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1. Introduction

In quantum mechanics, the outcome of a measurement is subject to a probability distribution
determined from the quantum state of the measured system and the measurement performed.
The task of estimating the quantum state from the outcome of measurement is called the quantum
estimation and it is a fundamental problem in quantum statistics [1–3]. Tanaka and Komaki [4] and
Tanaka [5] discussed quantum estimation using the framework of statistical decision theory and
showed that Bayesian methods provide better estimation than the maximum likelihood method.
In Bayesian methods, we need to specify a prior distribution on the unknown parameters of the
quantum states. However, the problem of prior selection has not been fully discussed for quantum
estimation [6].

The quantum state estimation problem is related to the predictive density estimation problem
in classical statistics [7]. This is a problem of predicting the distribution of an unobserved variable y
based on an observed variable x. Suppose (x, y) ∼ p(x, y | θ), where θ denotes an unknown parameter.
Based on the observed x, we predict the distribution p(y | x, θ) of y using a predictive density p̂(y | x).
The plug-in predictive density is defined as p̂plug-in(y | x) = p(y | x, θ̂(x)), where θ̂(x) is some estimate
of θ from x. The Bayesian predictive density with respect to a prior distribution dπ(θ) is defined as

p̂π(y | x) =
∫

p(y | x, θ)dπ(θ | x) =
∫

p(y | x, θ)p(x | θ)dπ(θ)∫
p(x | θ)dπ(θ)

, (1)

where dπ(θ | x) is the posterior distribution. We compare predictive densities using the framework of
statistical decision theory. Specifically, a loss function L(q, p) is introduced that evaluates the difference
between the true density q and the predictive density p. Then, the risk function R(θ, p̂) is defined as
the average loss when the true value of the parameter is θ:
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R(θ, p̂) =
∫

L(p(y | x, θ), p̂(y | x))p(x | θ)dx.

A predictive density p̂∗ is called minimax if it minimizes the maximum risk among all
predictive densities:

max
θ

R(θ, p̂∗) = min
p̂

max
θ

R(θ, p̂). (2)

We adopt the Kullback–Leibler divergence

L(q, p) =
∫

q(x) log
q(x)
p(x)

dx (3)

as a loss function, since it satisfies many desirable properties compared to other loss functions such as
the Hellinger distance and the total variation distance [8]. Under this setting, Aitchison [9] proved

R(π, p̂π) = min
p̂

R(π, p̂), (4)

where
R(π, p̂) =

∫
R(θ, p̂)π(θ)dθ

is called the Bayes risk. Namely, the Bayesian predictive density p̂π(y | x) minimizes the Bayes risk.
We provide the proof of Equation (4) in the Appendix A. Therefore, it is sufficient to consider only
Bayesian predictive densities from the viewpoint of Kullback–Leibler risk, and the selection of the
prior π becomes important.

For the predictive density estimation problem above, Komaki [10] developed a class of priors
called the latent information priors. The latent information prior πLIP is defined as a prior that
maximizes the conditional mutual information Iθ,y|x(π) between the parameter θ and the unobserved
variable y given the observed variable x. Namely,

Iθ,y|x(πLIP) = max
π

Iθ,y|x(π),

where
Iθ,y|x(π) =

∫
∑x,y p(x, y | θ) log p(x, y | θ)dπ(θ)−∑x,y pπ(x, y) log pπ(x, y)

−
∫

∑x p(x | θ) log p(x | θ)dπ(θ) + ∑x pπ(x) log pπ(x)
(5)

is the conditional mutual information between y and θ given x. Here,

pπ(x, y) =
∫

p(x, y | θ)dπ(θ), pπ(x) =
∫

p(x | θ)dπ(θ) (6)

are marginal densities. The Bayesian predictive densities based on the latent information priors are
minimax under the Kullback–Leibler risk:

max
θ

R(θ, p̂π) = min
p̂

max
θ

R(θ, p̂).

The latent information prior is a generalization of the reference prior [11] that is a prior maximizing
the unconditional mutual information Iθ,y(π) between θ and y.

Now, we consider the problem of estimating the quantum state of a system Y based on the
outcome of a measurement on a system X. Suppose the quantum state of the composed system (X, Y)
be σXY

θ where θ denotes an unknown parameter. We perform a measurement on the system X and
obtain the outcome x. Based on the measurement outcome x, we estimate the state of the system Y
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by a predictive density operator ρ(x). Similarly to the Bayesian predictive density (1), the Bayesian
predictive density operator with respect to the prior dπ(θ) is defined as

σY
π (x) =

∫
σY

θ,xdπ(θ | x) =

∫
σY

θ,x p(x | θ)dπ(θ)∫
p(x | θ)dπ(θ)

, (7)

where dπ(θ | x) is the posterior distribution. Like the predictive density estimation problem discussed
above, we compare predictive density operators using the framework of statistical decision theory.
There are several possibilities for the loss function L(σ, ρ) in quantum estimation such as the fidelity
and the trace norm [12]. In this paper, we adopt the quantum relative entropy

L(σ, ρ) = Tr σ(log σ− log ρ) (8)

as a loss function, since it is a quantum analogue of the Kullback–Leibler divergence (3). Note that the
fidelity and the trace norm correspond to the Hellinger distance and the total variation distance in the
classical statistics, respectively. Under this setting, Tanaka and Komaki [4] proved that the Bayesian
predictive density operators minimize the Bayes risk:∫

R(θ, σY
π )dπ(θ) = min

ρ

∫
R(θ, ρ)dπ(θ).

This is a quantum version of Equation (4).
From Tanaka and Komaki [4], the selection of the prior becomes important also in quantum

estimation. However, this problem has not been fully discussed [6]. In this paper, we provide a
quantum version of the latent information priors and prove that they provide minimax predictive
density operators. Whereas the latent information prior in the classical case maximizes the conditional
Shannon mutual information, the proposed prior maximizes the conditional Holevo mutual information.
The Holevo mutual information, which is a quantum version of the Shannon mutual information,
is a fundamental quantity in the classical-quantum communication [13]. Our result shows that the
conditional Holevo mutual information also has a natural meaning in terms of quantum estimation.

Unlike the classical statistics, the measurement is not unique in quantum statistics. Therefore,
selection of the measurement also becomes important. From the viewpoint of minimax state estimation,
measurements that minimize the minimax risk are considered to be optimal. We provide a class of
optimal measurements for one qubit system. This class includes the symmetric informationally
complete measurement [14,15]. These measurements and latent information priors provide robust
quantum estimation.

2. Preliminaries

2.1. Quantum States and Measurements

We briefly summarize several notations of quantum states and measurements. Let H be a
separable Hilbert space of a quantum system. A Hermitian operator ρ onH is called a density operator
if it satisfies

Tr ρ = 1, ρ ≥ 0.

The state of a quantum system is described by a density operator. We denote the set of all density
operators onH as S(H).

Denote the set of all linear operators on Hilbert spaceH by L(H) and the set of all positive linear
operators by L+(H) ⊂ L(H). Let Ω be a measurable space of all possible outcomes of a measurement
and B(Ω) be a σ-algebra of Ω. A map E : B(Ω)→ L+(H) is called a positive operator-valued measure
(POVM) if it satisfies E(∅) = O, E(Ω) = I, and E(∪iBi) = ∑i E(Bi), where Bi ∩ Bj = ∅, ∀Bi ∈ B(H).
Any quantum measurement is represented by a POVM on Ω. In this paper, we mainly assume Ω is



Entropy 2017, 19, 618 4 of 22

finite. In such case, we denote Ω = X = {1, . . . , N} and any POVM is represented by a set of positive
Hermitian operators E = {Ex | x ∈ X} such that ∑x∈X Ex = I.

The outcome of a measurement E on a quantum system with the state ρ ∈ S(H) is distributed
with a probability measure

Pr(B) = Tr E(B)ρ, B ∈ B(Ω).

Let X, Y be quantum systems with Hilbert spacesHX andHY. The Hilbert space of the composed
system (X, Y) is given by the tensor productHX ⊗HY. Suppose the state of this composed system is
σXY. Then, the states of two subsystems can be yielded by the partial trace:

σX = TrY σXY, σY = TrX σXY.

If a measurement E = {Ex | x ∈ X} is performed on the system X and the measurement outcome
is x, then the state of the system Y becomes

σY
x =

1
px

TrX(Ex ⊗ IY)σXY,

where the normalization constant

px = Tr(Ex ⊗ IY)σXY

is the probability of the outcome x. Here, IY is the identity operator on the space HY. We call the
operator σY

x the conditional density operator.

2.2. Quantum State Estimation

We formulate the quantum state estimation problem using the framework of statistical decision
theory. Let X and Y be quantum systems with finite-dimensional Hilbert spaces HX and HY,
where dimHX = dX and dimHY = dY.

Suppose the state of the composed system (X, Y) be σXY
θ , where θ ∈ Θ denotes unknown

parameters. We perform a measurement E = {Ex | x ∈ X} on X, observe the outcome x ∈ X ,
and estimate the conditional density operator σY

θ,x of Y by a predictive density operator ρ(x).
As discussed in the introduction (1) and (7), the Bayesian predictive density operator based on a
prior π(θ) is defined by

σY
π (x) =

∫
σY

θ,xdπ(θ | x) =

∫
σY

θ,x p(x | θ)dπ(θ)∫
p(x | θ)dπ(θ)

,

where dπ(θ | x) is the posterior distribution.
To evaluate predictive density operators, we introduce a loss function L(σ, ρ) that evaluates

the difference between the true conditional density operator σ and the predictive density operator
ρ. In this paper, we adopt the quantum relative entropy (8) since it is a quantum analogue of the
Kullback–Leibler divergence (3). Then, the risk function R(θ, ρ) of a predictive density operator ρ is
defined by

R(θ, ρ) = ∑
x∈X

p(x | θ)Tr σY
θ,x(log σY

θ,x − log ρ(x)),

where

p(x | θ) = Tr(Ex ⊗ IY)σXY
θ = Tr ExσX

θ
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is the probability of the outcome x. Similarly to the classical case (2), a predictive density operator ρ∗ is
called minimax if it minimizes the maximum risk among all predictive density operators [16,17]:

max
θ

R(θ, ρ∗) = min
ρ

max
θ

R(θ, ρ).

Tanaka and Komaki [4] showed

R(π, σY
π ) = min

ρ
R(π, ρ), (9)

where

R(π, ρ) =
∫

R(θ, ρ)dπ(θ)

is called the Bayes risk. Namely, the Bayesian predictive density operator minimizes the Bayes
risk. This result is a quantum version of Equation (4). Although Tanaka and Komaki [4] considered
separable models (σXY

θ = σX
θ ⊗ σY

θ ), the relation (9) holds also for non-separable models as shown in
the Appendix A. Therefore, it is sufficient to consider only Bayesian predictive density operators and
the problem of prior selection becomes crucial.

2.3. Notations

For a quantum state family {σXY
θ | θ ∈ Θ}, we define another quantum state family

M = {⊕x p(x | θ)σY
θ,x | θ ∈ Θ},

where

⊕x p(x | θ)σY
θ,x =


p(1 | θ)σY

θ,1 O · · · O

O p(2 | θ)σY
θ,2

...
...

. . . O
O · · · O p(N | θ)σY

θ,N


is a density operator in CN ⊗HY. Since dimCN ⊗HY = NdY, the state familyM can be regarded as
a subset of the Euclidean space RN2d2

Y−1. By identifying Θ withM, the parameter space Θ is endowed
with the induced topology as a subset of RNd2

Y−1.
Any measurement on the system X is represented by a projective measurement {exx = |x〉〈x| |

x = 1, . . . , N}, where {|1〉, · · · , |N〉} is an orthonormal basis of CN . For every x ∈ X , we define
Sθ(x) ∈ L+(HY) as

Sθ(x) := TrCN (exx ⊗ IY)(⊕x p(x | θ)σY
θ,x) = p(x | θ)σθ,x,

which is the unnormalized state of Y conditional on the measurement outcome x. We also define

Sπ(x) =
∫

Sθ(x)dπ(θ), pπ(x) = Tr Sπ(x), σπ(x) =
Sπ(x)
pπ(x)

.

3. Minimax Estimation of Quantum States

In this section, we develop the latent information prior for quantum state estimation and show
that this prior provides a minimax predictive density operator.

In the following, we assume the following conditions:

• Θ is compact.
• For every x ∈ X , Ex 6= O.
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• For every x ∈ X , there exists θ ∈ Θ such that p(x | θ) = Tr ExσX
θ > 0.

The third assumption is achieved by adopting sufficiently small Hilbert space. Namely, if there
exists x ∈ X such that p(x | θ) = Tr ExσX

θ = 0 for every θ ∈ Θ, then we redefine the state spaceH as
the orthogonal complement of Ker Ex.

Let P be the set of all probability measures on Θ endowed with the weak convergence topology and
the corresponding Borel algebra. By the Prohorov theorem [18] and the first assumption, P is compact.

When x is fixed, the function θ ∈ Θ 7→ Sθ(x) is bounded and continuous. Thus, for every fixed
x ∈ X , the function

π ∈ P 7→ Sπ(x) =
∫

Sθ(x)dπ(θ)

is continuous because P is endowed with the weak convergence topology and dimHY < ∞.
Let {λx,i}i, {|φx,i〉}i be the eigenvalues and the normalized eigenvectors of the predictive density operator
ρ(x). For every predictive density operator ρ, consider the function from P to [0, ∞] defined by

Dρ(π) = ∑
x

Tr Sπ(x)(log Sπ(x)− log(pπ(x)ρ(x)))

= ∑
x

Tr Sπ(x)(log Sπ(x)− (log pπ(x))I − log ρ(x))

= ∑
x

Tr Sπ(x) log Sπ(x)−∑
x

pπ(x) log pπ(x) (10)

+ ∑
i:λx,i 6=0

−pπ(x)〈φx,i|σπ(x)|φx,i〉 log λx,i

+ ∑
i:λx,i=0

−pπ(x)〈φx,i|σπ(x)|φx,i〉 log λx,i.

The last term in (10) is lower semicontinuous under the definition 0 log 0 = 0 [10], since each
summand takes either zero or infinity and so the set of π ∈ P such that this term takes zero is closed.
In addition, the other terms in (10) are continuous since the von Neumann entropy is continuous [12].
Therefore, the function Dρ(π) in (10) is lower-semicontinuous.

Now, we prove that the class of predictive density operators that are limits of Bayesian predictive
density operators is an essentially complete class. We prepare three lemmas. Lemma 1 is useful
for differentiation of quantum relative entropy (see Hiai and Petz [19]). Lemmas 2 and 3 are from
Komaki [10].

Lemma 1. Let A, B be n-dimensional self-adjoint matrices and t be a real number. Assume that f : (α, β)→ R
is a continuously differentiable function defined on an interval and assume that the eigenvalues of A + tB are in
(α, β) if t is sufficiently close to t0. Then,

d
dt

Tr f (A + tB)
∣∣∣∣
t=t0

= Tr(B f ′(A + t0B)).

Lemma 2 ([10]). Let µ be a probability measure on Θ. Then,

Pεµ = {εµ + (1− ε)π | π ∈ P}

is a closed subset of P for 0 ≤ ε ≤ 1.

Lemma 3 ([10]). Let f : P → [0, ∞] be continuous, and let µ be a probability measure on Θ such that
pµ(x) :=

∫
p(x | θ)dµ(θ) > 0 for every x ∈ X . Then, there is a probability measure πn in
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Pµ/n =

{
1
n

µ +

(
1− 1

n

)
π | π ∈ P

}
for every n, such that f (πn) = infπ∈Pµ/n f (π). Furthermore, there exists a convergent subsequence {π′m}∞

m=1
of {πn}∞

n=1 and the equality f (π′∞) = infπ∈P f (π) holds, where π′∞ = limm→∞ π′m.

By using these results, we obtain the following theorem, which is a quantum version of Theorem 1
of Komaki [10].

Theorem 1.

(1) Let ρ(x) be a predictive density operator. If there exists a prior π̂ρ ∈ P such that Dρ(π̂ρ) = infπ∈P Dρ(π)

and pπ̂ρ(x) > 0 for every x ∈ X , then R(θ, σπ̂ρ(x)) ≤ R(θ, ρ(x)) for every θ ∈ Θ.
(2) For every predictive density operator ρ, there exists a convergent prior sequence {πρ

n}∞
n=1 such that

Dρ(limn→∞ π
ρ
n) = infπ∈P Dρ(π), limn→∞ σπ

ρ
n
(x) exists, and R(θ, limn→∞ σπ

ρ
n
(x)) ≤ R(θ, ρ) for every

θ ∈ Θ.

Next, we develop priors that provide minimax predictive density operators. Let x be a random
variable, which represents the outcome of the measurement, i.e., x ∼ p(· | θ). Then, as a quantum
analogue of the conditional mutual information (5), we define the conditional Holevo mutual
information [13] between the quantum state σY

x of Y and the parameter θ given the measurement
outcome x as

Iθ,σ|x(π) =
∫

∑x Tr Sθ(x) log Sθ(x)dπ(θ)−∑x Tr Sπ(x) log Sπ(x)
−
∫

∑x p(x | θ) log p(x | θ)dπ(θ) + ∑x pπ(x) log pπ(x)

=
∫

∑x p(x | θ)Tr σθ,x(log σθ,x − log σπ,x)dπ(θ),

(11)

which is a function of π ∈ P . Here, we used

∑
x

Tr Sθ(x) log Sθ(x) = ∑
x

p(x | θ)Tr σθ,x(log p(x | θ)I + log σθ,x)

= ∑
x

p(x | θ) log p(x | θ) +∑
x

p(x | θ)Tr σθ,x log σθ,x

and

∑
x

Tr Sπ(x) log Sπ(x) = ∑
x

pπ(x)Tr σπ(x)(log pπ(x)I + log σπ(x))

= ∑
x

pπ(x) log pπ(x) +∑
x

pπ(x)Tr σπ(x) log σπ(x).

The conditional Holevo mutual information provides an upper bound on the conditional mutual
information as follows.

Proposition 1. Let σXY
θ be the state of the composed system (X, Y). Suppose that a measurement is performed

on X with the measurement outcome x and then another measurement is performed on Y with the measurement
outcome y. Then,

Iθ,σ|x(π) ≥ Iθ,y|x(π). (12)

Proof. Since any measurement is a trace-preserving completely positive map, inequality (12) follows
from the monotonicity of the quantum relative entropy [13].

Analogous with the latent information priors [10] in classical statistics, we define latent
information priors as priors that maximize the conditional Holevo mutual information. It is expected
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that the Bayesian predictive density operator σπ̂,x based on a latent information prior is a minimax
predictive density operator. This is true from the following theorem, which is a quantum version of
Theorem 2 of Komaki [10].

Theorem 2.

(1) Let π̂ ∈ P be a prior maximizing Iθ,σ|x(π). If pπ̂(x) > 0 for all x ∈ X ; then, σπ̂(x) is a minimax
predictive density operator.

(2) There exists a convergent prior sequence {πn}∞
n=1 such that limn→∞ σπn(x) is a minimax predictive density

operator and the equality Iθ,σ|x(π∞) = supπ∈P Iθ,σ|x(π) holds.

The proof of Theorems 1 and 2 are deferred to the Appendix A.
We note that the minimax risk infρ supθ RE(θ, ρ) depends on the measurement E on X. Therefore,

the measurement E with minimum minimax risk is desirable from the viewpoint of minimaxity.
We define a POVM E∗ to be a minimax POVM if it satisfies

inf
ρ

sup
θ

RE∗(θ, ρ) = inf
E

inf
ρ

sup
θ

RE(θ, ρ). (13)

In the next section, we provide a class of minimax POVMs for one qubit system.

4. One Qubit System

In this section, we consider one qubit system and derive a class of minimax POVMs satisfying (13).
Qubit is a quantum system with a two-dimensional Hilbert space. It is the fundamental system in

the quantum information theory. A general state of one qubit system is described by a density matrix

σθ =
1
2

(
1 + θz θx − iθy

θx + iθy 1− θz

)
,

where θ = (θx, θy, θz)> ∈ Θ = {(θx, θy, θz)> ∈ R3 | ‖θ‖2 ≤ 1}. The parameter space ∂Θ =

{(θx, θy, θz)> ∈ R3 | ‖θ‖2 = 1} for pure states is called the Bloch sphere.
Let σXY

θ = σθ ⊗ σθ be a separable state. We consider the estimation of σY
θ = σθ from the outcome

of a measurement on σX
θ = σθ . Here, we assume that the state σXY

θ is separable, since the state of Y
changes according to the outcome of the measurement on X and so the estimation problem is not
well-defined if the state σXY

θ is not separable.
Let Ω := {(x, y, z)> ∈ R3 | x2 + y2 + z2 = 1} and B = B(Ω) be Borel sets. From Haapasalo et al. [20],

it is sufficient to consider POVMs on Ω. For every probability measure µ on (Ω,B) that satisfies∫
Ω

xdµ(ω) =
∫

Ω
ydµ(ω) =

∫
Ω

zdµ(ω) = 0,

we define a POVM E : B → L+ by

E(B) =
∫

B

(
1+ z x− iy
x + iy 1− z

)
dµ(ω).

In the following, we identify E with µ.
Let E∗1-qubit be a class of POVMs on Ω represented by measures that satisfy the conditions
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Eµ[x] = Eµ[y] = Eµ[z] = 0,

Eµ[xy] = Eµ[yz] = Eµ[zx] = 0,

Eµ[x2] = Eµ[y2] = Eµ[z2] =
1
3

,

where Eµ is the expectation with respect to a measure µ. We provide two examples of POVMs in E∗1-qubit.

Proposition 2. The POVM corresponding to

µ(dω) =
1

4π
dω, (14)

where dω is surface element, is in E∗1-qubit.

Proof. From the symmetry of µ, Eµ[x] = Eµ[y] = Eµ[z] = Eµ[xy] = Eµ[yz] = Eµ[zx] = 0. Moreover,
from Eµ[1] = Eµ[x2 + y2 + z2] = 1 and the symmetry of µ, Eµ[x2] = Eµ[y2] = Eµ[z2] = 1/3.

Proposition 3. Suppose that ωi (i = 1, 2, 3, 4) ∈ Ω satisfies |ωi|2 = 1, ωi ·ωj = −1/3(i 6= j). Let µ be a four
point discrete measure on Ω defined by

µ({ω1}) = µ({ω2}) = µ({ω3}) = µ({ω4}) =
1
4

. (15)

Then, the POVM corresponding to µ belongs to E∗1-qubit.

Proof. Let P = (ω1, ω2, ω3, ω4) ∈ R3×4 and 1 = (1, 1, 1, 1)>. From the assumption on ωi (i = 1, 2, 3, 4),

P>P =
4
3

I4 −
1
3

J4, (16)

where I4 ∈ R4×4 is the identity matrix and J4 = 11> ∈ R4×4 is a matrix whose elements are all one.
From (16), we have 1>P>P1 = ‖P1‖2 = 0. Therefore, P1 = 0 and it implies Eµ[x] = Eµ[y] = Eµ[z] = 0.

In addition, from (16),

P>PP>P = ((4/3)I4 − (1/3)J4)((4/3)I4 − (1/3)J4)

= (4/3)((4/3)I4 − (1/3)J4)

= (4/3)P>P.

Therefore, P>(PP> − (4/3)I3)P = 0. Since rank P = 3, it implies PP> = (4/3)I3. Then,
Eµ[xy] = Eµ[yz] = Eµ[zx] = 0 and Eµ[x2] = Eµ[y2] = Eµ[z2] = 1/3.

We note that the POVM (15) is a special case of the SIC-POVM (symmetric, informationally
complete, positive operator valued measure) [14,15].

Let P∗1-qubit be a class of priors on Θ that satisfies the conditions

Eπ [θx] = Eπ [θy] = Eπ [θz] = 0,

Eπ [θxθy] = Eπ [θyθz] = Eπ [θzθx] = 0,

Eπ [θ
2
x] = Eπ [θ

2
y] = Eπ [θ

2
z ] =

1
3

,

where Eπ is the expectation with respect to a prior π.
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Proposition 4. The uniform prior

π(dθ) =
1

4π
dθ,

where dθ is the surface element on the Bloch sphere, belongs to P∗1-qubit.

Proof. Same as Proposition 2.

Proposition 5. Suppose that θi (i = 1, 2, 3, 4) ∈ Θ satisfies |θi|2 = 1, θi · θj = −1/3(i 6= j). Then, the four
point discrete prior

π({θ1}) = π({θ2}) = π({θ3}) = π({θ4}) =
1
4

belongs to P∗1-qubit.

Proof. Same as Proposition 3.

We obtain the following result.

Lemma 4. Suppose π∗ ∈ P∗1-qubit. Then, for general measurement E, the risk function of the Bayesian predictive
density operator σπ∗ is

RE(θ, σπ∗) =− h
(

1 + ‖θ‖
2

)
+

1
2

log
9
2
− log 2

2
(θx

2Eµ[x2] + θy
2Eµ[y2] + θz

2Eµ[z2]

+ 2θxθyEµ[xy] + 2θyθzEµ[yz] + 2θzθxEµ[zx]).

Proof. The distribution of the measurement outcome ω = (x, y, z)> is

p(B | θ) = Tr σθE(B) = (1 + xθx + yθy + zθz)µ(B).

Then, since π∗ ∈ P∗1-qubit, the marginal distribution of the measurement outcome is

p(B) =
∫

Θ
p(B | θ)dπ∗(θ) =

∫
Θ
(1 + xθx + yθy + zθz)µ(B)dπ∗(θ) = µ(B).

Therefore, the posterior distribution of θ is

dπ∗(θ | ω) = (1 + xθx + yθy + zθz)dπ∗(θ).

The posterior mean of θx, θy and θz are x/3, y/3 and z/3, respectively.
Thus, the Bayesian predictive density operator based on prior π∗ is

σπ∗(ω) =
∫

σθdπ∗(θ | ω) =
1
2

(
1 + z/3 x/3− iy/3

x/3 + iy/3 1− z/3

)
,

and we have

log σπ∗(ω) =

 (log
1
3
)(

1− z
2

) (log
1
3
)(
−x + iy

2
)

(log
1
3
)(
−x− iy

2
) (log

1
3
)(

1 + z
2

)

+

 (log
2
3
)(

1 + z
2

) (log
2
3
)( x−iy

2 )

(log
2
3
)(

x + iy
2

) (log
2
3
)( 1−z

2 )

 .

Therefore, the quantum relative entropy loss is
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D(σθ , σπ∗(ω)) = Tr σθ(log σθ − log σπ∗(ω))

= − h
(

1 + ‖θ‖
2

)
+

1
2

log
9
2
−

xθx + yθy + zθz

2
log 2.

Hence, the risk function is

RE(θ, σπ∗) =
∫

Ω
D(σθ , σπ∗(ω))dp(ω | θ)

= −h
(

1 + ‖θ‖
2

)
+

1
2

log
9
2
− log 2

2
(θx

2Eµ[x2] + θy
2Eµ[y2] + θz

2Eµ[z2]

+ 2θxθyEµ[xy] + 2θyθzEµ[yz] + 2θzθxEµ[zx]).

Theorem 3. For a measurement E ∈ E∗1-qubit, every π∗ ∈ P∗1-qubit is a latent information prior:

max
θ

R(θ, σπ∗) = min
ρ

max
θ

R(θ, ρ).

In addition, the risk of the Bayesian predictive density operator based on π∗ is

R(θ, σπ∗) = −h
(

1 + ‖θ‖
2

)
+

1
2

log
9
2
− log 2

6
‖θ‖2,

where h is the binary entropy function h(p) = −p log p− (1− p) log(1− p).

Proof. From Lemma 4 and E∗ ∈ E∗1-qubit,

RE∗(θ, σπ∗) = −h
(

1 + |θ|
2

)
+

1
2

log
9
2
− log 2

6
(θx

2 + θy
2 + θz

2).

Therefore, the risk depends only on r = ‖θ‖ and we have

RE∗(θ, σπ∗) = g(r) = −h
(1 + r

2

)
+

1
2

log
9
2
− log 2

6
r2. (17)

Since

g′(r) =
1
2

log
(1 + r

1− r

)
− log 2

3
r,

g′′(r) =
1

1− r2 −
log 2

3
≥ 1− log 2

3
≥ 0,

the function g(r) is convex. In addition, we have g(1) = log 3− 2
3 log 2 > g(0) = log 3− 3

2 log 2.
Therefore, g(r) takes the maximum at r = 1.

In other words, RE∗(θ, σπ∗) takes maximum on the Bloch sphere. In addition, since∫
(θ2

x + θ2
y + θ2

z )dπ∗(θ) = 1/3 + 1/3 + 1/3 = 1, the support of π∗ is included in the Bloch sphere
‖θ‖2 = 1. Therefore,

∫
RE∗(θ, σπ∗)dπ∗(θ) = supθ RE∗(θ, σπ∗) and it implies that π∗ is a latent

information prior.

We note that the Bayesian predictive density operator is identical for every π∗ ∈ P∗1-qubit. In fact,

every π∗ ∈ P∗1-qubit also provides the minimax estimation of density operator σY
θ when there is no

observation system X. Figure 1 shows the risk function g(r) in (17) and also the minimax risk function
g0(r) when there is no observation:
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g0(r) = Tr

((
(1 + r)/2 0

0 (1− r)/2

)(
log

(
(1 + r)/2 0

0 (1− r)/2

)
− log

(
1/2 0

0 1/2

)))
= −h(r) + log 2.

Whereas g(r) < g0(r) around r = 1, we can see that g(r) > g0(r) around r = 0. Both risk
functions take the maximum at r = 1 and

g(1) = log 3− (2/3) log 2 < g0(1) = log 2.

The decrease g0(1)− g(1) > 0 in the maximum risk corresponds to the gain from the observation X.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

 

 

g(r)
g
0
(r)

Figure 1. Risk functions of predictive density operators. solid line: g(r), dashed line: g0(r).

Now, we consider the selection of the measurement E. As we discussed in the previous section,
we define a POVM E∗ to be a minimax POVM if it satisfies (13). We provide a sufficient condition on a
POVM to be minimax. Let ρE be a minimax predictive density operator for the measurement E.

Lemma 5. Suppose π∗ is a latent information prior for the measurement E∗. If∫
RE∗(θ, ρE∗)dπ∗(θ) = inf

E

∫
RE(θ, ρE)dπ∗(θ),

then E∗ is a minimax POVM.

Proof. For every (E, ρ), we have

sup
θ

RE(θ, ρ) ≥ inf
ρ

sup
θ

RE(θ, ρ) = sup
θ

RE(θ, ρE)

=
∫

RE(θ, ρE)dπ∗(θ) ≥ inf
E

∫
RE(θ, ρE)dπ∗(θ)

=
∫

RE∗(θ, ρE∗)dπ∗(θ) = sup
θ

RE∗(θ, σπ∗).

The last equality is from the minimaxity of σπ∗ . Therefore, E∗ is a minimax POVM.

Theorem 4. Every E∗ ∈ E∗1-qubit is a minimax POVM.

Proof. Let π∗ ∈ P∗1-qubit. From Theorem 6, π∗ is a latent information prior for E∗.
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For general measurement E, from Lemma 4, the risk function of the Bayesian predictive density
operator σπ∗ is

RE(θ, σπ∗) =− h
(

1 + ‖θ‖
2

)
+

1
2

log
9
2
− log 2

2
(θx

2Eµ[x2] + θy
2Eµ[y2] + θz

2Eµ[z2]

+ 2θxθyEµ[xy] + 2θyθzEµ[yz] + 2θzθxEµ[zx]).

Hence, the Bayes risk of σπ∗ with respect to π∗ is∫
RE(θ, σπ∗)dπ∗(θ) = log 3− 2

3
log 2.

Now, since the Bayesian predictive density operator σπ∗ minimizes the Bayes risk with respect to
π∗ among all predictive density operators [4],∫

RE(θ, ρE)dπ∗(θ) ≥
∫

RE(θ, σπ∗)dπ∗(θ) = log 3− 2
3

log 2

for every E. Therefore,

inf
E

∫
RE(θ, ρE)dπ∗(θ) ≥ log 3− 2

3
log 2.

On the other hand,

inf
E

∫
RE(θ, σπ∗)dπ∗(θ) ≤

∫
RE∗(θ, σπ∗)dπ∗(θ) = log 3− 2

3
log 2

is obvious.
Hence, ∫

RE∗(θ, σπ∗)dπ∗(θ) = inf
E

∫
RE(θ, σπ∗)dπ∗(θ) = log 3− 2

3
log 2.

From Lemma 5, E∗ is minimax.

Whereas Theorems 1 and 2 are valid even when σXY
θ is not separable, Theorems 3 and 4 assume

the separability σXY
θ = σX

θ ⊗ σY
θ .

From Theorem 4, the POVM (15) is a minimax POVM. Since this POVM is identical to the
SIC-POVM [14,15], it is an interesting problem whether the SIC-POVM is a minimax POVM also in
higher dimensions. This is a future work.

Acknowledgments: We thank the referees for many helpful comments. This work was supported by Japan
Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 26280005 and 14J09148.

Author Contributions: All authors contributed significantly to the study and approved the final version of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Proof of (4). From the definition of p̂π in (1),∫
p(x, y | θ)dπ(θ) = pπ(x) p̂π(y | x),
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where

pπ(x) =
∫

p(x | θ)dπ(θ).

Therefore, for arbitrary p̂,

R(π, p̂)− R(π, p̂π) =
∫ ∫ ∫

p(x, y | θ)(log p̂π(y | x)− log p̂(y | x))dπ(θ)dxdy

=
∫ ∫

pπ(x) p̂π(y | x)(log p̂π(y | x)− log p̂(y | x))dxdy

=
∫ ∫

pπ(x)L( p̂π(y | x), p̂(y | x))dx,

which is nonnegative since the Kullback–Leibler divergence L(q, p) in (3) is always nonnegative.

Proof of (9). From the definition of σY
π (x) in (7),∫

p(x | θ)σY
θ,xdπ(θ) = pπ(x)σY

π (x),

where

pπ(x) =
∫

p(x | θ)dπ(θ).

Therefore, for arbitrary p̂,

R(π, ρ)− R(π, σY
π ) =

∫ ∫
p(x | θ)Tr σY

θ,x(log σY
π (x)− log ρ(x))dπ(θ)dx

=
∫

pπ(x)Tr σY
π (x)(log σY

π (x)− log ρ(x))dx

=
∫

pπ(x)L(σY
π (x), ρ(x))dx,

which is nonnegative since the quantum relative entropy L(σ, ρ) in (8) is always nonnegative.

Proof of Theorem 1. (1) Let Qρ
x be the orthogonal projection matrix onto the eigenspace of ρ(x)

corresponding to eigenvalue 0, Θρ = {θ ∈ Θ | ∑x p(x | θ)Tr Qρ
xσθ,x = 0} and Pρ be the set of

all probability measures on Θρ.
If Θρ = ∅, the assertion is obvious because R(θ, ρ) = ∞ for θ 6∈ Θρ. Therefore, we assume Θρ 6= ∅

in the following. In this case, Dρ(π̂ρ) < ∞. Since π ∈ Pρ if and only if Dρ(π) < ∞, we have π̂ρ ∈ Pρ.
Define

π̃θ,u := uδθ + (1− u)π̂ρ,

for θ ∈ Θρ and 0 ≤ u ≤ 1, where δθ is the probability measure satisfying δθ({θ}) = 1. Then, π̃θ,u ∈ Pρ,
and we have
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∂

∂u
Dρ(π̃θ,u)

∣∣∣∣
u=0

=
∂

∂u ∑
x

Tr Sπ̃θ,u(x)
(

log Sπ̃θ,u(x)− log(pπ̃θ,u(x)ρ(x))
)∣∣∣∣

u=0

=
∂

∂u ∑
x

Tr
(
uSθ(x) + (1− u)Sπ̂θ,u(x)

)
× (log(uSθ(x) + (1− u)Sπ̂ρ(x))− log(up(x | θ) + (1− u)pπ̂ρ(x))ρ(x)

∣∣∣∣
u=0

= ∑
x

Tr
{

∂

∂u
(uSθ(x) + (1− u)Sπ̂ρ(x))

∣∣∣∣
u=0

}
(log Sπ̂ρ(x)− log(pπ̂ρ(x)ρx))

+ ∑
x

Tr Sπ̂ρ(x)
{

∂

∂u
log(uSθ(x) + (1− u)Sπ̂ρ(x))

∣∣∣∣
u=0

}
−∑

x
Tr Sπ̂ρ(x)

{
∂

∂u
(log(up(x | θ) + (1− u)pπ̂ρ(x))I + log ρx)

∣∣∣∣
u=0

}
= ∑

x
Tr
(
Sθ(x)− Sπ̂ρ(x)

)(
log Sπ̂ρ(x)− log(pπ̂ρ(x)ρ(x))

)
+ ∑

x
Tr
(
Sθ(x)− pπ̂ρ(x)ρ(x)

)
−∑

x
Tr
(

Sπ̂ρ(x)
p(x | θ)− pπ̂ρ(x)

pπ̂ρ(x)

)
= ∑

x
Tr Sθ(x)

(
log Sπ̂ρ(x)− log(pπ̂ρ(x)ρ(x))

)
−∑

x
Tr Sπ̂ρ(x)

(
log Sπ̂ρ(x)− log(pπ̂ρ(x)ρ(x))

)
≥ 0.

Thus, if θ ∈ Θρ,

R(θ, σπ̂ρ(x)) = ∑
x

Tr Sθ(x)(log σθ,x − log σπ̂ρ(x))

≤ ∑
x

Tr Sθ(x)(log σθ,x − log ρ(x)) = R(θ, ρ(x)) < ∞.

If θ 6∈ Θρ, R(θ, ρ(x)) = ∞. Therefore, for every θ ∈ Θ, the inequality R(θ, σπ̂ρ(x)) ≤ R(θ, ρ(x)) holds.
(2) We note that Θρ and Pρ are compact subsets of Θ and P , respectively.
If Θρ = ∅, the assertion is obvious, because R(θ, ρx) = ∞ for every θ 6∈ Θρ. Therefore, we assume

Θρ 6= ∅ in the following. Let X ρ := {x ∈ X | ∃θ ∈ Θρ, p(x | θ) > 0} and µρ be a probability measure
on Θρ such that pµρ(x) :=

∫
p(x | θ)dµρ(θ) > 0 for every x ∈ X ρ.

Because Dρ(π) is continuous as a function of π ∈ Pρ, there exists πn ∈ Pρ
µρ/n := {(1/n)µρ +

(1− 1/n)π | π ∈ Pρ} such that Dρ(πn) = infπ∈Pρ
µ/n

Dρ(π). From Lemma 3, there exists a convergent

subsequence {π′m}∞
m=1 of {πn}∞

n=1 such that Dρ(π′∞) = infπ∈Pρ Dρ(π), where lim π′m ⇒ π′∞.
Let nm be the integer satisfying π′m = πnm . We can make the subsequence {π′m}∞

m=1 satisfy
0 < nm/(nm+1 − nm) < c for some positive constant c.

Since

nm

nm+1
π′m +

(
1− nm

nm+1

)
δθ =

nm

nm+1
πnm +

(
1− nm

nm+1

)
δθ ∈ P

ρ
µρ/nm+1

for every θ ∈ Θ, we have

π̃m,θ,u := u
{

nm

nm+1
π′m +

(
1− nm

nm+1

)
δθ

}
+ (1− u)π′m+1 ∈ P

ρ
µρ/nm+1
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for every θ ∈ Θρ and 0 ≤ u ≤ 1. Thus,

∂

∂u
D(π̃m,θ,u)

∣∣∣∣
u=0

=
∂

∂u ∑
x

Tr pπ̃m,θ,u(x)
(

log Sπ̃m,θ,u(x)− log(pπ̃m,θ,u(x)ρ(x))
)
(I −Qρ

x)

∣∣∣∣
u=0

= ∑
x

Tr
{

∂

∂u
Sπ̃m,θ,u(x)

∣∣∣∣
u=0

} (
log Sπ̃m,θ,u(x)− log(pπ̃m,θ,u(x)ρ(x))

)
(I −Qρ

x)

=
nm

nm+1
∑
x

Tr Sπ′m(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
(I −Qρ

x)

−∑
x

Tr Sπ′m+1
(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
(I −Qρ

x)

+
nm+1 − nm

nm+1
∑
x

Tr Sθ(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(X)ρ(x))
)
(I −Qρ

x)

≥ 0.

Hence,

∑x Tr Sθ(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
(I −Qρ

x)

≥ nm+1

nm+1 − nm
∑x Tr Sπ′m+1

(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
(I −Qρ

x)

− nm

nm+1 − nm
∑x Tr Sπ′m(x)

(
log Sπ′m+1

(x)− log(pπ′m+1
(x)ρ(x))

)
(I −Qρ

x)

=
nm+1

nm+1 − nm
∑x Tr Sπ′m+1

(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
(I −Qρ

x)

+
nm

nm+1 − nm

{
−∑x Tr Sπ′m(x)

(
log Sπ′m+1

(x)− log(pπ′m+1
(x)ρ(x))

)
(I −Qρ

x)(I −Qπ′∞
x )

−∑x Tr Sπ′m(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
Qπ′∞

x (I −Qρ
x)

}
≥ nm+1

nm+1 − nm
∑x Tr Sπ′m+1

(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

(x)ρ(x))
)
(I −Qρ

x)

+
nm

nm+1 − nm

{
−∑x Tr Sπ′m(x)

(
log Sπ′m+1

(x)− log(pπ′m+1
(x)ρ(x))

)
(I −Qρ

x)(I −Qπ′∞
x )

+∑x Tr Sπ′m(x) log ρ(x)Qπ′∞
x (I −Qρ

x)

}
,

(A1)

where Qπ′∞
x is the orthogonal projection matrix onto the eigenspace of ∑θ π′∞(θ)p(x | θ)σθ,x

corresponding to the eigenvalue 0. Here, we have

limm→∞ ∑x Tr Sπ′m(x)
(

log Sπ′m+1
(x)− log(pπ′m+1

ρ(x))
)
(I −Qρ

x)(I −Qπ′∞
x )

= ∑x Tr Sπ′∞(x)
(

log Sπ′∞(x)− log(pπ′∞(x)ρ(x))
)
(I −Qρ

x)(I −Qπ′∞
x ),

(A2)

and
limm→∞ ∑x Tr Sπ′m(x) log ρ(x)Qπ′∞

x (I −Qρ
x) = 0

= −∑x Tr Sπ′∞(x)
(

log Sπ′∞(x)− log(pπ′∞(x)ρ(x))
)
Qπ′∞

x (I −Qρ
x).

(A3)

Therefore, from (A1)–(A3) and 0 < nm/(nm+1 − nm) < c for every θ ∈ Θρ,

lim infm→∞ ∑x Tr Sθ(x)
(

log Sπ′m(x)− log(pπ′m(x)ρ(x))
)
(I −Qρ

x)

≥ ∑x Tr Sπ′∞(x)
(

log Sπ′∞(x)− log(pπ′∞(x)ρ(x))
)
(I −Qρ

x) ≥ 0.
(A4)
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By taking an appropriate subsequence {π′′k } of {π′m}, we can make the subsequence of density
operators {σπ′′k ,x}∞

k=1 converge for all x ∈ X ρ because pπ′m(x) > 0 (x ∈ X ρ) and 0 ≤ Sπ′m /pπ′m(x) ≤ I.
Then, from (A4), if θ ∈ Θρ,

R(θ, lim
k→∞

σπ′′k
(x)) = ∑

x
Tr Sθ(x)(log σθ,x − log lim

k→∞
σπ′′k

(x))

= ∑
x

Tr Sθ(x)(log σθ,x − log lim
k→∞

σπ′′k
(x))(I −Qρ

x)

≤∑
x

Tr Sθ(x)(log σθ,x − log ρ(x))(I −Qρ
x)

= ∑
x

Tr Sθ(x)(log σθ,x − log ρ(x)) = R(θ, ρ(x)) < ∞.

If θ 6∈ Θρ, R(θ, ρ) = ∞ because −∑x Sθ(x) log ρ(x)Qρ
x = ∞.

Hence, the risk of the predictive density operator defined bylimk→∞ σπ′′k
(x) , x ∈ X ρ,

τx , x 6∈ X ρ,

where τx is an arbitrary predictive density, is not greater than that of ρ(x) for every θ ∈ Θ.
Therefore, by taking a sequence {εn ∈ (0, 1)}∞

n=1 that converges rapidly enough to 0, we can
construct a predictive density operator

lim
k→∞

σεk µ̄+(1−εk)π
′′
k
(x) =

limk→∞ σπ′′k
(x), x ∈ X ρ,

σµ̄(x), x 6∈ X ρ,
(A5)

as a limit of Bayesian predictive density operators based on priors {εkµ̄ + (1− εk)π
′′
k }, where µ̄ is a

measure on Θ such that pµ̄(x) > 0 for every x ∈ X .
Hence, the risk of the predictive density operator (A5) is not greater than that of ρ(x) for every

θ ∈ Θ.

Proof of Theorem 2. (1) Define π̃θ̄,u := uδθ̄ + (1− u)π̂ for all θ ∈ Θ and u ∈ [0, 1]. Then,

∂

∂u
Iθ,σ|x(π̃θ̄,u)

∣∣∣∣
u=0

=
∂

∂u

( ∫
∑
x

Tr Sθ(x) log Sθ(x)dπ̃θ̄,u(θ)−∑
x

Sπ̃θ̄,u
(x) log Sπ̃θ̄,u

(x)

−
∫

∑
x

p(x | θ) log p(x | θ)dπ̃θ̄,u + ∑
x

pπ̃θ̄,u
(x) log pπ̃θ̄,u

(x)
)∣∣∣∣

u=0

= ∑
x

Tr Sθ̄(x)(log Sθ̄(x)− log pθ̄(x)I)−∑
x

Tr Sθ̄(x)(log Sπ̂(x)− log pπ̂(x)I)

−
∫

∑
x

Tr Sθ(x)(log Sθ(x)− log p(x | θ)I)dπ̂(θ)

+ ∑
x

Tr Sπ̂(x)(log Sπ̂(x)− log pπ̂(x)I) ≤ 0.

Since pπ̂(x) > 0 for every x ∈ X and Tr p(x | θ)σθ,x log σθ,x = 0 if p(x | θ) = 0, we have

∑
x

Tr Sθ̄(x)(log σθ̄,x − log σπ̂(x)) ≤
∫

∑
x

Tr Sθ(x)(log σθ,x − log σπ̂(x))dπ̂(θ) (A6)

for every θ ∈ Θ.
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On the other hand, we have∫
∑x Tr Sθ(x)(log σθ,x − log σπ̂(x))dπ̂(θ)

= infρ

∫
∑x Tr Sθ(x)(log σθ,x − log ρ(x))dπ̂(θ)

≤ supπ∈P infρ

∫
∑x Tr Sθ(x)(log σθ,x − log ρ(x))dπ̂(θ)

≤ infρ supπ∈P
∫

∑x Tr Sθ(x)(log σθ,x − log ρ(x))dπ̂(θ)

= infρ supθ∈Θ ∑x Tr Sθ(x)(log σθ,x − log ρ(x))

≤ supθ∈Θ ∑x Tr Sθ(x)(log σθ,x − log σπ̂(x)).

(A7)

Here, the first equality is from the fact [4] that the Bayes risk with respect to π̂ ∈ P∫
R(θ; ρ(x))dπ̂(θ) =

∫
∑
x

p(x | θ)Tr σθ,x(log σθ,x − log ρ(x))dπ̂(θ)

is minimized when

ρ(x) = σπ̂(x) :=

∫
p(x | θ)σθ,xdπ̂(θ)∫

p(x | θ)dπ̂(θ)
.

From (A6) and (A7), we have

inf
ρ

sup
θ∈Θ

∑
x

Tr Sθ(x)(log σθ,x − ρ(x)) = sup
θ∈Θ

∑
x

Tr Sθ(x)(log σθ,x − log σπ̂(x)).

Therefore, the predictive density operator σπ̂(x) is minimax.
(2) Let µ be a probability measure on Θ such that pµ(x) :=

∫
p(x | θ)dµ(θ) > 0 for every

x ∈ X , and let πn ∈ Pµ/n := {µ/n + (1 − 1/n)π | π ∈ P} be a prior satisfying Iθ,σ|x(πn) =

supπ∈Pµ/n
Iθ,σ|x(π). From Lemma 3, there exists a convergent subsequence {π′m} of {πn} and

Iθ,σ|x(π
′
∞) = supπ∈P Iθ,σ|x(π) where π′m ⇒ π′∞. Let nm be the integer satisfying π′m = πnm . As in the

proof of Theorem 1, we can make the subsequence {π′m} satisfy 0 < nm/(nm+1 − nm) < c for some
positive constant c.

Then, for every θ̄ ∈ Θ,

π̃m,θ̄,u := u
{ nm

nm+1
π′m + (1− nm

nm+1
)δθ̄

}
+ (1− u)π′m+1

belongs to Pµ/nm+1 for 0 ≤ u ≤ 1 because (nm/nm+1)π
′
m + (1 − nm/nm+1)δθ̄ ∈ Pµ/nm+1 and

π′m+1 ∈ Pµ/nm+1 .
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Thus,

∂

∂u
Iθ,ρ|x(π̃m,θ̄,u)

∣∣∣∣
u=0

=
∂

∂u
(
∫

∑
x

Tr Sθ(x) log Sθ(x)dπ̃m,θ̄,u(θ)−∑
x

Tr Sπ̃m,θ̄,u
(x) log Sπ̃m,θ̄,u

(x)

−
∫

∑
x

p(x | θ) log p(x | θ)dπ̃m,θ̄,u(θ) + ∑
x

pπ̃m,θ̄,u
(x) log pπ̃m,θ̄,u

)

∣∣∣∣
u=0

=
nm

nm+1

∫
∑
x

Tr Sθ(x) log Sθ(x)dπ′m(θ) + (1− nm

nm+1
)∑

x
Tr Sθ̄(x) log Sθ̄(x)

−
∫

∑
x

Tr Sθ(x) log Sθ(x)dπ′m+1(θ)−∑
x

Tr
∂

∂u
Sπ̃m,θ̄,u

(x)
∣∣∣∣
u=0

log Sπ′m+1
(x)

− nm

nm+1

∫
∑
x

p(x | θ) log p(x | θ)dπ′m+1(θ)− (1− nm

nm+1
)∑

x
pθ̄(x) log pθ̄(x)

+
∫

∑
x

p(x | θ) log p(x | θ)dπ′m+1(θ) + ∑
x

∂

∂u
pπ̃m,θ̄,u

(x)
∣∣∣∣
u=0

log pπ′m+1
(x)

= (1− nm

nm+1
)∑

x
Tr Sθ̄(x)(log Sθ̄(x)− log p(x | θ̄)I)

− (1− nm

nm+1
)∑

x
Tr Sθ̄(x)(log Sπ′m+1

(x)− log pπ′m+1
(x)I)

+
nm

nm+1

∫
∑
x

Tr Sθ(x)(log Sθ(x)− log p(x | θ)I)dπ′m(θ)

−
∫

∑
x

Tr Sθ(x)(log Sθ(x)− log p(x | θ))dπ′m+1(θ)

− nm

nm+1
∑
x

Tr Sπ′m(x)(log Sπ′m+1
(x)− log pπ′m+1

(x)I)

+ ∑
x

Tr Sπ′m+1
(x)(log Sπ′m+1

(x)− log pπ′m+1
(x)I)

≤ 0.

Since pπ̂m(x) > 0 for every m and p(x | θ)σθ,x log σθ,x = 0 if p(x | θ) = 0, we have(
1− nm

nm+1

)
∑
x

Tr Sθ̄(x)(log σθ̄,x − log σπ′m+1
(x))

+
nm

nm+1

∫
∑
x

Tr Sθ(x)(log σθ,x − log σπ′m+1
(x))dπ′m(θ)

−
∫

∑
x

Tr Sθ(x)(log σθ,x − log σπ′m+1
(x))dπ′m+1(θ) ≤ 0.
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Hence,
∑x Tr Sθ̄(x)(log σθ̄(x)− log σπ′m+1

(x))

≤ − nm

nm+1 − nm

{ ∫
∑x Tr Sθ(x)(log σθ,x − log σπ′m+1

(x))(1−Qπ′∞
x )dπ′m(θ)

+
∫

∑x Tr Sθ(x)(log σθ,x − log σπ′m+1
(x))Qπ′∞

x dπ′m(θ)

}
+

nm+1

nm+1 − nm

∫
∑x Tr Sθ(x)(log σθ,x − log σπ′m+1

(x))dπ′m+1(θ)

≤ − nm

nm+1 − nm

{ ∫
∑x Tr Sθ(x)(log σθ,x − log σπ′m+1

(x))(1−Qπ′∞
x )dπ′m(θ)

+
∫

∑x Tr Sθ(x) log σθ,xQπ′∞
x dπ′m(θ)

}
+

nm+1

nm+1 − nm

∫
∑x Tr Sθ(x)(log σθ,x − log σπ′m+1

(x))dπ′m+1(θ),

(A8)

where Qπ′∞
x is the orthogonal projection matrix onto the eigenspace of Sπ′∞(x) corresponding to the

eigenvalue 0. Here, we used two equalities

limm→∞
∫

∑x Tr Sθ(x)(log σθ,x − log σπ′m+1
(x))(1−Qπ′∞

x )dπ′m(θ)

=
∫

∑x Tr Sθ(x)(log(pπ′∞(x)σθ,x)− log Sπ′∞(x))dπ′∞(θ)
(A9)

and

lim
m→∞

∫
∑
x

Tr Sθ(x) log σθ,xQπ′∞
x dπ′m(θ)

=
∫

∑
x

Tr Sθ(x) log σθ,xQπ′∞
x dπ′∞(θ) (A10)

=
∫

∑
x

Tr Sθ(x)(log(pπ′∞(x))σθ,x)− log Sπ′∞ ,x)Q
π′∞
x dπ′∞(θ) = 0,

since Tr Sθ(x) log σθ,x is a bounded continuous function of θ.
From (A8)–(A11), and 0 < nm/(nm+1 − nm) < c, we have, for every θ̄ ∈ Θ,

lim sup
m→∞

∑
x

Tr Sθ̄(x)(log σθ̄(x)− log σπ′m(x))

≤
∫

∑
x

Tr Sθ(x)(log(pπ′∞(x)σθ(x))− log Sπ′∞(x))dπ′∞(θ).

By taking an appropriate subsequence {π′′k } of {π′m}, we can make {σπ′′k
(x)}∞

k=1 converge for
every x. Then, for every θ̄ ∈ Θ,

∑
x

Tr Sθ(x)(log σθ̄,x − log lim
k→∞

σπ′′k
(x)) (A11)

≤
∫

∑
x

Sθ(x)(log(σθ,x − log lim
k→∞

σπ′′k
(x))dπ′′∞(θ), (A12)

since limk→∞ σπ′′k
(x) = σπ′′∞(x) for x with pπ′′∞(x) > 0.
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On the other hand, we have∫
∑x Tr Sθ(x)(log σθ,x − log limk→∞σπ′′k

(x))dπ′′∞(θ)

= infρ

∫
∑x Tr Sθ(x)(log σθ,x − log ρ(x))dπ′′∞(θ)

≤ supπ∈P infρ

∫
∑x Tr Sθ(x)(log σθ,x − log ρ(x))dπ(θ)

≤ infρ supπ∈P
∫

∑x Tr Sθ(x)(log σθ,x − log ρ(x))dπ(θ)

= infρ supθ∈Θ ∑x Tr Sθ(x)(log σθ,x − log ρ(x))

≤ supθ∈Θ ∑x Tr Sθ(x)(log σθ,x − log limk→∞ σπ′′k
(x)).

(A13)

Here, the first equality is from the fact [4] that the Bayes risk∫
R(θ; ρ)dπ′′∞(θ) =

∫
∑
x

Tr p(x | θ)σθ,x(log σθ,x − log ρ(x))dπ′′∞(θ)

is minimized when ρ(x) = σπ′′∞(x). Although pπ′′∞(x) is not uniquely determined for x with pπ′′∞(x) = 0,
the Bayes risk does not depend on the choice of σπ′′∞(x) for such x.

From (A12) and (A13),

inf
ρ

sup
θ∈Θ

∑
x

Tr p(x | θ)σθ,x(log σθ,x − ρ(x))

= sup
θ∈Θ

∑
x

Tr p(x | θ)σθ,x(log σθ,x − log lim
k→∞

σπ′′k
(x)).

Therefore, the predictive density operator limk→∞ σπ′′k
(x) is minimax.
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