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Abstract: Permutation entropy has become a standard tool for time series analysis that exploits
the temporal and ordinal relationships within data. Motivated by a Kullback–Leibler divergence
interpretation of permutation entropy as divergence from white noise, we extend pattern-based
methods to the setting of random walk data. We analyze random walk null models for correlated
time series and describe a method for determining the corresponding ordinal pattern distributions.
These null models more accurately reflect the observed pattern distributions in some economic data.
This leads us to define a measure of complexity using the deviation of a time series from an associated
random walk null model. We demonstrate the applicability of our methods using empirical data
drawn from a variety of fields, including to a variety of stock market closing prices.
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1. Introduction

In the past fifteen years, measures of entropy defined in terms of the distribution of ordinal
patterns have become important tools in the analysis of time series. These methods effectively make
use of the temporal structure of this type of data in ways that are both computationally efficient and
simple to implement. In addition, permutation entropy is invariant under scaling of the data, i.e., under
non-linear monotonic transformations, adding to its wide applicability [1,2]. These techniques have found
application in many fields including economics [3–8], medicine [9–13] and physics [14,15], among others.
Datasets of a similar scale are increasingly available in the current big data paradigm, and permutation
methods are well positioned to contribute to comprehensive and meaningful analyses. Three recent
surveys [16–18] provide a comprehensive overview of recent developments and applications.

Motivated by recent applications of permutation entropy to economic markets and financial time
series, we seek to extend permutation-based techniques to include data-sets that are best understood
in the framework of random walk models. According to economic theory, an efficient market is one
in which price histories cannot predict future behavior, and thus, the market is described by a random
walk [19,20]. It follows that the proximity of a particular market to the random walk model serves as
a proxy for market efficiency. Observed market inefficiencies can be caused by communication barriers,
unfair competition, momentum and calendar year effects including the release or announcement
of new product lines, among others. As a result, quantifying inefficiency over time and comparing
relative inefficiency between markets is an important, longstanding question in finance [19].

To distinguish developed and emerging markets, the authors of [8] use permutation entropy
on the changes in stock prices (returns) to measure the independence of these steps. Other economics
researchers used similar methods to evaluate market volatility directly [5]. The approach presented
in this paper is motivated in part by these recent applications of permutation entropy. In particular,
we show that measures of divergence from null models motivated by economic theory can give useful
measures of complexity in this setting.
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We accomplish this by extending the interpretation of permutation entropy as a Kullback–Liebler
(KL) divergence from white noise to a measure of deviation from a specified null model. Further,
we include a model for the distribution of patterns in the setting of random walks, which describes
observed stock data.

1.1. Notation and Terminology

Throughout this paper, a time series is an ordered list of N real numbers X = {Xt}N
t=1, and we will

use Sn to denote the set of all permutations of length n. Given an ordered list of values x1, x2, . . . , xn,
with xi 6= xj for all i 6= j, we define the associated permutation st(x1, x2, . . . , xn) = π ∈ Sn such that
xπ−1(1) < xπ−1(2) <, . . . ,< xπ−1(n). For example, st(2.8, 0.4, 1.8, 1.3) = 4132. This permutation π is also
referred to as the ordinal pattern of x1, x2, . . . , xn.

We are concerned with the full distribution over patterns that occur in a given time series
rather than the specific time of occurrence of any individual pattern since, and as described above,
the distribution contains important information about the underlying dynamics. For a fixed time series X
and permutation π ∈ Sn, we denote the observed proportion of occurrences of the pattern π in X by:

pπ :=
|{t : st(Xt, Xt+1, . . . , Xt+n−1) = π}|

N− n + 1
.

Similarly to a finite sequence of random variables, {Zi}n
i=1, we define the expected proportion

of occurrences of π ∈ Sn by:

PZ(π) = P(st(Z1, Z2, . . . , Zn) = π) = P(Zπ−1(1) < Zπ−1(2) < . . . < Zπ−1(n)),

For a long time series, {Xt}N
t=1, whose values are determined by drawing a value at random

according to {Zi}N
i=1, we expect pπ ≈ PZ(π) for each π ∈ Sn. The statistical properties of the empirical

estimator and computations of expected values for some continuous distributions including Gaussian
families are discussed in [21,22].

The distribution of patterns in a random walk Z = {Zi}N
i=1 whose steps {Yi}N

i=1 are independent
continuous random variables with Zi = ∑i−1

j=1 Yj is also of interest. For a given time series, X = {Xt}N
t=1,

we define a random walk null model to be a random walk Z whose steps {Yi} correspond in some
way to the distribution of steps in X. We discuss methods for choosing an appropriate null model
in Section 4.

In this paper, we focus on the properties of two particular random walk null models based on
standard step distributions. When the steps {Yi} are i.i.d. normally distributed, we refer to this as a
random walk with normal steps, with parameters µ and σ. When the steps {Yi} are i.i.d. uniformly
distributed on the interval [b− 1, b], with 0 < b < 1, we refer to this as a random walk with uniform
steps. The parameter specifying the distribution is P(Yi > 0) = b. Due to the scale invariance of the
permutation measure, it suffices to consider an interval of unit length. Since each of the Yi are identically
distributed, we will sometimes drop the subscript when referring to their distributions.

1.2. Permutation Entropy and KL Divergence

Currently, the most commonly-used metric on pattern distributions in time series is the
permutation entropy, originally described in [23]. For a time series X = {Xt}N

t=1 and fixed integer n,
this measure is defined to be the Shannon entropy for the distribution of ordinal patterns of length n
that occur in X, which is written as [23]:

PEn(X) = − ∑
π∈Sn

pπ log(pπ),

where the logarithm here, and throughout this paper, is taken as base two. This measure takes values
that range from zero in a strictly monotonic sequence to log(n!) when all patterns appear with the



Entropy 2017, 19, 615 3 of 18

same probability. In their original paper [23], Bandt and Pompe also define a permutation entropy per
symbol, dividing the permutation entropy by a factor of n− 1 to account for the linear growth of PEn

with n that they observed in chaotic systems.
It is well known [21,24] that if the {Zi}n

i=1 are exchangeable random variables, including the
case of independent and identically distributed continuous random variables, then PZ(π) =

1
n! for

all π ∈ Sn. Thus, the distribution of patterns in white noise (i.e., a randomly-generated time series)
converges to the uniform distribution as the length of the time series goes to infinity. In order to obtain
a measure with values between zero and one, throughout this paper, we use a normalized permutation
entropy given by:

NPEn(X) = − 1
log(n!) ∑

π∈Sn

pπ log(pπ),

This normalization motivates a recently introduced, alternative interpretation of permutation
entropy as the Kullback–Leibler divergence (KL divergence) of the deviation of the empirical
distribution from that of white noise (see [16,25] for some exposition about this perspective). The KL
divergence was originally defined in [26] to measure the information theoretic distance between
a distribution and another expected distribution, and has become a standard measure in many fields.
For discrete distributions P and Q over a state space X, the divergence from P to Q (also called the
relative entropy of P with respect to Q) is defined as [26]:

DKL(P||Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
.

In our case of interest, the KL divergence for the distribution of patterns of length n in Z from
those in X is then defined by:

DKLn(X||Z) = ∑
π∈Sn

PX(π) log
(

PX(π)

PZ(π)

)
.

The relationship between (normalized) permutation entropy and the similarly normalized KL
divergence of the distribution of patterns in the time series from the uniform distribution, U, is:

1
log(n!)

DKLn(Z||U) =
1

log(n!)

(
log(n!) + ∑

π∈Sn

PZ(π) log(PZ(π))

)
= 1−NPEn(Z).

This formulation of permutation entropy, in terms of the KL divergence from the expected
behavior of white noise, motivates our approach in this paper since many examples of time series,
particularly those arising in financial contexts, exhibit a characteristic pattern distribution that is highly
non-uniform.

1.3. Contributions

Our purpose in this paper is to describe the distributions of ordinal patterns of random walk
null models in order to derive a corresponding KL measure that generalizes permutation entropy
to this setting. In the next section, we describe the theoretical properties of these models, including the
expected pattern distributions. This in turn allows us to compute the KL divergence to the empirical
pattern distributions, which gives a natural measure of deviation from the associated random walk null
model. Next, we describe a function, based on recent work of Martinez and Elizalde [27], that measures
how well a given distribution matches any random walk model. We conclude by applying these
methods to a wide variety of datasets to demonstrate their advantages and applicability.
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2. Distributions of Patterns in Random Walks

In this section, we discuss some of the important properties of the distribution of patterns
for random walk null models. For the uniform and symmetric normal random walk models, we give
the distribution of patterns of length n = 3, 4 in Table A1 and show how these values can be computed
for larger n. Finally, we discuss the patterns that must occur with equal probabilities in all walks.

In any random walk, Z = {Zj}n
j=1, where Zj = ∑

j
i=1 Yi for some sequence of independent steps

{Yi}, the ordinal pattern of length n occurring with the highest frequency is either the strictly increasing
or strictly decreasing permutation. To see this, observe that:

PZ(π) ≤ P(Y < 0)kP(Y > 0)n−k−1,

where k is the number of descents in π. The right-hand side of the expression is maximized
for 12 . . . (n − 1)n when P(Y > 0) and for n(n − 1) . . . 21 when P(Y < 0); and in these cases, the
inequality is an equality. This observation is mirrored in recent work on permutons [28], where a similar
result is obtained in the limiting case.

Further, we can see that in any random walk, the distribution of patterns is not the uniform
distribution that occurs in white noise. In particular, if the distribution were uniform, we would have

P(12 . . . (n− 1)n) = P(n(n− 1) . . . 21), which would imply that P(12 . . . (n− 1)n) =
(

1
2

)n−1
, which is

not equal to 1
n! for n ≥ 3.

To determine the distribution of patterns in a random walk Z with uniform steps {Yi}n−1
i=1 , we can

graphically represent the joint distribution {Y1, Y2, . . . , Yn−1} in the [b− 1, b]n−1 cube. The (n− 1)-cube is
then partitioned by patterns according to the relative order of (Z1, Z2, . . . , Zn) = (0, Y1, Y1 +Y2, . . . , Y1 +

Y2 + . . . +Yn−1). That is, for P(π) = P(Zπ−1(1) < Zπ−1(2) < . . . < Zπ−1(n)), there are two possible cases
for each index, i. If π−1(i + 1) > π−1(i), the inequality Zπ−1(i+1) < Zπ−1(i) becomes:

0 < Yπ−1(i+1) +Yπ−1(i+1)−1 + . . . Yπ−1(i)−1.

Similarly, if π−1(i + 1) < π−1(i), the inequality Zπ−1(i+1) < Zπ−1(i) becomes:

0 < Yπ−1(i) +Yπ−1(i)−1 + . . . +Yπ−1(i+1)−1.

It follows that the regions in the hypercube such that Zπ−1(1) < Zπ−1(2) < . . . < Zπ−1(n)
are bounded by hyperplanes through the origin of the form a1x1 + a2x2 + . . . + an−1xn−1 = 0,
for a1, a2, . . . , an−1 ∈ {0, 1}. In particular, since a permutation π corresponds to a region with non-zero
volume, each permutation in a uniform random walk appears with positive probability, i.e., we expect
no forbidden patterns in random walk time series. Figure 1 illustrates these regions for n = 3, 4. For the
uniform random walk, the probabilities of occurrence for each ordinal pattern of length n = 3, 4 are
given in the Table A1 in Appendix A.

In the case of a symmetric random walk with normally-distributed steps and n = 3, 4,
the distribution of probabilities can be obtained using the spherical symmetry of the multi-variate
normal distribution and the area of spherical triangles. This was previously carried out in [21] in
the context of stationary Gaussian processes. It is worthwhile to note that when µ = 0, the spherical
symmetry of sums of normally distributed random variables tells us that the distribution of patterns is
independent of the variance for all n, but this is not the case when µ 6= 0. Again, in any normal random
walk, since the probability density function is nonzero on these regions bounded by hyperplanes,
each permutation appears with positive probability.
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Figure 1. The regions of integration for patterns in uniform random walks for (a) n = 3 and (b) n = 4,
sketched here for b = 0.65.

2.1. Equality in Any Random Walk

Although the distributions of permutations under random walk null models are not uniform,
they are still constrained by the structure of the model, particularly the assumption of independent
steps. This is reflected in the characteristic distribution shapes displayed in Figure 2 and the examples
of Section 4 and throughout the paper. The existence of nontrivial equivalence classes of permutations
that appear with the same frequency in any random walk is an important distinguishing characteristic
of the distributions in this context.

The possible behaviors of these models were recently considered in [27], generalizing the work
in [21,22], in which the authors gave a classification of permutations that must occur with the same
probability in any random walk model. Here, we use related results to characterize empirical pattern
distributions in terms of their proximity to the random walk constraints. It was proven in [21] that in the
case of a random walk with symmetric steps, each permutation, π, appears with the same probability
as its complement, πc where πc(i) := (n + 1)− π(i). However, the assumption of symmetry is quite
strong and will not apply to many real-world time series containing drift or long-term gain, such as
market data.

Nevertheless, in any random walk, a permutation π and its reverse-complement, πrc where πrc(i) :=
(n+ 1)−π(n− i), will appear with the same probability. This observation was made in [21,29]. Applying
time-reversal on substrings of random variables that do not overlap one another, we can obtain slightly
larger classes of permutations guaranteed to occur with the same probability in any random walk.
A combinatorial description of the decomposition of patterns into equivalence classes was obtained
in [30]. The full decomposition into equivalence classes is presented in Appendix B, and we believe
that the explicit classes for n = 4, 5 have not previously appeared in the literature. We apply this result
in Section 3.1 to define a test function for identifying random walk or exchangeable time series.
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(a)
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P Z
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Figure 2. The distribution of patterns of length n = 4, listed in lexicographical order , for (a) the normal
random walk with µ = 0, (b) the uniform random walk with P(Y > 0) = 0.5 and (c) the uniform
random walk with P(Y > 0) = 0.65.
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3. KL Divergence Method

As described in Section 1.2, it is natural to interpret the permutation entropy of a time series
as a measure of the divergence of the distribution of ordinal patterns from the uniform distribution as
exhibited by white noise. Here, we compute the KL divergence of the distribution of patterns from
those in an associated random walk model. That is, for a time series X, a specified random walk null
model Z and a fixed n, we determine the deviation from the model by computing:

DKLn(X) := DKLn(X||Z) = ∑
π∈Sn

pπ log
(

pπ

qπ

)
,

where pπ is the relative frequency of π in X and qπ is the relative frequency of π in Z.
This perspective is relevant for data that are expected to be generated from a random walk process,

such as stock closing prices, because the null model more accurately reflects the underlying generative
process. Thus, the KL divergence method allows us to more accurately explain the behavior of these
time series. Additionally, observed deviations from the model are more meaningful in this setting
since the random walk is chosen as a purposeful null model, rather than occurring as an artifact, as in
the case of permutation entropy.

For the applications of this method in Section 6, to a time series X = {Xt}N
t=1, we take as a null

model the random walk whose steps agree with those of {X2−X1, X3−X2, . . . , XN −XN−1} and refer
to Z as the random walk associated with X. To estimate the distribution of patterns in Z, we sample
uniformly at random from {X2−X1, X3−X2, . . . , XN −XN−1} and construct a random walk of length
M� N for comparison.

This approach has two advantages: first, we need not artificially select a particular inferential
framework, and second, it allows us to control for variance by generating many samples and comparing
them to the observed data. Differences between the models and the empirical time series are then
related to the correlation between the steps. Alternative methods for choosing a null model are
discussed in Section 4. We apply this method to a variety of data, including some periodic and heart
rate data, in Section 6.

3.1. Simple Validation Measure

Using the structure of patterns in random walks as described in Section 2.1, we define a simple
test for determining whether a random walk may be an appropriate choice of model based on these
equivalence classes. For a fixed n, we denote the equivalence classes of permutations occurring with
the same probability in any random walk by Λi ⊂ Sn and define µi =

1
|Λi | ∑π∈Λi

pπ . We let gn(X) be
total variation from the mean across each equivalence class:

gn(X) = ∑
Λi⊂Sn

∑
π∈Λi

|pπ − µi|.

Observe that for any random walk null model, we must have:

lim
N→∞

gn(X) = 0.

Thus, gn(X) is a measure of the amount of the distribution of permutations that remains
unexplained by any random walk model. Indeed, this is also true for time series models where
the sequence of random variables is exchangeable, as well.

To illustrate this property, we compared the rate convergence of gn for a simulated symmetric
normal random walk, X, and simulated uncorrelated white noise, X′. For length N = 1000, we obtain
g4(X) ≈ 0.0459, g5(X) ≈ 0.1419, and similarly, g4(X′) ≈ 0.0533 and g5(X′) ≈ 0.1499. For X and X′

of length N = 5000, we obtain g4(X) = 0.0138, g5(X) = 0.0671 and g4(X′) ≈ 0.0278, g5(X′) ≈ 0.0696,
where it remains for larger N. When N = 10, 000, these values have fallen to g4(X) ≈ 0.0078,
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g5(X) ≈ 0.0331 and g4(X′) ≈ 0.0171, g5(X′) ≈ 0.0460. This exhibits the expected behavior since gn(X)

and gn(X′) approach zero in the limit. Moreover, we observe that the random walk and the i.i.d. model
appear to converge at the same rate, suggesting that the discrepancy is caused by the finite number
of time steps.

As an example of a model that does not respect these classes, consider a finite sequence of random
variables Z = {Zi}N

i=1 and Zi = ∑n−1
j=1 Yj where the steps Yj are drawn from:

Yj =

{
U([−0.5, 0.5]) Yj−1 ≥ 0

U([0,−Yj−1]) Yj−1 < 0.

In this case, the pattern 1243 occurs with a relatively high frequency, but the pattern 2134 is
forbidden, leading to a large value for gn(T). Notice that Z is not a random walk, as defined in
Section 1.3, because the steps Yj are not i.i.d. or even exchangeable, and hence, this sequence does not
contradict our previous discussion.

A limitation of this method is that equivalence classes for 12 . . . (n−1)n and n(n−1) . . . 21 consist of a
single permutation and so will never contribute to the value of gn. Additionally, the convergence of gn

to zero can be slow even for data drawn directly from a null model. An alternative measure is suggested
by the discussion in Section 2, which gives that P(12 . . . (n−1)n) = bn−1 and P(n(n−1) . . . 21) =

(1− b)n−1. Therefore, if a time series X is modeled by a random walk, we expect:

ε+n := p12...(n−1)n − (p12)
n−1 ≈ 0 and ε−n := pn(n−1)...21 − (p21)

n−1 ≈ 0.

In Section 7, we calculate ε+n and ε−n for several stocks in order to describe the effects of market
momentum in the data.

4. Motivating Examples

We present examples highlighting the differences between our models and the i.i.d. model related
to white noise. This allows us to demonstrate that for some datasets, the distributions derived from
a random walk model match empirical data quite closely compared to the uniform distribution.

We begin by constructing a time series of length 2000 from a uniform random walk by fixing
b = P(Y > 0) = 0.65 and compare the distribution of patterns of length four to the values derived from
Section 2, as well as the uniform values of 1

24 . Figure 3 displays these results: the observed distribution
is plotted in blue (a), while the two possible null models, i.e., the random walk null model (b) and the
uniform distribution of patterns (c), are plotted in orange.

As expected, the observed values match the null model distributions much more closely than the
uniform distribution. Note that the expected and observed values on the left do not match exactly
because the empirical time series has a finite length. This is a common feature of time series data that
is observed throughout this paper.
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Figure 3. The distribution of patterns of length n = 4 in a length 2000 uniform random walk with
b = 0.65 (a). The true distribution of patterns in the uniform random walk with P(Y > 0) = 0.65 (b) is
a much closer fit than the uniform distribution of patterns in white noise (c).
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We next consider a similar analysis for economic market data, using the daily closing prices of the
S&P 500 over a seven-year period (N = 2000). For this example, we need to estimate an underlying
distribution. To do this, we calculate the sequence of steps {Xt+1 − Xt}N−1

t=1 (called the stock returns)
and find the best fit normal curve; in this case, obtaining parameters (µ, σ) = (0.702, 14.945). The null
model for S&P 500 is the distribution of patterns for the normal random walk with these parameters.
Using a simulated normal random walk, we approximate the distribution of patterns for a fixed
n. This null model is shown in Figure 4 for n = 4, 5, and again, these data display a non-uniform
distribution similar to those in Figures 2 and 3. This reinforces our conclusion that modeling some
time series with random walk null models more effectively describes the behavior than does the
uniform distribution.

0.05

0.1

0.15

p π

(a)

0.02

0.04

0.06

p π

(b)

Figure 4. The distribution of patterns, listed in lexicographical order, for the uniform random walk null
model for closing prices in the S&P 500 of length (a) n = 4 and (b) n = 5. Note that the distributions
are far from uniform as is characteristic of random walk data.

This example was computed with respect to a particular random walk null model; however,
there are many options for the distribution of steps Y. A discussion of the possible inferential processes
for selecting Y given a particular dataset is beyond the scope of this paper. However, for the purposes
of comparing to permutation entropy, we consider several difference choices of Y and compare their
performance to the uniform distribution. These results are summarized in Figure 5 below.

We compare the distributions derived from the actual S&P 500 data to three random walk null
models: (a) the normally-distributed model described above with (µ, σ) = (0.702, 14.945), (b) a uniform
model with P(Y > 0) = p12 = 0.5441 and (c) a uniform model fitting the stock returns with
P(Y > 0) = 0.5279. The error between the expected values and the empirical values is shown for
each permutation in Figure 5. Notice that each of the random walk models significantly outperforms
the uniform distribution. The sum of squared errors for the uniform distribution of patterns is 0.0213
and for each of the models is (a) 0.0018, (b) 0.0027 and (c) 0.0031. Although there is some variance
among the random walk models across the permutations, they each convincingly outperform the
uniform one.

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321
0

0.025

0.05

0.075

0.10

|p
π
−

P Z
(π

)|

Figure 5. Comparison of null model distributions for the S&P 500 data to the uniform distribution.
The difference |pπ − PZ(π)| is plotted for each of the four null models: Y1 = N(0.702, 14.945) (orange),
Y2 = U(0.5441) (blue), Y3 = U(0.5279) (red) and the uniform distribution (gray).
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5. Data Descriptions

Throughout the remainder of this paper, we use several example datasets to evaluate our methods
and compare to traditional approaches. Unless otherwise specified, these time series have N = 2000
data points. These data include synthetic random values, as well as empirical data from economics,
ecology and medicine. Below, we describe the key features of the data and the abbreviations that we
use throughout the paper. Plots of the time series are displayed in Figure A1 Appendix C.

• RAND: A sequence of 2000 uniform random numbers drawn between zero and one;
• NORM RW: A simulated random walk whose steps are drawn at random from the standard

normal distribution, (µ, σ) = (0, 1);
• N-DRIFT RW: A simulated random walk whose steps are drawn at random from the normal

distribution with (µ, σ) = (0.701832, 14.945); this is the normal curve fitted to the returns in the
S&P 500 data below.

• UNIF RW: A simulated random walk whose steps are drawn uniformly at random from the
uniform distribution on the interval [−0.5, 0.5];

• SP500: The daily closing values of the S&P 500 from 24 January 2009–31 December 2016. Data provided
by Morningstar and accessed through [31];

• MEX: Average daily temperatures in Mexico City from 20 June 2011–31 December 2016.
Data provided by the World Meteorological Organization through [31];

• NYC: Average daily temperatures in New York City from 20 June 2011–31 December 2016; data
provided by the National Oceanic and Atmospheric Administration through [31];

• HEART: Instantaneous heart rate measurements taken at 0.5 s intervals collected at the
Massachusetts Institute of Technology [32].

In all cases, random values are generated using Mathematica’s [31] pseudo-random number
generator, and all historical market closing values are provided by Morningstar through Mathematica.
In the final section, we use the daily closing prices of the S&P 500, Apple (AAPL), Amazon (AMZN),
Bank of America (BAC), General Electric (GE), Coca Cola (KO) and United Parcel Service of America
(UPS), for trading days from 1 January 2002–1 January 2017 (N = 3777). Finally, for a longitudinal test,
we use daily closing prices of the S&P 500 from 1 January 1958–1 January 2017 (N = 14, 348).

Table 1 gives the permutation entropy and missing patterns of several different types of datasets
for small values of n. Of particular interest is the fact that missing patterns appear in all datasets for
n = 6, even those that are guaranteed asymptotically to contain all patterns. Additionally, notice that
the permutation entropy values are quite large for many of the noisy and random datasets.
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Table 1. Computations of permutation entropy and the number of forbidden patterns for a range
of time series of length N = 2000 described in Section 5. RAND, a sequence of 2000 uniform
random numbers drawn between zero and one; N-DRIFT RW, a simulated random walk whose
steps are drawn at random from the normal distribution with (µ, σ) = (0.701832, 14.945); NORM RW,
a simulated random walk whose steps are drawn at random from the standard normal distribution,
(µ, σ) = (0, 1); UNIF RW, a simulated random walk whose steps are drawn uniformly at random from
the uniform distribution on the interval [−0.5, 0.5]; MEX, average daily temperatures in Mexico City
from 20 June 2011–31 December 2016.

Data
Forbidden Patterns Permutation Entropy

n = 4 n = 5 n = 6 n = 4 n = 5 n = 6

RAND 0 0 48 0.999 0.992 0.970
NORM RW 0 0 190 0.942 0.916 0.875

N-DRIFT RW 0 0 207 0.932 0.900 0.857
UNIF RW 0 0 216 0.930 0.899 0.855

MEX 0 0 129 0.965 0.952 0.926
NYC 0 0 115 0.962 0.950 0.924
SP500 0 0 199 0.938 0.907 0.863

GE 0 2 210 0.937 0.906 0.863
HEART 0 8 344 0.847 0.813 0.777

6. Applications of KL Divergence Method

In order to directly compare our results to permutation entropy, we computed 1−NPEn(X)

and DKLn(X) for each of the datasets RAND, HEART, MEX, NYC, SP500, GE and NORM RW.
The results are displayed in Figure 6. The permutation entropy is plotted in Figure 6a and the random
walk KL divergence in Figure 6b.
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Figure 6. In (a), we compute 1−NPEn(X) for the time series for n = 4 (in blue) and n = 5 (in orange).
In (b), we compute DKLn(X) for n = 4 and the data of length N = 2000 (blue). We generate 400 random
walks X̂ of length N = 2000 and compute DKLn(X̂) for each. The mean and errors are plotted in gray.

This supports our view that the KL divergence method is frequently a better measure of deviation
from a random walk than permutation entropy. The weather datasets are an interesting example
in which the structure is periodic and hence neither uniformly random, nor a fixed random walk.
Thus, we see moderate performance under both measures. However, notice that NPEn only
slightly distinguishes temperature data and a simulated random walk, but the DKLn measure clearly
separates them.
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To add context to the value of the KL divergence, we simulated 400 random walks, X̂, associated
with X of length N and calculated DKLn(X̂) for each. Using these simulations, we calculate the mean
and standard deviation of the KL divergence of the simulated random walks against the model.
These are plotted in Figure 6b. Notice that the stock data are much better approximated by the random
walk of its steps than any of the other time series.

Finally, in order to determine how the length of the time series affects DKLn, we simulate
a symmetric uniform random walk, X̂, of length N and compare it to the distribution of patterns in the
random walk, as derived in Section 2. The results mirror those of Figure 6. For X̂ of length N = 1000,
DKL4(X̂) ≈ 0.10 and DKL5(X̂) ≈ 0.11. For X̂ of length N = 5000, DKL4(X̂) ≈ 0.07, where it remains
for larger N, DKL5(X̂) ≈ 0.01, and falling to 0.007 when N = 10, 000. This is expected behavior as the
value goes to zero in the limit.

Expanding on our remarks from the previous section, permutation entropy has frequently
been used to study financial time series. For instance, permutation entropy and the number of
forbidden patterns for both closing values and returns were suggested as methods for distinguishing
developed and emerging markets with the aim of using these measures to quantify stock market
inefficiency [8]. In this analysis, permutation entropy of returns was correlated with either being
a developed or an emerging market, with emerging markets having smaller permutation entropy
(i.e., more correlation). We plot these values for our datasets below in Figure 7. Notice that the changes
in heart rate are more correlated than steps in the other time series investigated here. We perform
a more direct comparison of these two approaches in the following section.
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Figure 7. We compute 1−NPEn(X) for the time series of steps {Xt+1 − Xt} for n = 4 (in blue) and
n = 5 (in orange). This can be used as a measure of step independence and was presented in [5] as a
measure of volatility in developing economic markets.

A careful analysis of this method demonstrates some key features that lead us to prefer the explicit
random walk model. First, we note that this measure assigns very low values to all of the stock data.
As we will see in the next section, this property limits the amount of information that can be extracted.
Secondly, we note that the measure does not clearly distinguish the periodic weather data from the
random walks. Finally, the permutation entropy of the steps discovers a relatively high value for i.i.d.
randomly drawn data points because the differences between the random variables is not independent.

7. Inefficiency in Financial Markets

In this final section, we analyze the stock market data more closely using the KL method and
measure of momentum introduced above. The economic heuristic suggests that the most appropriate
model of the stock market is that of the random walk; see for example [19]. Moreover, since a market
whose prices are modeled by a random walk is considered efficient, the divergence of a market from
that of a random walk serves as a measure of inefficiency [19]. Quantifying market inefficiency is
an important and well-studied question in finance. Applying our method from Section 3 to a variety
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of stocks, we posit that a measure of inefficiency using the KL divergence from a random walk null
model is preferable to the permutation entropy of returns. First, using the measures:

ε+n := p12...(n−1)n − (p12)
n−1 and ε−n := pn(n−1)...21 − (p21)

n−1

that we developed in Section 3.1, we capture the momentum phenomena observed in financial
markets. Indeed, ε+n > 0 suggests a presence of upward momentum and ε−n > 0 suggests a presence
of downward momentum. As depicted in Figure 8, for each of the stocks considered, the values of ε+4
and ε−4 are positive, suggesting the presence of both upward and downward momentum in these
markets. Both of these results accord with economic data reported by the National Bureau of Economic
Research [33,34].

SP
50

0

G
E

A
A

PL

BA
C

K
O

U
PS

A
M

Z
N

0

0.01

0.02

ε n

Figure 8. Values of ε+4 in blue and ε−4 in red. Larger values of ε+n (respectively ε−n ) correspond to
markets containing more increasing (respectively decreasing) runs than predicted by the independent
steps of the random walk model.

Although the previous result suggests that a random walk may not capture all of the information
about the stock behavior since the momentum is a measure of the correlation of the steps, which
we have assumed to be i.i.d., we conclude with two examples demonstrating the advantages of the
random walk divergence over the permutation entropy of returns. For each of the stocks under
consideration, we form 400 random walks, X̂, associated with X of length N = 3777 (the length of X).
Then, to determine the significance of DKL4(X), we compute DKL4(X̂) for each.

The results of this experiment are presented in Figure 9. It is clear from the figure that Apple
stock (AAPL) is furthest from a random walk, perhaps a result of calendar year phenomena associated
the release of new products. On the other hand, large industrial stocks such as General Electric,
Coke and United Parcel Service (respectively GE, KO and UPS) adhere more closely to the random
walk model and are considered more efficient markets in this analysis.

SP
50

0

G
E

A
A

PL

BA
C

K
O

U
PS

A
M

Z
N

0

2

4

·10−3

1
−

N
PE

n

(a)

SP
50

0

G
E

A
A

PL

BA
C

K
O

U
PS

A
M

Z
N

0

2

4

6

8

·10−3

D
K

L
n

(b)

Figure 9. In (a), we compute 1−NPEn(X) for the time series of steps for n = 4 (in blue) and n = 5
(in orange). In (b), we compute DKLn(X) for n = 4 and the data of length N = 2000 (blue). We generate
400 random walks X̂ (associated with X) of length N = 2000 and compute DKLn(X̂) for each. The mean
and errors are plotted in gray.
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As a final application of these methods, we use historical S&P500 closing prices from
January 1958–January 2017 and plot our measure of inefficiency, DKL4, over time, comparing to the
permutation entropy of the steps. For each year from 1960–2014, for the five-year range surrounding the
year (i.e., from 1 January of two years prior to 31 December of two years after, N ≈ 1258), we compute
DKL4 for the S&P500 in Figure 10 below.
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Figure 10. Computation of DKL4 (orange) and the permutation entropy of the steps (blue) on historical
S&P500 daily closing prices during each five-year window surrounding the year on the x-axis.
Both of these metrics can be treated as a proxy for inefficiency, but the DKL4 provides significantly
more information.

The general trends depicted in the plot of DKL4 resonate with the evolution of technology
and economic events of that time, while the permutation entropy of the steps is less informative.
In particular, we can see the decline in inefficiency as a result of computerized trading, as well as the
stock market crash of 1989, the 2000 technology bubble and the 2008 financial crisis causing an increase
in variability and distance from the model. The results presented here are similar to those in [4] for the
Shanghai and Shenzhen Stock Exchanges.

8. Summary and Conclusions

In order to account for the observed behavior of the distribution of ordinal patterns in time series
from economics and other fields, we have introduced a measure of complexity based on random walk
null models. Since much of the structure of the ordinal patterns appearing in these financial time series
is explained by the underlying process of a random walk, this measure is better suited for such time
series than previous methods based on permutation entropy. We provided theoretical and numerical
results on the distribution of patterns in the context of random walk models and provided a set of
tools for analyzing the complexity of data modeled by time series. Additionally, we have applied our
methods to examples from several different domains in order to validate their usefulness.

Based on our experiments, we conclude that the methods introduced in this paper offer significant
advantages for analyzing and understanding the structure in random walk time series. Not all time
series data plausibly arise from random walk processes, but for those that do, the methods presented
in this paper provide a principled method for studying their complexity and inefficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

KL Kullback–Liebler

PE Permutation Entropy

NPE Normalized Permutation Entropy

Appendix A. Null Model Distributions

Here, we give the expected distributions of ordinal patterns for the uniform and normal random
walk models as described in Section 2. Recall that for the normal distribution, the values do not depend
on the variance when the mean is zero. For the uniform distribution, the µ = 0 case is equivalent
to setting b = 1

2 . The classes of patterns that are grouped together in the leftmost column must always
occur with the same probability in any random walk model [30].

Table A1. The values of PZ(π) for the normal distribution with µ = 0 and in the uniform case for
P(Y > 0) = b, where 1

2 ≤ b ≤ 1.

Pattern Normal: µ = 0 Uniform: µ = 0 Uniform: P(Y > 0) = b

{123} 1/4 1/4 b2

{132, 213} 1/8 1/8 (1/2)(1− b)2

{231, 312} 1/8 1/8 (1/2)(b2 + 2b− 1)

{321} 1/4 1/4 (1− b)2

{1234} 0.1250 1/8 b3

{1243, 2134} 0.0625 1/16 (1/2)b(1− b)(3b− 1)

{1324} 0.0417 1/24 (1/3)(1− b)(7b2 − 5b + 1)

{1342, 3124} 0.0208 1/24 (1/6)(1− b)2(4b− 1)

{1423, 2314} 0.0355 1/48 (1/6)(1− b)2(5b− 2)

{1432, 2143, 3214} 0.0270 1/48

{
(1/6)(2− 24b + 48b2 − 15b3) if b ≤ 2/3
(b− 1)2(2b− 1) if b > 2/3

{2341, 3412, 4123} 0.0270 1/48 (1/6)(1− b)3

{2413} 0.0146 1/48 (1/6)(1− b)3

{2431, 4213} 0.0208 1/24

{
(1/6)(24b3 − 45b2 + 27b− 5) if b ≤ 2/3
(1/2)(1− b)3 if b > 2/3

{3142} 0.0146 1/48

{
(1/6)(25b3 − 48b2 + 30b− 6) if b ≤ 2/3
(1/3)(1− b)3 if b > 2/3

{3241, 4132} 0.0355 1/48 (1/6)(1− b)3

{3421, 4312} 0.0625 1/16 (1/2)(1− b)3

{4231} 0.0417 1/24 (1/3)(1− b)3

{4321} 0.1250 1/8 (1− b)3
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Appendix B. Permutation Equivalence Classes

In [27,30], the authors defined equivalence relation on permutations by π ∼ τ if PZ(π) = PZ(τ)

for any random walk, Z. They show that π ∼ τ if the permutations can be related by a sequence
of combinatorial moves. For completeness, we list the equivalence classes described by their result.
Although the existence of these classes was categorized theoretically, we believe this is the first time
they have been explicitly computed [27]. These classes are used to define the function gn in Section 3.1.

For n = 3, the classes are:

{123}, {321}, {132, 213}, {231, 312}.

For n = 4, the classes are:

{1234}, {4321}, {1324}, {4231}, {2413}, {3142}, {1243, 2134}, {1342, 3124}, {1423, 2314},

{2431, 4213}, {3241, 4132}, {3421, 4312}, {2341, 3412, 4123}, {1432, 2143, 3214}.

For n = 5, the classes are:

{12345}, {14325}, {21354}, {21453}, {25314}, {31254}, {41352}, {45312}, {52341}, {54321},

{12543, 32145}, {13245, 12435}, {13425, 14235}, {15243, 32415}, {15342, 42315}, {15432, 43215},

{21345, 12354}, {21435, 13254}, {21543, 32154}, {23145, 12534}, {23415, 15234}, {24153, 31524},

{24315, 15324}, {24513, 35124}, {24531, 53124}, {25134, 23514}, {25341, 52314}, {25413, 35214},

{25431, 53214}, {31245, 12453}, {31425, 14253}, {31542, 42153}, {32514, 25143}, {32541, 52143},

{35142, 42513}, {35241, 52413}, {41235, 13452}, {41253, 31452}, {41325, 14352}, {41523, 34152},

{41532, 43152}, {42135, 13542}, {42351, 51342}, {45231, 53412}, {51324, 24351}, {51423, 34251},

{51432, 43251}, {53142, 42531}, {53241, 52431}, {54123, 34521}, {54132, 43521}, {54213, 35421},

{54231, 53421}, {54312, 45321}, {43125, 14532}, {34125, 14523}, {13524, 24135}, {51243, 32451},

{43512, 45132}, {35412, 52134, 45213, 23541}, {23451, 45123, 34512, 51234},

{21534, 23154, 15423, 34215}.

Appendix C. Data Plots

In this Appendix, we display plots of the datasets described in Section 5 and used throughout the
paper. Plots were generated with Mathematica [31].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A1. Graphs of the time series used throughout this paper; see Section 5. Time series (a–h) are of
length N = 2000. Stock data (i–o), used in Section 7, are closing prices for trading days from
1 January 2002–1 January 2017 and of length N = 3777. (a) RAND; (b) NORM RW; (c) UNIF RW;
(d) N-DRIFT RW; (e) MEX; (f) NYC; (g) GE; (h) HEART; (i) StockSP500; (j) Stock AAPL; (k) Stock
AMZN; (l) Stock BAC; (m) Stock GE; (n) Stock KO; (o) Stock UPS.
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