against Cloud Computing infrastructures, which play an essential role in the emergent
communication technologies. Because of this, Singh et al. formally defined EDoS attacks as “threats
which target is to make the costing model unsustainable and therefore making it no longer viable for a
company to affordability use or pay for their Cloud-based infrastructure” [12]. EDoS are also tagged
in the bibliography as Reduction of Quality (RoQ) threats [13], or Fraudulent Resource Consumption
attacks (FRC) [14]. These intrusions take advantage of the “pay-as-you-go” accounting model offered
by most of the Cloud Computing providers and their auto-scaling services [15]. Their modus operandi
slightly varies depending on the providers and the Cloud solutions they offer (e.g., OpenStack,
Microsoft Azure, Amazon EC2, etc.) [13], as well as the scaling policies they implement (discrete,
adaptive, etc.). However, EDoS tends to display a common pattern: The attacker injects requests that
must be processed at server-side. They pose an important workload effect, which may be caused by
different actions, among them requesting large files or queries [16], HTTP-requests on XML files [17],

Entropy 2017, 19, 649 3 of 16

or exploiting alternative Application layer vulnerabilities [18–20]. When the flooding of requests
exceeds the computational capabilities of the hired services, the auto-scaling processes trigger the need
of contract additional resources, which increases the bill that the client must pay. Sonami et al. [14]
studied the consequences of this increasing of costs, which have distinct impacts depending on the
side. For example, in addition to the impact on the offered Quality of Service, the economic losses
may become unsustainable for the clients, and consequently they probably will try to find a more
profitable provider. This obviously also affects the supplier, which loses reputation, and hence money
at long-term. The attack also impairs other services and network layers, mostly because the impact of
deploying additional resources. This involves, among others, physical infrastructure, Network Function
Virtualization (NFV) or multi-tenancy, which may compromise additional network resources [21].
For example, in [13], a low-rate flooding variant of EDoS is introduced with the purpose of maximize
the collateral damage (i.e., the consequences of auto-scaling) and make its detection more difficult. Such
publication reviews its consequences at different Cloud Computing architecture levels.

2.2. Countermeasures

In general terms, the extensive literature related to the defense against conventional DDoS threats
lacks publications effective against EDoS attacks. This is because EDoS focus on make Cloud resources
economically unsustainable instead of their depletion. This often occurs by far less noisy attacks, and
with a greater resemblance to the behavior of the legitimate user [16]. Because of this, EDoS detection is
driven by metrics related with resource consumption at server-side, while conventional DDoS detections
usually analyzes network traffic metrics at packet and flow level [22]. Several specific approaches
against EDoS attacks are collected and discussed in [8,16,23]. Some of them aim on their detection,
which typically distinguishes two methods. The first of them analyzes network traffic metrics, as is
the case of those that describe the web browsing behaviors [24], time spent at web pages [25] or packet
header attributes, for example their TTL [26]. They are easy to implement and efficient, but lie on
Application layer or networking protocol features more related to DDoS than EDoS; hence their accuracy
is greatly restricted to each use case [27]. On the other hand, the second approach is based on modeling
the economical sustainability of the services looking for suspicious discordances [28]. This method was
significantly less considered by the research community, mainly because of its specificity; in particular
it entails a greater difference with conventional DDoS detection strategies and demand more complex
processes at server-side. However, it is independent of the exploited network layer and provides a more
comprehensive understanding of the impact of the requests to the protected services, the latter usually
leading to greater accuracy.

Publications based on prevention and mitigation of EDoS threats focus on hampering their
execution and minimizing their impact. The most complex prevention solutions mathematically
model the resources required by the protected services, and anticipate the consumption of future
requests, which usually adopts game theory or queuing methods [29]. They allow anticipating
harmful situations facilitating proactive responses, but must be complemented by reactive solutions.
Major efforts towards mitigation EDoS threats focus on deploying access control mechanisms, as is the
case of Crypto-puzzles [30–32], Graphical Turing tests [26,33] or reputation systems [34,35]. They are
effective, but as highlighted in [23], resolving hard tests or deploying complex reputation schemes
consume additional resources at both client and server sides, and significantly affect the Quality of
Experience (QoE) on the protected environment.

Once the threats are detected and mitigated, the final step is to identify their source. The bibliography
lacks publications that specifically address this problem, excluding certain exceptions as [24]. They usually
model server usage behaviors based on Application layer metrics, among them web session duration,
number of HTTP requests, or their impact on the protected environment. More generalist solutions are
inherited from the advances on the conventional DDoS attack source identification. They mainly include
packet traceback techniques, some of them being collected in [36]. For example, in [37] a novel approach
that bypasses the deployment difficulties of the conventional IP traceback techniques by studying ICMP

Entropy 2017, 19, 649 4 of 16

error messages is proposed. As reviewed in [38], the features of the network topology have an important
impact in the effectiveness of the source identification approaches, which tend to be problematic in
highly non-seasonal environments. Alternatively, traps as honeypots [39], or decoy virtual machines that
co-exist with those real in the same physical hosts [40] are deployed. They implement the aforementioned
methods, thus providing an additional level of security.

3. EDoS Attack Detection

With the purpose of establish the basis for defining an appropriate design methodology,
the peculiarities of the conventional Denial of Service attacks, the legitimate mass access to the
protected services (i.e., flash crowds), and their differences with the Denial of Sustainability threats
have been taken into account. They allowed to define the following assumptions and limitations
concerning the proposal described in the rest of this section:

• As remarked by Hoff in the original definition of EDoS attacks [9], they pose threats that do not
aim on deny the service of the victim systems, but increase the economic cost of the services they
offer to make them unsustainable.

• Hereinafter, Chris clarified that at network-level, EDoS threats resemble activities performed by
legitimate users [10]. This implies that the distribution of the different network metrics (number of
request, number of sessions, frequency, bandwidth computation, etc.) does not vary significantly
when these attacks are launched. This is because in order to ensure their effectiveness, they must
go unnoticed.

• It is possible to identify EDoS attacks by analyzing performance metrics at local-level. Given that
at network-level there are no differences between EDoS and normal traffic, the requests performed
by these threats must involve a greater operational cost.

• Requests performed by EDoS attacks have a similar quality to those from legitimate users (for
example, a similar success rate). However, attackers may exploit vulnerabilities (usually at
Application layer) to extend their impact [14].

• DDoS attacks usually originate from a large number of clients, where each of them performs a
huge number of low-quality requests. On the other hand, EDoS attacks also come from many
sources, but each client performs an amount of request similar to that of legitimate users. Unlike in
flash crowds, EDoS attacks affect the predictability of the performance metrics related to the costs
resulting from attending the requests served by the victim [18].

Based on these premises, it is possible to assume that, by studying the predictability of
performance metrics at local-level (e.g., processing time, memory consumption, input and output
operations, CPU consumption, etc.), it is possible successfully identify EDoS attacks. This is taken
into account in the following subsections, where the introduced detection strategy is described.
The proposal has the architecture illustrated in Figure 1. Therefore, it must perform three main
tasks: (1) monitoring and aggregation; (2) novelty detection and (3) decision-making. They are
described below.

Entropy 2017, 19, 649 5 of 16

Clients

Server

Requests

Host-side

Monitoring

Aggregation

Prediction

Thresholding

Novelty Detection

Decision-Making

Response

Local metrics

Aggregated metrics

Performance

Outliers

Alerts

Figure 1. Architecture for EDoS attack detection.

3.1. Monitoring and Aggregation

At the monitoring stage, the factual knowledge necessary to deduce the nature of the requests
to be analyzed is collected. Therefore, the detection system monitors local metrics related to the
operational cost of responding the received request. Assuming that in order to success, EDoS attacks
attempt to trigger the auto-scaling mechanisms of the victim-side, the metrics that determine these
actions acquire special relevance. Note that they are widely studied in the bibliography, which vary
according to the management services. Examples of well-known local-level metrics are: CPU utilization,
warming time, response time, number of I/O requests, bandwidth or memory consumption [13,14].
Because of its relevance in the recent Cloud computing commercial solutions (e.g., Google Cloud,
Amazon EC2, etc.) the performed experimentation considered the percentage CPU usage of the victim
system. On the other hand, it is important to borne in mind that the analysis of the predictability
degree of events has played an essential role in the defense against conventional DDoS threats.
Among the most used aggregated metrics, it is worth mentioning the classical entropy adaptation to
the information theory proposed by Shannon [41]. Note that in approaches like [42] it is demonstrated
its effectiveness when applied to DDoS detection, being a strong element in the discovery of flooding
threats. Recent publications such as [16,27,28] tried to adapt this paradigm to the EDoS problem.
However, most of them made the mistake of only considering information monitored at network-level,
hence ignoring part of the information that truly defines the auto-scaling policies. Because of this,
the Aggregation stage of the proposed method calculates the information entropy H(X) of the
{x1, x2, . . . , xn} instances of the qualitative variable X monitored per observation, as well as their
{p1, p2, . . . , pn} probabilities. The proposed detection scheme defines X as “the response time (rate) to

Entropy 2017, 19, 649 6 of 16

the different requests performed by each client”. Given that X describes discrete events, its entropy is
expressed as follows:

H(X) =
n

∑
i=1

pi loga pi (1)

where loga b. logb x = loga x. H(X) is normalized, hence being calculated when dividing the obtained
value by the maximum observable entropy logb n. When the maximum entropy is reached, all the
monitored clients made requests with the same CPU overload; on the contrary, if the registered entropy
is 0 then (1) a single customer carried out all the requests, or (2) there was no CPU consumption during
the observation period. The sequence of monitored entropies is studied as a time series H(X)N

t=0.

3.2. Novelty Detection

The next analytic step is to recognize the observations that significantly vary from normal
behaviors. This is a one-class classification problem where it is assumed that the normal data compiles
the previous H(X)t=1,..., H(X)t=N−1 observations and it is intended to deduce if H(X)t=N belongs
to the same activities. The bibliography provides a large variety of solutions to this problem [43].
However, because it was assumed that EDoS attacks could be identified by discovering discordances
at the predictability of local-level aggregated metrics [18], the proposed system implements a
forecasting approach.

3.2.1. Detection Criteria

In particular, the entropy for certain horizon h, Ĥ(X)t=N+h, is predicted. Hence, letting the
following Euclidean distance:

dist(o, ô) =
√
(Ĥ(X)t=N+h − (X)t=N+h)2 (2)

If (X)t=N+h differs from Ĥ(X)t=N+h, so dist(o, ô) > 0 an unexpected behavior is detected.
The significance of this anomaly is established by two adaptive thresholds: Upper Threshold (Thsup)

and Lower Threshold (Thin f). A novelty was discovered if any of the following conditions is met:

dist(o, ô) > 0 and H(X)t=N+h > Thsup

dist(o, ô) > 0 and H(X)t=N+h < Thin f
(3)

3.2.2. Prediction

The implemented prediction methodology adopted the Autoregressive Integrated Moving
Average ARIMA(p, d, q) paradigm [44], which defined by the following general-purpose
forecast model:

Yτ−1 − a1Yτ−1 − · · · − ap′Yτ−p′ = εt + θ1εt−1 + · · ·+ θqεt−q (4)

where ai are the parameters of the autoregressive part, θi are the parameters of the moving
average part and εt is white noise. The adjustment of p, d, q may be the ARIMA model
equal to other classical forecasting models. For example simple random walk (ARIMA(1, 1, 0)),
AR(ARIMA(1, 0, 0)), MA(ARIMA(0, 0, 1)), simple exponential smoothing (ARIMA(0, 1, 1)), double
exponential smoothing (ARIMA(0, 2, 2)), etc. Predictions (ŷt) on ARIMA models are inferred by a
generalization of the autoregressive forecasting method expressed as follows:

ŷt = µ + φ1Yτ−1 + φpYτ−p − φ1εt−1 − · · · − φqεt−q (5)

and the calibration of the adjustment parameters p, d, q considered the Akaike Information
Criterion (AIC) as described in [45].

Entropy 2017, 19, 649 7 of 16

3.2.3. Adaptive Thresholding

On the other hand, the adaptive thresholds define the Prediction Interval (PI) of the sensor, which
is deduced in the same way as it is usually described in the bibliography [4], hence assuming the
following expressions:

Thsup = H(X)t=N+h + K
√

σ2var(dist(o, ô))

Thin f = H(X)t=N+h − K
√

σ2var(dist(o, ô))
(6)

and being K the confidence interval of the estimation (by default Z α
2
). Note that despite linking its

value to the normal distribution, it was demonstrated that when time series does not approach such
distribution, the obtained error is unrepresentative [46]. Figure 2 illustrates an example of novelty
detection. In the first 60 observations non H(X) exceeds the adaptive thresholds; but at observation 61
an EDoS attack was launch, and the inferred changes meet the conditions to be considered novel.

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
nt

ro
py

t

Observation

Upper Threshold
Lower Threshold

Figure 2. Example of novelty detection.

3.3. Decision-Making and Response

According to the principles of anomaly-based intrusion detection compiled and discussed by
Chandola et al. [47], once assumed the appropriate premises, the identification of discordant behaviors
may be indicative of malicious activities. As stated at the beginning of this section, the introduced
EDoS detection system lies on the original definitions of C. Hoff and R. Cohen. Therefore, when a
local metric directly related with triggering auto-scaling capabilities on Cloud computing became
unpredictable, it is possible deduce that the protected environment is misused, hence jeopardized.
This occurs when dist(o, ô) > 0 and (1) H(X)t=N+h > Thsup or (2) H(X)t=N+h < Thin f . Because the
performed research focused only on detect the threats, its response is to notify the detected incident.
The report may trigger mitigation measures such as initiate more restrictive control access [30,31,33]
or deploy source identification capabilities [24] (which decision and development is out of scope).
Therefore, it entails a good complement to many of the proposals in the bibliography.

4. Experiments

The following sections describe the Cloud-based testbed and related architectural components
considered throughout the performed experimentation. They are depicted in Figure 3.

Entropy 2017, 19, 649 8 of 16

VMs Openstack Deployment

RabbitMQ

Compute Node

Heat Services
(Auto-Scaling)

RabbitMQ

Controller Node
Client 1

Client 2

Client 3

Client n

Nova VM Instance

Ceilometer-nova-agent

Neutron Plugin Linux
Bridge Agent

Nova Compute

Ceilometer
Services

Neutron Services

Nova Services

Traffic
Anomaly Alert

....

Mgmnt.
Network

Public
Network

Flask
Web

Service

Operating System

HTTP
Usage

Monitor

Entropy Modeler
(Novelty Detection)

HTTP GET

Figure 3. Cloud execution environment for experiments.

4.1. Execution Environment

The experimental cloud computing environment was built with Openstack [48], a well-known
open source cloud platform suitable to deploy public and private cloud environments of any
size. The auto-scaling features of this cloud platform have also been tested effectively on recent
publications [49,50]. The Openstack deployment for the experimental testbed was composed by one
controller node and one compute node. The controller runs core Openstack services and it also holds
the Networking (Neutron), Compute (Nova) essentials, Telemetry (Ceilometer) and Message Queue
(RabbitMQ) services. In addition, it runs the Orchestration (Heat) services to allow the configuration
of auto-scaling policies. The compute node runs in a separate server, hosting the Nova core services.
A new Compute instance has been launched to deploy the web service used for experimentation.
This virtual instance runs an Ubuntu 16.04-x64 server with 8 CPU cores and 8 GB of RAM memory.

On top of the operating system, a REST (Representational State Transfer) web service written
in Flask [51] has been implemented. A REST web service has been chosen due to its simplicity and
rapid development. REST is the predominant web API design model built upon HTTP methods [52],
which accommodates the system to interact with several entities (i.e., humans, IoT devices). In REST
every client request (1) only generates a single server response (one-shot) and (2) every response must
be generated immediately (one-way) [53]. This request-response model is suitable to focus the analysis
on the measurement of CPU processing times, by tracking the connected user and the impact of its
client requests on the CPU consumption.

In addition to the web service, two modules were developed to be run in the background:
The HTTP Usage Monitor module and the Entropy Modeler. The former logs information regarding
the monitoring of client requests processing times, whereas the latter performs novelty detection
methods to trigger anomaly-based alerts to the Openstack orchestration services.

On the client-side, a set of REST-clients have been deployed to generate traffic according to several
execution scenarios. The implementation details and characteristics of the components tested in the
experimentation stage are explained in the forthcoming sections.

4.2. Server-Side Components

The following describes the deployed server-side components: RESTful Web Service, HTTP Usage
Monitor and the Entropy Modeler.

4.2.1. RESTful Web Service

To facilitate a seamless interaction with HTTP clients, a REST web service has been implemented
on Flask, a Python-based framework for rapid development of web applications. The REST service
exposes four HTTP endpoints that produce the execution of different list-sorting operations on the

Entropy 2017, 19, 649 9 of 16

server, each of them consumes a different amount of CPU time which is measured in the background.
The endpoints and their average execution times are summarized in Table 1.

Table 1. HTTP GET endpoints and CPU average cost.

URI Parameters Average CPU Time in Second (1000 exec.)

/1 ?id={clientID} 0.02158
/2 ?id={clientID} 0.02781
/3 ?id={clientID} 0.03673
/4 ?id={clientID} 0.33604

4.2.2. HTTP Usage Monitor

Once the server receives a client HTTP request, the Usage Monitor module permanently measures
the amount of CPU time consumed to process the request before sending the response back to the client.
The module makes use of Python libraries and standard Linux utilities to track the CPU consumption
per each client request. The collected data is then aggregated per client in configurable time intervals
before being logged to the system. If more than one client connection is being observed in the given
time interval, only the sum (aggregated metric) of all the processing times is logged. This allows the
creation of a time series, required for the next processing level.

4.2.3. Entropy Modeler

This module gathers the time series logged by the HTTP Usage Monitor and computes the entropy
of the CPU time usage of the different requests performed by each client. With the resultant normalized
entropy, the module forecasts the next h observations for the given time series, in conformance with
the ARIMA model. The predicted values are taken to estimate the forecasting upper and lower
thresholds. Whenever the resultant entropy falls outside the prediction intervals, a Traffic Anomaly
alert is reported to the auto-scaling engine of the corresponding Cloud platform (i.e., Openstack Heat).

4.3. Client-Side Component

On a separate server, several clients have been implemented as Python multi-threading scripts
for HTTP traffic generation, which is sent to the web service hosted in the Openstack virtual machine
instance. The generated number of traffic requests is a discrete variable that follows a random
Poisson distribution, since their similarity with this distribution is widely assumed by the research
community [54]. It is modeled according to the traffic load requirements for each evaluation scenario.
Every client is represented by a process thread, which models multiple parallel clients handling their
own sets of requests independently from others. When normal network conditions are modeled, all
the clients send an HTTP GET request to the lower CPU-consuming requests (endpoints 1–3) described
in Table 1. When an attacker is modeled, it only calls the most complex endpoint (4), which has higher
CPU demands at server-side. Note that GET requests can also accept the client ID as a parameter.
It facilitates the implementation of different client connections originated in the same computer since
all the thread-based clients share the same source IP address, but are differentiated by client ID.

4.4. Test Scenarios

Five main scenarios have been showcased to validate the proposal. All of them compare the
entropy levels of CPU processing times under normal traffic conditions against the entropy measured
when an EDoS attack is launched. Those attacks target to produce CPU overhead. Therefore, the attack
decrements the server capacities to handle more connections, and it forces the decision to scale up
the current virtual machine instance when the CPU usage is above a pre-defined CPU limit in the
Cloud-platform auto-scaling engine. The set of network traffic conditions described in Table 2 are
assumed throughout the experiments. There, clients (C) generate the total number of web requests

Entropy 2017, 19, 649 10 of 16

(TR) at the expected rate (ERS). It is worth remarking that ERS corresponds to the expected number of
occurrences (λ) of the Poisson distribution. Therefore, the generated web requests represent the sample
of connections to be analyzed. The MTR observation number (5000) is the frontier that divides the TR
into two groups of 5000 client requests each. The first one operates under the normal traffic conditions
described in Table 2; whereas a percentage of the second group contains the malicious requests, letting
the remaining connections to operate under the normal conditions. For instance, in the second group
a 5% malicious requests rate indicates that 250 malicious requests and 4750 normal requests were
observed. Table 3 defines the evaluation scenarios (E1 to E5) considered to deploy the EDoS attacks.

Table 2. Normal traffic conditions for experiments.

Characteristic Value

Web clients (C) 500
Expected requests per second (ERS) 60

Total web requests (TR) 10,000
Malicious Triggering Request (MTR) 5000

Table 3. Network attack conditions and scenarios.

Parameter E1 E2 E3 E4 E5

Malicious Request Rate (MRR) 1% 5% 10% 15% 20%
Attacker Clients (AC) 5 25 50 75 100

Total number of malicious requests (TR−MTR)×MRR 150 250 500 750 1000

The experiments performed for each scenario started their execution with the normal web traffic
conditions (first group of connections), with all the participant clients requesting the endpoints
1–3, as explained before. However, at the time specified by the MTR connection, the attack was
launched. It compromised several normal clients (C), which sent malicious requests to the endpoint
4, thus increasing the CPU overhead. It is important to remark that the attackers connect to the
server under the same ratio (ERS) configured for normal clients, making them unnoticeable since their
connection rate resembled legitimate traffic, but they targeted to exploit the highest time-consuming
endpoint which was exposed as a service vulnerability. To validate the proposal, it has been considered
a Cloud auto-scaling policy, configured to launch a new virtual machine instance when the CPU
consumption ran above 40% in a one minute interval.

5. Results

The experiments were performed with the parametrization presented in Table 3, adapted to each
evaluation scenario. The first monitored metric was the CPU time consumption caused to process
web requests launched from clients. A summary of the CPU consumption of the server, measured
on one-second intervals, is depicted in Figure 4. There, in all scenarios, half of the client connections
exposed the same behavior until the attack was triggered (MTR). From that moment on, the CPU
overhead was influenced by the traffic attack volume described in Table 3. Bearing in mind the defined
auto-scaling policy, it is noted that the scenarios E3, E4 and E5 would have automatically launched a
new virtual machine instance if the presence of the attack had been unnoticed. Hence demonstrating
the consequences of the EDoS threats and bringing the attack detection strategy to play an essential
role. On the other hand, besides the CPU estimation, the entropy of the per-client processing time
was constantly measured by the Entropy Modeler on one-second intervals, as plotted in Figure 5.
The graph shows that the overall behavior of the entropy was contrary to the behavior noticed in the
CPU overhead with the higher entropy values before the MTR observation. The slumped entropy level
was slightly noticeable on scenario E1 (Figure 5a), but became quite more perceptible on scenarios
E2 to E5 (Figure 5b to Figure 5e). Thereby, this pattern was directly influenced by the presence of the

Entropy 2017, 19, 649 11 of 16

compromised devices, decreasing the entropy as long as more malicious requests were generated.
Only when the entropy was measured for the observed time, the Entropy Modeler estimated the
prediction thresholds to infer if the observed entropy was running outside the predicted intervals, thus
leading to the decision of triggering an alert if the EDoS attack was detected.

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

C
PU

 U
sa

ge
 (

%
)

Observation

E1
E2
E3
E4
E5

Figure 4. Average CPU consumption per scenario.

The precision observed at the Receiver Operating Characteristic (ROC) space is summarized
in Figure 6. There five curves are illustrated, each one associated with one of the aforementioned
evaluation scenarios (E1, E2, E3, E4, E5). Table 4 compiles several evaluation metrics (True Positive Rate
(TPR), False Positive Rate (FPR) and Area Under Curve (AUC)) and the best calibrations (K) to reach
the highest accuracy. Bearing in mind these results, it is possible to deduce that the proposed method
has proven to be more effective when the attack is originated from a larger number of compromised
nodes (e.g., E5 with 20% of the total number of connected clients). This is because a greater number of
instances of the random variable X represent similar probabilities, which leads to a more significant
decrease in the H(X) entropy, and therefore to display less concordance with the normal observations.
On the other hand, labeling errors have occurred mainly due to issuing false positives, in situations
where fluctuations of H(X) derived from changes in the behavior of legitimate clients acquire a similar
relevance to those inferred by malicious activities. Note that the larger is the number of compromised
nodes that take part of the attacks, the greater possibility of forcing auto-escalating reactions. Based on
this fact it is possible to state that the proposed method improves its detection capabilities when facing
more harmful threats. In addition, the existence of a K calibration parameter allows operators to easily
configure the level of restriction in which the system operates: When greater discretion is required,
K must adopt higher values. This considerably reduces the likelihood of issuing false alerts, hence
facilitating to minimize the cost of the countermeasures to be applied. On the opposite case, when the
monitoring environments require greater protection it is advisable to decrease K, hence improving the
possibility of detecting threats, but potentially leading to deploy more unnecessary countermeasures.

Table 4. Summary of results in ROC space.

Scenario AUC (Trapezoidal) TPR FPR K

E1 0.8858 0.7480 0.17 0.160
E2 0.9637 0.9630 0.09 0.163
E3 0.9766 0.9680 0.08 0.160
E4 0.9794 0.9644 0.06 0.160
E5 0.9830 0.9431 0.03 0.167

Entropy 2017, 19, 649 12 of 16

20 40 60 80 100 120 140 160
2

2.5

3

3.5

4

4.5

E
nt

ro
py

Observation

(a) Entropy evolution in E1

20 40 60 80 100 120 140 160
2

2.5

3

3.5

4

4.5

E
nt

ro
py

Observation

(b) Entropy evolution in E2

20 40 60 80 100 120 140 160
2

2.5

3

3.5

4

4.5

E
nt

ro
py

Observation

(c) Entropy evolution in E3

20 40 60 80 100 120 140 160
2

2.5

3

3.5

4

4.5

E
nt

ro
py

Observation

(d) Entropy evolution in E4

20 40 60 80 100 120 140 160
2

2.5

3

3.5

4

4.5

E
nt

ro
py

Observation

(e) Entropy evolution in E5

Figure 5. Entropy measurements per scenario.

Entropy 2017, 19, 649 13 of 16

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

T
P

R
 (

S
en

si
tiv

ity
)

FPR (1−Specificity)

E1
E2
E3
E4
E5

Figure 6. Results in ROC space.

6. Conclusions

In this paper, an entropy-based model for the detection of EDoS attacks in Cloud environments
has been introduced. For this purpose, a comprehensive revision of the EDoS related research has been
covered to elaborate a multi-layered architecture tackling the detection of EDoS attacks. The proposed
work suggested good detection accuracy, thus preventing the unnecessary consumption of additional
Cloud-resources if they were issued by auto-scaling policies based on unreal demands.

The experiments conducted to validate the proposed architecture have encompassed all the stages
defined in the architecture, starting from the monitoring and aggregation of metrics that directly affect
the Cloud computing cost model, the novelty detection procedures to recognize an EDoS attack, and
the decision-making and response actions to be applied in the system. The experimental testbed
implemented a client-server REST architecture executed on different network scenarios. On the web
server, the monitored per-client CPU times have been evaluated by analyzing the entropy levels,
which have exposed a decrement when malicious requests originated by the compromised nodes
have been processed at server-side. In such scenarios, entropy has behave indirectly proportional
to the consumed CPU. In addition, the detection method has also demonstrated its effectiveness
when predicting the entropy thresholds to be compared against the real measured entropy. Thereby,
this approach has proven high accuracy by quantifying the area under the ROC curve. It is also
worth mentioning the enhancement of the proposed model compared to other resource-consuming
approaches presented in the literature; such as the requesting of large files, database queries, or other
web vulnerabilities; since this architecture relies on server-side consumption rather than anomalous
network-level metric patterns.

The presented approach, evaluation methodology and the experiments conducted throughout
this work poses also new potential research lines. The experimental scenarios should be extended
to couple diverse network conditions to either enhance the validation or to disclose some evasion
techniques. The defined model of measuring the resource consumption and diagnosing its entropy can
be accommodated to include more metrics, thus extending its scope to wider analysis scenarios.
Furthermore, it might be fitted to enhance adaptive auto-scaling policies on Cloud platforms
by incorporating more complex evaluation criteria. Finally, the existing decision-making and
countermeasures to EDoS attacks remain far from being evolved, and might effectively complement
the conducted research.

Acknowledgments: This work is supported by the European Commission Horizon 2020 Programme under grant
agreement number H2020-ICT-2014-2/671672 - SELFNET (Framework for Self-Organized Network Management
in Virtualized and Software Defined Networks).

Author Contributions: The authors contributed equally to this research.

Entropy 2017, 19, 649 14 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References

1. European Union Agency for Network and Information Security (ENISA) Threat Landscape Report 2016.
Available online: https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016 (accessed
on 28 November 2017).

2. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the ioT: Mirai and other botnets. Computer 2017,
50, 80–84.

3. European Comission Cybersecurity Stratregy. 2017. Available online: https://ec.europa.eu/digital-single-
market/en/policies/cybersecurity (accessed on 28 November 2017).

4. US National Cyber Incident Response Plan (NCIRP). 2017. Available online: https://www.us-cert.gov/ncirp
(accessed on 28 November 2017).

5. European Police (Europol). The Internet Organised Crime Threat Assessment (IOCTA). 2017.
Available online: https://www.europol.europa.eu/activities-services/main-reports/internet-organised-
crime-threat-assessment-iocta-2017 (accessed on 28 November 2017).

6. Wei, W.; Chen, F.; Xia, Y.; Jin, G. A rank correlation based detection against distributed reflection DoS attacks.
IEEE Commun. Lett. 2013, 17, 173–175.

7. Zargar, S.T.; Joshi, J.; Tipper, D. A survey of defense mechanisms against distributed denial of service (DDoS)
flooding attacks. IEEE Commun. Surv. Tutor. 2013, 15, 2046–2069.

8. Baig, Z.A.; Sait, S.M.; Binbeshr, F. Controlled access to cloud resources for mitigating Economic Denial of
Sustainability (EDoS) attacks. Comput. Netw. 2016, 97, 31–47.

9. Chris, H. Cloud Computing Security: From DDoS (Distributed Denial Of Service) to EDoS (Economic Denial
of Sustainability). 2008. Available online: http://rationalsecurity.typepad.com/blog/2008/11/cloud-
computing-security-from-ddos-distributed-denial-of-service-to-edos-economic-denial-of-sustaina.html
(accessed on 28 November 2017).

10. Chris, H.A Couple of Follow-Ups on the EDoS (Economic Denial of Sustainability) Concept . . . 2009.
Available online: http://rationalsecurity.typepad.com/blog/edos/ (accessed on 28 November 2017).

11. Reuven, C. Cloud Attack: Economic Denial of Sustainability (EDoS). Available online: http://www.
elasticvapor.com/2009/01/cloud-attack-economic-denial-of.html (accessed on 28 November 2017).

12. Singh, P.; Manickam, S.; Rehman, S.U. A survey of mitigation techniques against Economic Denial of
Sustainability (EDoS) attack on cloud computing architecture. In Proceedings of the IEEE 3rd International
Conference on Reliability, Infocom Technologies and Optimization (ICRITO), Noida, India, 8–10 October 2014;
pp. 1–4.

13. Bremler-Barr, A.; Brosh, E.; Sides, M. DDoS attack on cloud auto-scaling mechanisms. In Proceedings of
the IEEE Conference on Computer Communications (INFOCOM 2017), Atlanta, GA, USA, 1–4 May 2017;
pp. 1–9.

14. Somani, G.; Gaur, M.S.; Sanghi, D.; Conti, M. DDoS attacks in cloud computing: Collateral damage to
non-targets. Comput. Netw. 2016, 109, 157–171.

15. Somani, G.; Gaur, M.S.; Sanghi, D.; Conti, M.; Buyya, R. DDoS attacks in cloud computing: Issues, taxonomy,
and future directions. Comput. Commun. 2017, 107, 30–48.

16. Bhingarkar, A.S.; Shah, B.D. A survey: Securing cloud infrastructure against edos attack. In Proceedings of
the International Conference on Grid Computing and Applications (GCA), Athens, Greece, 27–30 July 2015;
pp. 16-22.

17. Vivinsandar, S.; Shenai, S. Economic Denial of Sustainability (EDoS) in Cloud Services Using HTTP and
XML Based DDoS Attacks. Int. J. Comput. Appl. 2012, 41, 11–16.

18. Zhou, W.; Jia, W.; Wen, S.; Xiang, Y.; Zhou, W. Detection and defense of application-layer DDoS attacks in
backbone web traffic. Future Gener. Comput. Syst. 2014, 38, 36–46.

19. Singh, K.; Dee, T. MLP-GA based algorithm to detect application layer DDoS attack. J. Inf. Secur. Appl. 2017,
36, 145–153.

20. Singh, K.; Singh, P.; Kumar, K. Application layer HTTP-GET flood DDoS attacks: Research landscape and
challenges. Comput. Secur. 2017, 65, 344–372.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2016
https://ec.europa.eu/digital-single-market/en/policies/cybersecurity
https://ec.europa.eu/digital-single-market/en/policies/cybersecurity
https://www.us-cert.gov/ncirp
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2017
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2017
http://rationalsecurity.typepad.com/blog/2008/11/cloud-computing-security-from-ddos-distributed-denial-of-service-to-edos-economic-denial-of-sustaina.html
http://rationalsecurity.typepad.com/blog/2008/11/cloud-computing-security-from-ddos-distributed-denial-of-service-to-edos-economic-denial-of-sustaina.html
http://rationalsecurity.typepad.com/blog/edos/
http://www.elasticvapor.com/2009/01/cloud-attack-economic-denial-of.html
http://www.elasticvapor.com/2009/01/cloud-attack-economic-denial-of.html

Entropy 2017, 19, 649 15 of 16

21. Singh, A.; Chatterjee, K. Cloud security issues and challenges: A survey. J. Netw. Comput. Appl. 2017, 79,
88–115.

22. Berezinski, P.; Jasiul, B.; Szpyrka, M. An entropy-based network anomaly detection method. Entropy. 2015,
17, 2367–2408.

23. Bawa, P.S.; Manickam, S. Critical Review of Economical Denial of Sustainability (EDoS) Mitigation
Techniques. J. Comput. Sci. 2015, 11, 855–862.

24. Idziorek, J.; Tannian, M.; Jacobson, D. Attribution of fraudulent resource consumption in the cloud.
In Proceedings of the IEEE 5th International Conference on Cloud Computing, Honolulu, HI, USA,
24–29 June 2012; pp. 99–106.

25. Koduru, A.; Neelakantam, T.; Bhanu, S.M.S. Detection of Economic Denial of Sustainability Using Time
Spent on a Web Page in Cloud. In Proceedings of the IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM), Bangalore, India, 16–18 October 2013; pp. 1–4.

26. Al-Haidari, F.; Sqalli, M.H.; Salah, K. Enhanced EDoS-Shield for Mitigating EDoS Attacks Originating from
Spoofed IP Addresses. In Proceedings of the IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), Liverpool, UK, 25–27 June 2012; pp 1167–1174.

27. Singh, K.J.; Thongam, K.; De, T. Entropy-Based Application Layer DDoS Attack Detection Using Artificial
Neural Networks. Entropy 2016, 18, 350.

28. Idziorek, J.; Tannian, M. Exploiting Cloud Utility Models for Profit and Ruin. In Proceedings of the IEEE
International Conference on Cloud Computing (CLOUD), Washington, DC, USA, 4–9 July 2011; pp. 33–40.

29. Yu, S.; Tian, Y.; Guo, S.; Wu, D.O. Can We Beat DDoS Attacks in Clouds? IEEE Trans. Parallel Distrib. Syst.
2014, 25, 2245–2254.

30. Masood, M.; Anwar, Z.; Raza, S.A.; Hur, M.A. EDoS armor: A cost effective economic denial of sustainability
attack mitigation framework for e-commerce applications in cloud environments. In Proceedings of the IEEE
16th International Multi Topic Conference (INMIC), Lahore, Pakistan, 19–20 December 2013; pp. 37–42.

31. Khor, H.; Nakao, A. Spow: On-demand cloud-based eDDoS mitigation mechanism. In Proceedings of
the IEEE/IFIP International Conference on Dependable Systems & Networks (DSN), Lisbon, Portugal,
29 June–2 July 2009.

32. Kumar, M.N.; Sujatha, P.; Kalva, V.; Nagori, R.; Katukojwala, A.K.; Kumar, M. Mitigating Economic Denial of
Sustainability (EDoS) in Cloud Computing Using In-Cloud Scrubber Service. In Proceedings of the IEEE 4th
International Conference on Computational Intelligence and Communication Networks (CICN), Mathura,
India, 3–5 November 2012; pp. 535–539.

33. Alosaimi, W.; Al-Begain, K. A new method to mitigate the impacts of the economical denial of sustainability
attacks against the cloud. In Proceedings of the 14th Annual Post Graduates Symposium on the convergence
of Telecommunication, Networking and Broadcasting (PGNet), Liverpool, UK, 24–25 June 2013; pp. 116–121.

34. Liu, J.K.; Au, M.H.; Huang, X.; Lu, R.; Li, J. Fine-Grained Two-Factor Access Control for Web-Based Cloud
Computing Services. IEEE Trans. Inf. Forensics Secur. 2016, 11, 484–497.

35. Yan, Q.; Yu, F.R.; Gong, Q.; Li, J. Software-Defined Networking (SDN) and Distributed Denial of Service
(DDoS) Attacks in Cloud Computing Environments: A Survey, Some Research Issues, and Challenges.
IEEE Commun. Surv. Tutor. 2016, 18, 602–622.

36. Alenezi, N.M.; Reed, M.J. Uniform DoS traceback. Comput. Secur. 2014, 45, 17–26.
37. Yao, G.; Bi, J.; Vasilakos, A.V. Passive IP traceback: Disclosing the locations of IP spoofers from path

backscatter. IEEE Trans. Inf. Forensics Secur. 2015, 10, 471–484.
38. Jeong, E.; Lee, B. An IP traceback protocol using a compressed hash table, a sinkhole router and data mining

based on network forensics against network attacks. Futur. Gener. Comput. Syst. 2014, 33, 42–52.
39. Wang, K.; Du, M.; Maharjan, S.; Sun, Y. Strategic Honeypot Game Model for Distributed Denial of Service

Attacks in the Smart Grid. IEEE Trans. Smart Grid, 2017, 8, 2474–2482.
40. Al-Salah, T.; Hong, L.; Shetty, S. Attack Surface Expansion Using Decoys to Protect Virtualized Infrastructure.

In Proceedings of the 2017 IEEE International Conference on Edge Computing (EDGE), Honolulu, HI, USA,
25–30 June 2017; pp. 216–219.

41. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–656.
42. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. An empirical evaluation of information metrics for low-rate

and high-rate DDoS attack detection. Pattern Recognit. Lett. 2015, 51, 1–7.

Entropy 2017, 19, 649 16 of 16

43. Pimentel, M.A.F.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review on novelty detection. Signal Process. 2014,
99, 215–249.

44. Hillmer, S.C.; Tiao, G.C. An ARIMA-Model-Based Approach to Seasonal Adjustment. J. Am. Stat. Assoc.
1980, 77, 63–70.

45. Ong, C.S.; Huang, J.J.; Tzeng, G.H. Model identification of ARIMA family using genetic algorithms.
Appl. Math. Comput. 2005, 164, 885–912.

46. Hyndman, R.J.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Prediction intervals for exponential smoothing state
space models. J. Forecast. 2005, 24, 17–37.

47. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection : A Survey. ACM Comput. Surv. 2009, 41,
doi:10.1145/1541880.1541882.

48. Open Source Sotware for Creating Private and Public Clouds. Available online: https://www.openstack.org
(accessed on 28 November 2017).

49. Kang, S.; Lee, K. Auto-scaling of Geo-based image processing in an OpenStack cloud computing environment.
Remote Sens. 2016, 8, 662.

50. Krieger, M.T.; Torreno, O.; Trelles, O.; Kranzlmuller, D. Building an open source cloud environment with
auto-scaling resources for executing bioinformatics and biomedical workflows. Futur. Gener. Comput. Syst.
2017, 67, 329–340.

51. Flask-A Python Microframework. Available online: http://flask.pocoo.org (accessed on 28 November 2017).
52. Schnase, J.L.; Duffy, D.Q.; Tamkin, G.S.; Nadeau, D.; Thompson, J.H.; Grieg, C.M.; Mclnerney, M.A.;

Webster, W.P. MERRA analytic services: Meeting the big data challenges of climate science through
cloud-enabled climate analytics-as-a-service. Comput. Environ. Urban Syst. 2017, 61, 198–211.

53. Fielding, R.T.; Taylor, R.N.; Erenkrantz, J.R.; Gorlick, M.M.; Whitehead, J.; Khare, R.; Oreizy, P. Reflections on
the REST architectural style and principled design of the modern web architecture (impact paper award).
In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany,
4–8 September 2017; pp. 4–14.

54. Barakat, C.; Thiran, P.; Iannaccone, G.; Diot, C.; Owezarski, P. Modeling Internet backbone traffic at the flow
level. IEEE Trans. Signal Process. 2003, 51, 2111–2124.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.openstack.org
http://flask.pocoo.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Economic Denial of Sustainability Attacks
	Countermeasures

	EDoS Attack Detection
	Monitoring and Aggregation
	Novelty Detection
	Detection Criteria
	Prediction
	Adaptive Thresholding

	Decision-Making and Response

	Experiments
	Execution Environment
	Server-Side Components
	RESTful Web Service
	HTTP Usage Monitor
	Entropy Modeler

	Client-Side Component
	Test Scenarios

	Results
	Conclusions

