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Abstract: This study proposes a novel fault diagnosis method that is based on empirical wavelet
transform (EWT) and kernel density estimation classifier (KDEC), which can well diagnose fault
type of the rolling element bearings. With the proposed fault diagnosis method, the vibration signal
of rolling element bearing was firstly decomposed into a series of F modes by EWT, and the root
mean square, kurtosis, and skewness of the F modes were computed and combined into the feature
vector. According to the characteristics of kernel density estimation, a classifier based on kernel
density estimation and mutual information was proposed. Then, the feature vectors were input into
the KDEC for training and testing. The experimental results indicated that the proposed method can
effectively identify three different operative conditions of rolling element bearings, and the accuracy
rates was higher than support vector machine (SVM) classifier and back-propagation (BP) neural
network classifier.

Keywords: rolling element bearings; empirical wavelet transform; kernel density estimation;
fault diagnosis

1. Introduction

Rolling-element bearing is one of the most widely used mechanical components in different kinds
of rotating machines. Phenomena, such as wear, fatigue, corrosion, and overloading may locally
damage the rolling bearings. A minor fault may influence the stability and safety of the whole system
and even lead to its failure [1,2]. Therefore, state detection and fault diagnosis for rolling bearings
are of practical significance. When faults occur in the rolling element bearing, impulse-type vibration
behavior appears [3]. There are many sources of vibration of bearings [4,5], some are inherent,
such as the variable compliance effect, which cannot be guarded against but can be minimized
with proper preloading and interference fitting; some are simply period repetitions, such as cage
frequency. Others are due to unbalances in assembly and yet others are due to the waviness of
rolling surfaces (no surface is perfectly smooth). Then, there are initiators of failure, which are noted
subsequently through vibration monitoring [6], such as the presence of off-sized balls or pits, dents,
or cracks on rolling surfaces. These cause particular frequency to output from bearings, such as
“ball spin frequency” or multiple of cage frequency. To monitor these faults, more sophisticated
vibration monitoring methods, such as the vibration signal processing method is used. Moreover,
the actual contribution of each fault to bearing run-out can also be determined using signal processing
methods [7]. The mechanical vibration signals consist of plentiful information that is related to
the system dynamical characteristics [8]. The vibration signal processing technique is one of the primary
tools for rolling element bearings fault diagnosis. The operation condition of the rolling bearing is
obtained by analyzing vibration signal [7–9]; thus, different operative conditions of rolling bearings
are monitored through the vibration signal analysis method.
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Due to the working environment and mechanism of the rolling bearings, the vibration signal is
non-stationary and nonlinear, and it is difficult to extract the fault feature [10,11]. Conventional
time-frequency analysis only applies to narrow-band signal and has significant limitations in
the case of non-stationary signal and broadband signal [12,13]. When compared with the traditional
time-frequency analysis, wavelet transformation performs the non-stationary signal processing better,
but wavelet basis function limits the wavelet decomposition [14,15]. The widely used empirical mode
decomposition (EMD) is a self-adaptive signal processing method that accurately obtains characteristic
signal; however, it involves a series of problems, such as enveloping and mode mixing [16,17]. In recent
years, the Empirical Wavelet Transform (EWT) for processing of non-stationary signal has been
proposed [18–20]. EWT uses the Fourier spectrum to achieve signal decomposition within the wavelet
frame. The method has sufficient theoretical basis and the decomposition process resolves the mode
mixing of EMD, extracts the natural mode of vibration of the signal, and obtains the component of
natural mode of vibration [21,22].

As a critical part of fault diagnosis, the classifier plays an important role in feature vector
processing [23]. Bayesian classifier has been widely used in various fields due to its high ant jamming
capability and high efficiency. However, the classifier ignores the dependency relationship among
attributes, and it decreases the classification accuracy by assuming the independence of an attribute
with respect to other attributes [24,25]. In the field of nondestructive testing, the back propagation (BP)
neural networks classifier is used in the acoustic emission test at the bottom of the tank. Riahi et al. [26]
distinguished among the signals of different corrosion stages. Zhang Xiaoyuan et al. [8] classified
different operating conditions of the bearing using an improved support vector machine (SVM)
classifier and proposed a motor bearing fault detection method. However, the BP classifier has many
drawbacks, such as a large number of parameter settings and slow convergence, which reduces its
diagnosis accuracy. In the case of small samples, SVM classifier can achieve higher accuracy than
BP classifier, but requires the pre-selection of basic kernel functions. This significantly restricts the
SVM application [27–29]. Kernel density estimation classifier (KDEC) method is used for studying
the distribution characteristics starting from the data; it is widely used in the engineering field due to
its high efficiency, and it has no requirements for data distribution [30–32]. Hence, by the advantages
of mutual information in measuring the similarities in random variables, based on kernel density
estimation and mutual information a classifier is proposed. The feature vector of complex signal is
processed and its density function is estimated. The density function is calculated using the feature
vector, and the similarity is also computed by mutual information. Therefore, a classifier based on
Kernel density estimation (KDE) and mutual information is proposed to identify different fault types.

To address the shortcomings in these fault diagnosis methods, this study proposes a novel fault
diagnosis method based on EWT and KDEC. Regarding this novel method, the vibration signal is
analyzed by EWT first; then, the accurate mode components are obtained. In addition, the root
mean square (RMS), kurtosis, and skewness of the F component are calculated and are combined
into the feature vector. The KDE and mutual information are combined to achieve the kernel density
estimation classification. Finally, the feature vector is input to the KEDC for training and testing to
complete the fault diagnosis of rolling bearings.

The rest of this paper is arranged as follows: Section 2 illustrates the EWT method and simulations.
Section 3 presents the proposed classification using KDE and mutual information. Section 4 introduces
the proposed fault diagnosis method of rolling bearing. In Section 5, the experimental results of
the proposed fault-detection scheme are analyzed.

2. EWT Decomposition Method

2.1. EWT Principle

In 2013, Gilles et al. [19–21] proposed the empirical wavelet transform, a self-adaptive signal
processing method. Namely, EWT can obtain a series of frequency modulation signals and amplitude
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modulation signals by self-adaptive segmentation of the signal frequency spectrum [26]. The mathematical
expression of complex decomposed signal f (t) is:

f (t) =
N

∑
k=0

fk(t) (1)

where fk(t) is decomposed component, and fk(t) is frequency-modulated amplitude-modulated signal,
f (t) is complex decomposed signal.

The empirical wavelet transform provides the wavelet filter bank by self-adaptive segmentation
of the Fourier spectrum of the signal. In this method [26], it is firstly supposed that Fourier supports
segmentation of N continuous parts in a segmentation interval Λn = [ωn−1, ωn], (ω0 = 0, ωn = π),
and the boundary is ωn, then, ∪N

n=1Λn = [0, π]. The center and width of the partitioned graph are
ωn and 2τn, respectively. The determined segmentation interval is Λn, the empirical wavelet defines
the band-pass filter on each section of Λn. Based on this concept, Gilles reconstructed an empirical
wavelet using the Meyer wavelet reconstruction method. For each n that is greater than 0, the empirical

scaling function
_
φn(ω) and the empirical wavelet function ψ̂n(ω) can be expressed as:

φ̂n(ω)


1, |ω| ≤ (1− γ)ωn

cos[π
2 β( 1

2γωn
(|ω|))], (1− γ)ωn ≤ |ω| ≤ (1+ γ)ωn

0, otherwise
(2)

ψ̂n(ω)


1, (1+ γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos[π
2 β( 1

2γωn
(|ω|))], (1− γ)ωn ≤ |ω| ≤ (1+ γ)ωn

sin[π
2 β( 1

2γωn
(|ω| − (1− γ)ωn))], (1− γ)ωn ≤ |ω| ≤ (1+ γ)ωn

0, otherwise

(3)

where
_
φn(ω) is the empirical scaling function, and ψ̂n(ω) is the empirical wavelet function.

τn = γωn (4)

β(x) = x4(35− 84x + 70x2 − 20x3) (5)

γ < min(
ωn+1 −ωn

ωn+1 + ωn
) (6)

where τn is width, β(x) is related function, and γ is a parameter.
Assuming that the Fourier transform and the inverse Fourier transform are F[.] and F−1[.],

respectively, the components of the empirical wavelet are obtained by using the empirical wavelet
basis function and the inner product of the signal. The expression is as follows:

We
f (n, t) =< f (t), ψn(t) >=

∫
f (τ)ψn(τ− t)dτ

= F−1[ f (ω)ψ̂(ω)
] (7)

In Equation (7), We
f (n, t) is high-frequency component of the empirical wavelet. Then, the low-

frequency component can also be obtained from the inner product of the signal by the empirical scale
function:

We
f (0, t) =< f (t), φ1(t) >=

∫
f (τ)φ1(τ− t)dτ

= F−1[ f (ω)φ̂1(ω)
] (8)
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where We
f (0, t) is low-frequency component of the empirical wavelet. Finally, the reconstructed original

signal is obtained from the sum of high-frequency and low-frequency components [26]:

f (t) = We
f (0, t)× φ1(t) +

N
∑

n=1
We

f (n, t)× ψn(t)

= F−1[Ŵe
f (0, ω)φ̂1(t) +

N
∑

n=1
Ŵe

f (n, ω)× ψ̂n(ω)]
(9)

where Ŵe
f (0, ω) and Ŵe

f (n, ω) are Fourier transformations of We
f (0, t) and We

f (n, t), respectively. Thus,
the mathematical expressions of the frequency-modulated amplitude-modulated signal are as follows:

f0(t) = We
f (0, t)× φ1(t) (10)

fk(t) = We
f (k, t)× ψk(t) (11)

The decomposed components are fk(t). Complex signals are decomposed into a series of
components from high to low frequency by EWT, which are then processed to obtain the instantaneous
frequency and the instantaneous amplitude.

2.2. Analysis of the Simulation Signal

An analysis of the simulation signal was performed to verify the algorithm. The mathematical
expressions of simulation signal are as follows:

f1(t) = 6t2

f2(t) = cos(10πt + 10πt2)

f3(t) =

{
cos(80πt− 15π), t > 0.5
cos(60πt), otherwise

f (t) = f1(t) + f2(t) + f3(t)

(12)

where f1(t), f2(t), f3(t) are components at three different frequencies, t is time and f (t) is the composite
signal consisting of the first three signals (see Figure 1). The EMD method and EWT method were used
to process the signal. The frequency spectrum of the simulation signal is presented Figure 2. In addition,
the obtained decomposition results of the EWT and EMD are shown in Figures 3 and 4, respectively.
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Figure 1. The simulated signal and its three components.
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Figure 2. Spectrum and support boundary of simulated signal.
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Figure 3. Empirical Wavelet Transform (EWT) result of simulated signal.
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When compared to the recursive “screening” mode of the EMD, EWT can non-recursively
decompose multi-component signals into a number of components, thus controlling the decomposition
convergence conditions reasonably. Hence, the EWT method can effectively eliminate the mode-mixing
phenomenon. Figure 3 shows the simulated test signals. It can be seen that the EMD overestimates
the number of modes and then separates some information that is originally part of the same
component. Except for the high frequencies, it is difficult to interpret the EMD outputs as compared
with the known “true” components constituting the test signals. Concerning the results given by
the EWT, we can see that it is able to detect the presence of modes in the spectrum and provide different
components that are close to the original ones. However, in the case we can note that the algorithm
separates the two last modes that were originally parts of the same component. In fact, this is not
completely surprising as those modes have significant individual energy and can be considered as
independent modes [18]. Hence, EWT is more effective in decomposing signal and can separate
components of different frequencies more accurately than EMD.

3. Classifier Based on the Kernel Density Estimation

In order to achieve more accurate identification, the classifiers are used to identify the operation
conditions of rolling bearing. Due to the slow convergence and a large number of parameters set
shortcomings, the diagnosis accuracy of BP classifier is low, and thus its practical application is
limited [26]. As support vector machines need to determine the kernel function, the large-scale
classification training time will be longer [27]. Therefore, it is necessary to develop the new classifiers
to identify the fault characteristics and to determine the fault type of rolling bearing.

3.1. Kernel Density Estimation and Mutual Information

The kernel density estimation (KDE) solves the unknown density function of the random variable
for a given set of sample points and receives wide attention from scholars because no conditions are
required to be set for the data distribution [30]. A particular internal relationship exists between kernel
densities of different types of signal. Besides, such a relationship is substantially different in various
types of signal, and mutual information can be used to measure it. The values and degrees of correlation
between the signal kernel densities are different [33]. Therefore, by combining the advantages of KDE
and mutual information, this paper proposes a classifier that is based on kernel density estimation. In
terms of data {xi, i = 1, . . . , n}, the kernel density estimation is defined as:

f̂h(x) =
1

nh

n

∑
i=1

k(
x− xi

h
) (13)

where p(x) is probability distribution, k(•) is kernel function, and h is bandwidth. The Gaussian
kernel function acts as the kernel function for kernel density estimation. Bandwidth h is 0.15 times that
the predicted confidence interval of variable x to prevent excessive deviation and variance.

According to Equation (13), the probability density functions of the two random variables X and
Y are, of which the mutual information I(X,Y) can be expressed as:

I(X, Y) = ∑
x,y

pXY(x, y) log
pXY(x, y)

pX(x)pY(y)
(14)

where pX(x) and pY(y) are marginal probability function of the random variable X and Y, respectively,
I(x, y) is the mutual information.

3.2. Basic Principle of Classifier

The classifier is a one-on-one classifier. The principle of the classifiers based on the kernel density
estimation and mutual information is shown in Figure 5. Firstly, the rolling element bearings signal
are decomposed using the EWT method and processed to obtain the feature vectors as the input
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parameters of the classifier. Afterwards, kernel density estimation (KDE) of the two sample sets are
calculated, i.e., the KDE of class A sample set and class B sample set. The superposition method is
used to fuse the feature vector of a single test signal C to the two types of feature vectors, A and B,
and to compute the estimated values of kernel density. The mutual information is calculated using
KDE of the sample sets. The mutual information of the kernel density estimation A and test kernel
density estimation C are labeled as I. The mutual information of the kernel density estimation B and
test kernel density estimation C are labeled as II. The values of I and II are compared; C is of Class A if
the value of I is larger, otherwise, it is of Class B.
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3.3. Fault Diagnosis Method of Rolling-Element Bearing

The root mean square (RMS), kurtosis, and skewness are common time domain statistical features
that are capable of judging the state and development trend of mechanical faults. The vibration signal is
subject to EWT decomposition. The RMS, kurtosis, and skewness of the F components are computed to
constitute feature vectors and input into the classifier for training and testing and further identification
of the operating condition of rolling bearings. The steps for identifying faults of the rolling bearings
are as follows:

(1) Decompose the vibration signal using EWT to obtain the F components; compute RMS, kurtosis
(k), and skewness (Cw) of the first three F components to constitute the feature vector:

RMS =

√√√√ 1
N

N

∑
i=1

[PFi(t)]
2 (15)

k =
1
N

N

∑
i=1

[
PFi(t)− u

σ

]4

(16)

Cw =
1
N

N

∑
i=1

(
xi − x

σx

)3
(17)

where RMS is the root mean square, and k is kurtosis, Cw is skewness.
(2) Process multiple groups of vibration signal. Compute the feature vector according to the proposed

method, and estimate the kernel density of the sample set.
(3) Based on kernel density of the sample set, estimate the kernel density after the fusion of feature

vector in an unknown state and the sample feature vector.
(4) Compute the mutual information of fused kernel density estimation and the kernel density

estimation for the sample set to identify the fault state of the rolling element bearings.
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4. Experimental Results and Analysis

4.1. Experimental Apparatus and Instrumentations

In the experiment, data about the rolling bearings from the electrical engineering test that
was conducted by the Case Western Reserve University (Washington, DC, USA) were processed.
In the experiment, the fault diameter is 0.007~0.028 (0.18–0.71 mm), and the electric drive method is
used to form the bearing part and the fan bearing end (SKF deep groove ball bearings 6205-2RSJEM
and 6203-2RSJEM) local damage. An accelerometer was installed on the upper enclosure of the output
axial bearing of the motor. The rotating speed of the bearing was 1797 r/min, sampling frequency was
12 kHz, and length N of each data sample was of 3500 points. The collected normal signal, inner race
fault signal, and outer race fault signal are shown in Figure 6.
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Figure 6. The collected vibration signals: (a) normal signal; (b) outer race fault signal; and, (c) inner
race fault signal.

4.2. Analysis of Experimental Data

In the example of the outer race fault signal, the signal was decomposed using EWT technique
(Figure 7) obtaining eight F components; Each component contains a frequencies, different F
components reflect different feature components in the signal.

The root mean square, kurtosis, and skewness of the first three F components were computed to
constitute a feature vector. Then, the feature vector was used to estimate the probability density of
the rolling bearing in different states. For comparison, EWT and EMD were used, respectively (see
Figure 8).

Based on the comparison between Figure 8a,b, it was impossible to obtain an accurate F component
because of the mode mixing effect generated in the EMD technique. Thus, no significant differences
exist in the probability densities of rolling bearing in the various states estimated with EMD method.
On the contrary, EWT decomposition avoids the mode mixing and significant differences appear in
the probability densities.

For the rolling bearing in different states, 30 sets of data were collected as the sample set.
According to the principle of KDEC, 10 sets of data were collected as the test set. The rotating
speed of the bearing was 1797 r/min, sampling frequency was 12 kHz, and the length N of each data
sample was of 3500 points. Figure 9 shows one of 10 sets of data in test set. The tested signal was
first decomposed into several F components by EWT; then, the root mean square (RMS), kurtosis,
and skewness of the F component were calculated and combined into the feature vector. The feature
vector was used to test the probability density of the rolling bearing in different states. The estimated
probability density after the addition of test set is shown in Figure 10.
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Figure 7. EWT decomposition result of outer race fault signal.
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Figure 9. The tested vibration signals: (a) normal signal; (b) outer race fault signal; and, (c) inner race
fault signal.
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Figure 10. The result of test sample: (a) Normal signal (b) Outer race (c) Inner race.

From Figure 10, the probability densities before and after adding the test set coincide well when
the added test set and the sample set are in the same state. The estimated probability densities poorly
coincide when the sets are not in the same state, that is to say, the differences between the test set and
the sample set were substantial. The mutual information of the estimated probability density following
the addition of test set was computed, and the results are summarized in Table 1.

Table 1. The mutual information of different condition.

Different Condition
Mutual Information

Normal Signal Inner Race Outer Race

Normal signal 0.8917 0.1397 0.1581
Inner ring fault 0.2717 0.8742 0.2015
Outer ring fault 0.2092 0.2941 0.7930

Test data and sample set coincide well and are correlated with the largest mutual information
when comparing the same bearing’s state. Therefore, the test data categories could be effectively
distinguished via the largest mutual information. The proposed classifier, SVM classifier, and the BP
neural network classifier were used to train and test the experimental data on normal state, inner race
fault state, and the outer race fault state. The test results of the rolling bearing in the three different
states under different classifiers are shown in Figure 11.
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Figure 11. Comparison of classification accuracy of the three methods: (a) Normal signal (b) Outer
race (c) Inner race.

From Figure 11, due to its no need of parameter setting and the small computational load,
the proposed classifier in this paper can effectively identify different operative conditions of the rolling
bearing and exhibits a higher identification rate than SVM and BP. Twenty five sets of data selected from
different condition data were selected to process in experiment, and 20 sets of data were selected for
input into the classification as training data, and the other five sets were used as test data. The results
of different fault diagnosis methods are shown in Table 2.

Table 2. The accuracy of different fault diagnosis methods.

Different Diagnosis Methods Training Data Testing Data
Accuracy (100%)

Normal Signal Outer Race Inner Race

EWT-KDEC 20 5 98 100 97
EMD-KDEC 20 5 86 85 84

As can be seen in Table 2, the EMD method is used to decompose the vibration signal due to
the fact that mode mixing occurs in the EMD decomposition process. The natural mode of vibration
cannot be isolated during the decomposition process. Therefore, the EMD-KDEC method cannot
effectively extract the fault feature and identify different operative condition. The EWT-KDEC method
can effectively decompose the fault signals to obtain the components of natural mode of vibration.
Hence, the accuracy is higher than the EMD-KDEC method.
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4.3. Discussion

Since the EWT can unconditionally decompose the multi-component signal into multiple
components, it is reasonable to control the decomposition convergence condition. Therefore, the EWT
method can effectively eliminate the pattern mixing phenomenon. Simulation and experimental results
show that the proposed methods can be used to diagnose the fault of rolling bearing, and achieve
a higher recognition rate than EMD method.

5. Conclusions

As rolling bearings are key parts of various types of mechanical equipment, it of practical
significance to monitor and diagnose the states of rolling bearings. This paper proposes a method
for diagnosing the faults of rolling bearings based on empirical wavelet transform and kernel density
estimation classifier. For the complex vibration signal, the EMD method is subjected to mode mixing
during the decomposition process, leading to the failure of obtaining the inherent mode component.
In contrast, EWT can be used to decompose the signal, overcome the mode mixing, and obtain
the natural mode components. When considering the disadvantages of the traditional classifiers, such
as the low identification rate and long training duration, this paper proposes a novel classifier that
is based on kernel density estimation for identifying faults. The result indicates that the proposed
classifier can effectively identify different operative modes of rolling bearing with higher identification
rates than SVM and BP. Despite the advantages in diagnosing faults in the rolling bearing, the proposed
method is subjected to certain limitations. The penalty parameters and number of components in
the EWT decomposition process need to be prioritized; hence, future researches on how to adaptively
set the parameters of the EWT method are needed.
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