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Abstract: In high-dimensional data, many sparse regression methods have been proposed. However,
they may not be robust against outliers. Recently, the use of density power weight has been studied
for robust parameter estimation, and the corresponding divergences have been discussed. One such
divergence is the γ-divergence, and the robust estimator using the γ-divergence is known for having
a strong robustness. In this paper, we extend the γ-divergence to the regression problem, consider
the robust and sparse regression based on the γ-divergence and show that it has a strong robustness
under heavy contamination even when outliers are heterogeneous. The loss function is constructed
by an empirical estimate of the γ-divergence with sparse regularization, and the parameter estimate
is defined as the minimizer of the loss function. To obtain the robust and sparse estimate, we propose
an efficient update algorithm, which has a monotone decreasing property of the loss function.
Particularly, we discuss a linear regression problem with L1 regularization in detail. In numerical
experiments and real data analyses, we see that the proposed method outperforms past robust and
sparse methods.
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1. Introduction

In high-dimensional data, sparse regression methods have been intensively studied. The Lasso [1]
is a typical sparse linear regression method with L1 regularization, but is not robust against outliers.
Recently, robust and sparse linear regression methods have been proposed. The robust least angle
regression (RLARS) [2] is a robust version of LARS [3], which replaces the sample correlation by a
robust estimate of correlation in the update algorithm. The sparse least trimmed squares (sLTS) [4] is a
sparse version of the well-known robust linear regression method LTS [5] based on the trimmed loss
function with L1 regularization.

Recently, the robust parameter estimation using density power weight has been discussed by
Windham [6], Basu et al. [7], Jones et al. [8], Fujisawa and Eguchi [9], Basu et al. [10], Kanamori and
Fujisawa [11], and so on. The density power weight gives a small weight to the terms related to
outliers, and then, the parameter estimation becomes robust against outliers. By virtue of this validity,
some applications using density power weights have been proposed in signal processing and machine
learning [12,13]. Among them, the γ-divergence proposed by Fujisawa and Eguchi [9] is known for
having a strong robustness, which implies that the latent bias can be sufficiently small even under
heavy contamination. The other robust methods including density power-divergence cannot achieve
the above property, and the estimator can be affected by the outlier ratio. In addition, to obtain the
robust estimate, an efficient update algorithm was proposed with a monotone decreasing property of
the loss function.
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In this paper, we propose the robust and sparse regression problem based on the γ-divergence.
First, we extend the γ-divergence to the regression problem. Next, we consider a loss function
based on the γ-divergence with sparse regularization and propose an update algorithm to obtain
the robust and sparse estimate. Fujisawa and Eguchi [9] used a Pythagorean relation on the
γ-divergence, but it is not compatible with sparse regularization. Instead of this relation, we use
the majorization-minimization algorithm [14]. This idea is deeply considered in a linear regression
problem with L1 regularization. The MM algorithm was also adopted in Hirose and Fujisawa [15] for
robust and sparse Gaussian graphical modeling. A tuning parameter selection is proposed using a
robust cross-validation. We also show a strong robustness under heavy contamination even when
outliers are heterogeneous. Finally, in numerical experiments and real data analyses, we show that our
method is computationally efficient and outperforms other robust and sparse methods. The R language
software package “gamreg”, which we use to implement our proposed method, can be downloaded at
http://cran.r-project.org/web/packages/gamreg/.

2. Regression Based on γ-Divergence

The γ-divergence was defined for two probability density functions, and its properties were
investigated by Fujisawa and Eguchi [9]. In this section, the γ-divergence is extended to the regression
problem, in other words, defined for two conditional probability density functions.

2.1. γ-Divergence for Regression

We suppose that g(x, y), g(y|x) and g(x) are the underlying probability density functions of (x, y),
y given x and x, respectively. Let f (y|x) be another parametric conditional probability density function
of y given x. Let us define the γ-cross-entropy for regression by:

dγ(g(y|x), f (y|x); g(x))

= − 1
γ

log
∫ (∫

g(y|x) f (y|x)γdy
)

g(x)dx+
1

1 + γ
log
∫ (∫

f (y|x)1+γdy
)

g(x)dx

= − 1
γ

log
∫ ∫

f (y|x)γg(x, y)dxdy +
1

1 + γ
log

∫ (∫
f (y|x)1+γdy

)
g(x)dx f or γ > 0. (1)

The γ-divergence for regression is defined by:

Dγ(g(y|x), f (y|x); g(x)) = −dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x); g(x)). (2)

The γ-divergence for regression was first proposed by Fujisawa and Eguchi [9], and many
properties were already shown. However, we adopt the definition (2), which is slightly different from
the past one, because (2) satisfies the Pythagorean relation approximately (see Section 4).

Theorem 1. We can show that:

(i) Dγ(g(y|x), f (y|x); g(x)) ≥ 0,

(ii) Dγ(g(y|x), f (y|x); g(x)) = 0⇔ g(y|x) = f (y|x) (a.e.),

(iii) lim
γ→0

Dγ(g(y|x), f (y|x); g(x)) =
∫

DKL(g(y|x), f (y|x))g(x)dx,

where DKL(g(y|x), f (y|x)) =
∫

g(y|x) log g(y|x)dy−
∫

g(y|x) log f (y|x)dy.

The proof is in Appendix A. In what follows, we refer to the regression based on the γ-divergence
as the γ-regression.

http://cran.r-project.org/web/packages/gamreg/
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2.2. Estimation for γ-Regression

Let f (y|x; θ) be the conditional probability density function of y given x with parameter θ.
The target parameter can be considered by:

θ∗γ = argmin
θ

Dγ(g(y|x), f (y|x; θ); g(x))

= argmin
θ

dγ(g(y|x), f (y|x; θ); g(x)). (3)

When g(y|x) = f (y|x; θ∗), we have θ∗γ = θ∗.
Let (x1, y1), . . . , (xn, yn) be the observations randomly drawn from the underlying distribution

g(x, y). Using the formula (1), the γ-cross-entropy for regression, dγ(g(y|x), f (y|x; θ); g(x)), can be
empirically estimated by:

d̄γ( f (y|x; θ)) = − 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
.

By virtue of (3), we define the γ-estimator by:

θ̂γ = argmin
θ

d̄γ( f (y|x; θ)). (4)

In a similar way as in Fujisawa and Eguchi [9], we can show the consistency of θ̂γ to θ∗γ under
some conditions.

Here, we briefly show why the γ-estimator is robust. Suppose that y1 is an outlier. The conditional
probability density f (y1|x1; θ) can be expected to be sufficiently small. We see from f (y1|x1; θ) ≈ 0
and (4) that:

argmin
θ

d̄γ( f (y|x; θ))

= argmin
θ

− 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}

≈ argmin
θ

− 1
γ

log

{
1

n− 1

n

∑
i=2

f (yi|xi; θ)γ

}
+

1
1 + γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
.

Therefore, the term f (y1|x1; θ) is naturally ignored in (4). However, for the KL-divergence,
log f (y1|x1; θ) diverges from f (y1|x1; θ) ≈ 0. That is why the KL-divergence is not robust.
The theoretical robust properties are presented in Section 4.

Moreover, the empirical estimation of the γ-cross-entropy with a penalty term can be given by:

Lγ(θ; λ) = d̄γ( f (y|x; θ)) + λP(θ),

where P(θ) is a penalty for parameter θ and λ is a tuning parameter for the penalty term. As an example
of the penalty term, we can consider L1 (Lasso, Tibshirani 1), elasticnet [16], group Lasso [17], fused
Lasso [18], and so on. The sparse γ-estimator can be proposed by:

θ̂S = argmin
θ

Lγ(θ; λ).

To obtain the minimizer, we propose the iterative algorithm by the majorization-minimization
algorithm (MM algorithm) [14].



Entropy 2017, 19, 608 4 of 21

3. Parameter Estimation Procedure

3.1. MM Algorithm for Sparse γ-Regression

The MM algorithm is constructed as follows. Let h(η) be the objective function. Let us prepare
the majorization function hMM satisfying:

hMM(η(m)|η(m)) = h(η(m)),

hMM(η|η(m)) ≥ h(η) for all η,

where η(m) is the parameter of the m-th iterative step for m = 0, 1, 2, . . . Let us consider the iterative
algorithm by:

η(m+1) = argmin
η

hMM(η|η(m)).

Then, we can show that the objective function h(η) monotonically decreases at each step, because:

h(η(m)) = hMM(η(m)|η(m))

≥ hMM(η(m+1)|η(m))

≥ h(η(m+1)).

Note that η(m+1) does not necessarily have to be the minimizer of hMM(η|η(m)). We only need:

hMM(η(m)|η(m)) ≥ hMM(η(m+1)|η(m)).

We construct the majorization function for the sparse γ-regression by the following inequality:

κ(zTη) ≤∑
i

ziη
(m)
i

zTη(m)
κ

[
ηi

zTη(m)

η
(m)
i

]
, (5)

where κ(u) is a convex function, z = (z1, . . . , zn)T, η = (η1, . . . , ηn)T, η(m) = (η
(m)
1 , . . . , η

(m)
n )T, and zi,

ηi and η
(m)
i are positive. The inequality (5) holds from Jensen’s inequality. Here, we take zi =

1
n ,

ηi = f (yi|xi; θ)γ, η
(m)
i = f (yi|xi; θ(m))γ, and κ(u) = − log u in (5). We can propose the majorization

function as follows:

h(θ)

= Lγ(θ; λ)

= − 1
γ

log

{
1
n

n

∑
i=1

f (yi|xi; θ)γ

}
+

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
+λP(θ)

≤ − 1
γ

n

∑
i=1

α
(m)
i log

{
f (yi|xi; θ)γ

1
n ∑n

l=1 f (yl|xl; θ(m))γ

f (yi|xi; θ(m))γ

}

+
1

1+ γ
log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
+ λP(θ)

= −
n

∑
i=1

α
(m)
i log f (yi|xi; θ) +

1
1+ γ

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ)1+γdy

}
+ λP(θ)

+ const

= hMM(θ|θ(m)) + const,
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where α
(m)
i = f (yi|xi;θ(m))γ

∑n
l=1 f (yl |xl ;θ(m))γ and const is a term that does not depend on the parameter θ.

The first term on the original target function h(θ) is a mixture type of densities, which is not
easy to optimize, while the first term on hMM(θ|θ(m)) is a weighted log-likelihood, which is often easy
to optimize.

3.2. Sparse γ-Linear Regression

Let f (y|x; θ) be the conditional density with θ = (β0, β, σ2), given by:

f (y|x; θ) = φ(y; β0 + xTβ, σ2),

where φ(y; µ, σ2) is the normal density with mean parameter µ and variance parameter σ2. Suppose that
P(θ) is the L1 regularization ||β||1. After a simple calculation, we have:

hMM(θ|θ(m)) =
1

2(1+ γ)
log σ2 +

1
2

n

∑
i=1

α
(m)
i

(yi − β0 − xT
i β)2

σ2 + λ||β||1. (6)

This function is easy to optimize by an update algorithm. For a fixed value of σ2, the function hMM
is almost the same as Lasso except for the weight, so that it can be updated using the coordinate decent
algorithm with a decreasing property of the loss function. For a fixed value of (β0, βT)T, the function
hMM is easy to minimize. Consequently, we can obtain the update algorithm in Algorithm 1 with the
decreasing property:

hMM(θ(m+1)|θ(m)) ≤ hMM(θ(m)|θ(m)).

Algorithm 1 Sparse γ-linear regression.

Require: β
(0)
0 , β(0), σ2(0)

repeat m = 0, 1, 2, . . .

α
(m)
i ← φ(yi;β0

(m)+xT
i β(m),σ2(m)

)γ

∑n
l=1 φ(yl ;β0

(m)+xl
T β(m),σ2(m)

)γ
(i = 1, 2, . . . , n).

β0
(m+1) ← ∑n

i=1 α
(m)
i (yi − xi

Tβ(m)).
for do j = 1, . . . , p

βj
(m+1) ←

S
(

∑n
i=1 α

(m)
i (yi−β

(m+1)
0 −r(m)

i,−j)xij, σ2(m)
λ
)

(
∑n

i=1 α
(m)
i x2

ij

) ,

where S(t, λ) = sign(t)(|t| − λ)+ and r(m)
i,−j = ∑k 6=j xik(1(k<j)β

(m+1)
k + 1(k>j)β

(m)
k ).

σ2(m+1) ← (1+γ)∑n
i=1 α

(m)
i (yi−β

(m+1)
0 −xT

i β(m+1))2.
until convergence

Ensure: β̂0, β̂, σ̂2

It should be noted that hMM is convex with respect to parameter β0, β and has the global minimum
with respect to parameter σ2, but the original objective function h is not convex with respect to them,
so that the initial points of Algorithm 1 are important. This issue is discussed in Section 5.4.

In practice, we also use the active set strategy [19] in the coordinate decent algorithm for updating
β(m). The active set consists of the non-zero coordinates of β(m). Specifically, for a given β(m),
we only update the non-zero coordinates of β(m), until they are converged. Then, the non-active
set parameter estimates are updated once. When they remain zero, the coordinate descent algorithm
stops. If some of them do not remain zero, those are added to the active set, and the coordinate descent
algorithm continues.
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3.3. Robust Cross-Validation

In sparse regression, a regularization parameter is often selected via a criterion. Cross-validation
is often used for selecting the regularization parameter. Ordinal cross-validation is based on the
squared error, and it can also be constructed using the KL-cross-entropy with the normal density.
However, the ordinal cross-validation will fail due to outliers. Therefore, we propose the robust
cross-validation based on the γ-cross-entropy. Let θ̂γ be the robust estimate based on the γ-cross-entropy.
The cross-validation based on the γ-cross-entropy can be given by:

RoCV(λ)

= − 1
γ0

log

{
1
n

n

∑
i=1

f (yi|xi; θ̂
[−i]
γ )γ0

}
+

1
1+ γ0

log

{
1
n

n

∑
i=1

∫
f (y|xi; θ̂

[−i]
γ )1+γ0 dy

}
,

where θ̂
[−i]
γ is the γ-estimator deleting the i-th observation and γ0 is an appropriate tuning parameter.

We can also adopt the K-fold cross-validation to reduce the computational task [20].
Here, we give a small modification of the above. We often focus only on the mean structure for

prediction, not on the variance parameter. Therefore, in this paper, θ̂
[−i]
γ =

(
β̂
[−i]
γ , σ̂2[−i]

γ

)
is replaced

by
(

β̂
[−i]
γ , σ̂2

f ix

)
. In numerical experiments and real data analyses, we used σ2(0) as σ2

f ix.

4. Robust Properties

In this section, the robust properties are presented from two viewpoints of latent bias and
Pythagorean relation. The latent bias was discussed in Fujisawa and Eguchi [9] and Kanamori and
Fujisawa [11], which is described later. Using the results obtained there, the Pythagorean relation is
shown in Theorems 2 and 3.

Let f ∗(y|x) = fθ∗(y|x) = f (y|x; θ∗) and δ(y|x) be the target conditional probability density
function and the contamination conditional probability density function related to outliers, respectively.
Let ε and ε(x) denote the outlier ratios, which are independent of and dependent on x, respectively.
Under homogeneous and heterogeneous contaminations, we suppose that the underlying conditional
probability density function can be expressed as:

g(y|x) = (1− ε) f (y|x; θ∗) + εδ(y|x),
g(y|x) = (1− ε(x)) f (y|x; θ∗) + ε(x)δ(y|x).

Let:

νf ,γ(x) =
{∫

δ(y|x) f (y|x)γdy
} 1

γ

(γ > 0),

and let:

νf ,γ =

{∫
νf ,γ(x)γg(x)dx

} 1
γ

.

Here, we assume that:

νfθ∗ ,γ ≈ 0,

which implies that νfθ∗ ,γ(x) ≈ 0 for any x (a.e.) and illustrates that the contamination conditional
probability density function δ(y|x) lies on the tail of the target conditional probability density function
f (y|x; θ∗). For example, if δ(y|x) is the Dirac function at the outlier y†(x) given x, then we have
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νfθ∗ ,γ(x) = f (y†(x)|x; θ∗), which should be sufficiently small because y†(x) is an outlier. In this section,
we show that θ∗γ − θ∗ is expected to be small even if ε or ε(x) is not small. To make the discussion
easier, we prepare the monotone transformation of the γ-cross-entropy for regression by:

d̃γ(g(y|x), f (y|x; θ); g(x))

= − exp {−γdγ(g(y|x), f (y|x; θ); g(x))}

= −
∫
(
∫

g(y|x) f (y|x; θ)γdy) g(x)dx{∫
(
∫

f (y|x; θ)1+γdy) g(x)dx
} γ

1+γ

.

4.1. Homogeneous Contamination

Here, we provide the following proposition, which was given in Kanamori and Fujisawa [11].

Proposition 1.

d̃γ(g(y|x), f (y|x; θ); g(x))

= (1− ε)d̃γ( f (y|x; θ∗), f (y|x; θ); g(x))−
εν

γ
fθ ,γ{∫

(
∫

f (y|x; θ)1+γdy) g(x)dx
} γ

1+γ

.

Recall that θ∗γ and θ∗ are also the minimizers of d̃γ(g(y|x), f (y|x; θ); g(x)) and d̃γ( f (y|x; θ∗),
f (y|x; θ); g(x)), respectively. We can expect νfθ ,γ ≈ 0 from the assumption νfθ∗ ,γ ≈ 0 if the tail behavior
of f (y|x; θ) is close to that of f (y|x; θ∗). We see from Proposition 1 and the condition νfθ ,γ ≈ 0 that:

θ∗γ = argmin
θ

d̃γ(g(y|x), f (y|x; θ); g(x))

= argmin
θ

[
(1− ε)d̃γ( f (y|x; θ∗), f (y|x; θ); g(x))

−
εν

γ
fθ ,γ{∫

(
∫

f (y|x; θ)1+γdy) g(x)dx
} γ

1+γ


≈ argmin

θ

(1− ε)d̃γ( f (y|x; θ∗), f (y|x; θ); g(x))

= θ∗.

Therefore, under homogeneous contamination, it can be expected that the latent bias θ∗γ − θ∗ is
small even if ε is not small. Moreover, we can show the following theorem, using Proposition 1.

Theorem 2. Let ν = max{νfθ ,γ, νfθ∗ ,γ}. Then, the Pythagorean relation among g(y|x), f (y|x; θ∗), f (y|x; θ)

approximately holds:

Dγ(g(y|x), f (y|x; θ); g(x))−Dγ(g(y|x), f (y|x; θ∗); g(x))

= Dγ( f (y|x; θ∗), f (y|x; θ); g(x)) +O(νγ).

The proof is in Appendix A. The Pythagorean relation implies that the minimization of
the divergence from f (y|x; θ) to the underlying conditional probability density function g(y|x) is
approximately the same as that to the target conditional probability density function f (y|x; θ∗).
Therefore, under homogeneous contamination, we can see why our proposed method works well in
terms of the minimization of the γ-divergence.
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4.2. Heterogeneous Contamination

Under heterogeneous contamination, we assume that the parametric conditional probability
density function f (y|x; θ) is a location-scale family given by:

f (y|x; θ) =
1
σ

s
(

y− q(x; ξ)

σ

)
,

where s(y) is a probability density function, σ is a scale parameter and q(x; ξ) is a location function
with a regression parameter ξ, e.g., q(x; ξ) = ξTx. Then, we can obtain:

∫
f (y|x; θ)1+γdy =

∫ 1
σ1+γ

s
(

y− q(x; ξ)

σ

)1+γ

dy

= σ−γ
∫

s(z)1+γdz.

That does not depend on the explanatory variable x. Here, we provide the following proposition,
which was given in Kanamori and Fujisawa [11].

Proposition 2.

d̃γ(g(y|x), f (y|x; θ); g(x))

= cd̃γ( f (y|x; θ∗), f (y|x; θ); g̃(x))−
∫

νfθ ,γ(x)γε(x)g(x)dx{
σ−γ

∫
s(z)1+γdz

} γ
1+γ

,

where c = (1−
∫

ε(x)g(x)dx)
γ

1+γ and g̃(x) = (1− ε(x))g(x).

The second term
∫

νfθ ,γ(x)γε(x)g(x)dx

{σ−γ
∫

s(z)1+γdz}
γ

1+γ
can be approximated to be zero from the condition νfθ ,γ ≈ 0

and ε(x) < 1 as follows: ∫
νfθ ,γ(x)γε(x)g(x)dx{

σ−γ
∫

s(z)1+γdz
} γ

1+γ

<

∫
νfθ ,γ(x)γg(x)dx{

σ−γ
∫

s(z)1+γdz
} γ

1+γ

=
ν

γ
fθ ,γ{

σ−γ
∫

s(z)1+γdz
} γ

1+γ

≈ 0. (7)

We see from Proposition 2 and (7) that:

θ∗γ = argmin
θ

d̃γ(g(y|x), f (y|x; θ); g(x))

= argmin
θ

[
cd̃γ( f (y|x; θ∗), f (y|x; θ); g̃(x))

−
∫

νfθ ,γ(x)γε(x)g(x)dx{
σ−γ

∫
s(z)1+γdz

} γ
1+γ


≈ argmin

θ

cd̃γ( f (y|x; θ∗), f (y|x; θ); g̃(x))

= θ∗.
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Therefore, under heterogeneous contamination in a location-scale family, it can be expected that
the latent bias θ∗γ − θ∗ is small even if ε(x) is not small. Moreover, we can show the following theorem,
using Proposition 2.

Theorem 3. Let ν = max{νfθ ,γ, νfθ∗ ,γ}. Then, the following relation among g(y|x), f (y|x; θ∗), f (y|x; θ)

approximately holds:

Dγ(g(y|x), f (y|x; θ); g(x))−Dγ(g(y|x), f (y|x; θ∗); g(x))

= Dγ( f (y|x; θ∗), f (y|x; θ); g̃(x)) +O(νγ).

The proof is in Appendix A. The above is slightly different from a conventional Pythagorean
relation, because the base measure changes from g(x) to g̃(x) in part. However, it also implies that
the minimization of the divergence from f (y|x; θ) to the underlying conditional probability density
function g(y|x) is approximately the same as that to the target conditional probability density function
f (y|x; θ∗). Therefore, under heterogeneous contamination in a location-scale family, we can see why
our proposed method works well in terms of the minimization of the γ-divergence.

4.3. Redescending Property

First, we review a redescending property on M-estimation (see, e.g., [21]), which is often used
in robust statistics. Suppose that the estimating equation is given by ∑n

i=1 ζ(zi; θ) = 0. Let θ̂ be a
solution of the estimating equation. The bias caused by outlier zo is expressed as θ̂n=∞ − θ∗, where
θ̂n=∞ is the limiting value of θ̂ and θ∗ is the true parameter. We hope the bias is small even if the
outlier zo exists. Under some conditions, the bias can be approximated to εIF(zo; θ∗), where ε is a small
outlier ratio and IF(z; θ∗) is the influence function. The bias is expected to be small when the influence
function is small. The influence function can be expressed as IF(z; θ∗) = Aζ(z; θ∗), where A is a matrix
independent of z, so that the bias is also expected to be small when ζ(zo; θ∗) is small. In particular,
the estimating equation is said to have a redescending property if ζ(z; θ∗) goes to zero as ||z|| goes to
infinity. This property is favorable in robust statistics, because the bias is expected to be sufficiently
small when zo is very large.

Here, we prove a redescending property on the sparse γ-linear regression, i.e., when
f (y|x; θ) = φ(y; β0 + xTβ, σ2) with θ = (β0, β, σ2) for fixed x. Recall that the estimate of the sparse
γ-linear regression is the minimizer of the loss function:

Lγ(θ; λ) = − 1
γ

log

{
1
n

n

∑
i=1

φ(yi; β0 + xi
Tβ, σ2)γ

}
+ bγ(θ; λ),

where bγ(θ; λ) = 1
1+γ log

{
1
n ∑n

i=1
∫

φ(y; β0 + xi
Tβ, σ2)1+γdy

}
+ λ||β||1 Then, the estimating equation

is given by:

0 =
∂

∂θ
Lγ(θ; λ)

= −∑n
i=1 φ(yi; β0 + xi

Tβ, σ2)γs(yi|xi; θ)

∑n
i=1 φ(yi; β0 + xi

Tβ, σ2)γ
+

∂

∂θ
bγ(θ; λ),

where s(y|x; θ) =
∂ log φ(y;β0+xT β,σ2)

∂θ . This can be expressed by the M-estimation formula given by:

0 =
n

∑
i=1

ψ(yi|xi; θ),

where ψ(y|x; θ) = φ(y; β0 + xTβ, σ2)γs(y|x; θ)− φ(y; β0 + xTβ, σ2)γ ∂
∂θ bγ(θ; λ). We can easily show that

as ||y|| goes to infinity, φ(y; β0 + xTβ, σ2) goes to zero and φ(y; β0 + xTβ, σ2)s(y|x; θ) also goes to zero.
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Therefore, the function ψ(y|x; θ) goes to zero as ||y|| goes to infinity, so that the estimating equation
has a redescending property.

5. Numerical Experiment

In this section, we compare our method (sparse γ-linear regression) with the representative sparse
linear regression method, the least absolute shrinkage and selection operator (Lasso) [1], and the
robust and sparse regression methods, sparse least trimmed squares (sLTS) [4] and robust least angle
regression (RLARS) [2].

5.1. Regression Models for Simulation

We used the simulation model given by:

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + e, e ∼ N(0, 0.52).

The sample size and the number of explanatory variables were set to be n = 100 and p = 100, 200,
respectively. The true coefficients were given by:

β1 = 1, β2 = 2, β4 = 4, β7 = 7, β11 = 11,

βj = 0 for j ∈ {0, . . . , p}\{1, 2, 4, 7, 11}.

We arranged a broad range of regression coefficients to observe sparsity for various degrees of
regression coefficients. The explanatory variables were generated from a normal distribution N(0, Σ)
with Σ = (ρ|i−j|)1≤i,j≤p. We generated 100 random samples.

Outliers were incorporated into simulations. We investigated two outlier ratios (ε = 0.1 and 0.3)
and two outlier patterns: (a) the outliers were generated around the middle part of the explanatory
variable, where the explanatory variables were generated from N(0, 0.52) and the error terms were
generated from N(20, 0.52); (b) the outliers were generated around the edge part of the explanatory
variable, where the explanatory variables were generated from N(−1.5, 0.52) and the error terms were
generated from N(20, 0.52).

5.2. Performance Measure

The root mean squared prediction error (RMSPE) and mean squared error (MSE) were examined
to verify the predictive performance and fitness of regression coefficient:

RMSPE(β̂) =

√
1
n

n

∑
i=1

(y∗i − x∗i
T β̂)2,

MSE =
1

p + 1

p

∑
j=0

(β∗j − β̂j)
2,

where (x∗i , y∗i ) (i = 1, . . . , n) is the test sample generated from the simulation model without outliers
and β∗j ’s are the true coefficients. The true positive rate (TPR) and true negative rate (TNR) were also
reported to verify the sparsity:

TPR(β̂) =
|{j ∈ {1, . . . , p} : β̂j 6= 0∧ β∗j 6= 0}|
|{j ∈ {1, . . . , p} : β∗j 6= 0}| ,

TNR(β̂) =
|{j ∈ {1, . . . , p} : β̂j = 0∧ β∗j = 0}|
|{j ∈ {1, . . . , p} : β∗j = 0}| .
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5.3. Comparative Methods

In this subsection, we explain three comparative methods: Lasso, RLARS and sLTS.
Lasso is performed by the R-package “glmnet”. The regularization parameter λLasso is selected by

grid search via cross-validation in “glmnet”. We used “glmnet” by default.
RLARS is performed by the R-package “robustHD”. This is a robust version of LARS [3].

The optimal model is selected via BIC by default.
sLTS is performed by the R-package “robustHD”. sLTS has the regularization parameter λsLTS

and the fraction parameter α of squared residuals used for trimmed squares. The regularization
parameter λsLTS is selected by grid search via BIC. The number of grids is 40 by default. However,
we considered that this would be small under heavy contamination. Therefore, we used 80 grids under
heavy contamination to obtain a good performance. The fraction parameter α is 0.75 by default. In the
case of α = 0.75, the ratio of outlier is less than 25%. We considered this would be small under heavy
contamination and large under low contamination in terms of statistical efficiency. Therefore, we used
0.65, 0.75, 0.85 as α under low contamination and 0.50, 0.65, 0.75 under heavy contamination.

5.4. Details of Our Method

5.4.1. Initial Points

In our method, we need an initial point to obtain the estimate, because we use the iterative
algorithm proposed in Section 3.2. The estimate of other conventional robust and sparse regression
methods would give a good initial point. For another choice, the estimate of RANSAC (random sample
consensus) algorithm would also give a good initial point. In this experiment, we used the estimate of
sLTS as an initial point.

5.4.2. How to Choose Tuning Parameters

In our method, we have to choose some tuning parameters. The parameter γ in the γ-divergence
was set to 0.1 or 0.5. The parameter γ0 in the robust cross-validation was set to 0.5. In our experience,
the result via RoCVis not sensitive to the selection of γ0 when γ0 is large enough, e.g., γ0 = 0.5, 1.
The parameter λ of L1 regularization is often selected via grid search. We used 50 grids in the
range [0.05λ0, λ0] with the log scale, where λ0 is an estimate of λ, which would shrink regression
coefficients to zero. More specifically, in a similar way as in Lasso, we can derive λ0, which shrinks the
coefficients β to zero in hMM(θ|θ(0)) [6] with respect to β, and we used it. This idea was proposed by
the R-package “glmnet”.

5.5. Result

Table 1 is the low contamination case with Outlier Pattern (a). For the RMSPE, our method
outperformed other comparative methods (the oracle value of the RMSPE is 0.5). For the TPR and TNR,
sLTS showed a similar performance to our method. Lasso presented the worst performance, because it
is sensitive to outliers. Table 2 is the heavy contamination case with Outlier Pattern (a). For the RMSPE,
our method outperformed other comparative methods except in the case (p, ε, ρ) = (100, 0.3, 0.2) for
sLTS with α = 0.5. Lasso also presented a worse performance, and furthermore, sLTS with α = 0.75
showed the worst performance due to a lack of truncation. For the TPR and TNR, our method
showed the best performance. Table 3 is the low contamination case with Outlier Pattern (b). For the
RMSPE, our method outperformed other comparative methods (the oracle value of the RMSPE is 0.5).
For the TPR and TNR, sLTS showed a similar performance to our method. Lasso presented the worst
performance, because it is sensitive to outliers. Table 4 is the heavy contamination case with Outlier
Pattern (b). For the RMSPE, our method outperformed other comparative methods. sLTS with α = 0.5
showed the worst performance. For the TPR and TNR, it seems that our method showed the best
performance. Table 5 is the no contamination case. RLARS showed the best performance, but our
method presented comparable performances. In spite of no contamination case, Lasso was clearly
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worse than RLARS and our method. This would be because the underlying distribution can generate a
large value in simulation, although it is a small probability.

Table 1. Outlier Pattern (a) with p = 100, 200, ε = 0.1 and ρ = 0.2, 0.5. RMSPE, root mean squared
prediction error (RMSPE); RLARS, robust least angle regression; sLTS, sparse least trimmed squares.

p = 100, ε = 0.1, ρ = 0.2 p = 100, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 3.04 9.72 × 10−2 0.936 0.909 3.1 1.05 × 10−1 0.952 0.918
RLARS 0.806 6.46 × 10−3 0.936 0.949 0.718 6.7 × 10−3 0.944 0.962

sLTS (α = 0.85, 80 grids) 0.626 1.34 × 10−3 1.0 0.964 0.599 1.05 × 10−3 1.0 0.966
sLTS (α = 0.75, 80 grids) 0.651 1.71 × 10−3 1.0 0.961 0.623 1.33 × 10−3 1.0 0.961
sLTS (α = 0.65, 80 grids) 0.685 2.31 × 10−3 1.0 0.957 0.668 1.76 × 10−3 1.0 0.961

sparse γ-linear reg (γ = 0.1) 0.557 6.71 × 10−4 1.0 0.966 0.561 6.99 × 10−4 1.0 0.965
sparse γ-linear reg (γ = 0.5) 0.575 8.25 × 10−4 1.0 0.961 0.573 9.05 × 10−4 1.0 0.959

p = 200, ε = 0.1, ρ = 0.2 p = 200, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 3.55 6.28 × 10−2 0.904 0.956 3.37 6.08 × 10−2 0.928 0.961
RLARS 0.88 3.8 × 10−3 0.904 0.977 0.843 4.46 × 10−3 0.9 0.986

sLTS (α = 0.85, 80 grids) 0.631 7.48 × 10−4 1.0 0.972 0.614 5.77 × 10−4 1.0 0.976
sLTS (α = 0.75, 80 grids) 0.677 1.03 × 10−3 1.0 0.966 0.632 7.08 × 10−4 1.0 0.973
sLTS (α = 0.65, 80 grids) 0.823 2.34 × 10−3 0.998 0.96 0.7 1.25 × 10−3 1.0 0.967

sparse γ-linear reg (γ = 0.1) 0.58 4.19 × 10−4 1.0 0.981 0.557 3.71 × 10−4 1.0 0.977
sparse γ-linear reg (γ = 0.5) 0.589 5.15 × 10−4 1.0 0.979 0.586 5.13 × 10−4 1.0 0.977

Table 2. Outlier Pattern (a) with p = 100, 200, ε = 0.3 and ρ = 0.2, 0.5.

p = 100, ε = 0.3, ρ = 0.2 p = 100, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 8.07 6.72 × 10−1 0.806 0.903 8.1 3.32 × 10−1 0.8 0.952
RLARS 2.65 1.54 × 10−1 0.75 0.963 2.09 1.17 × 10−1 0.812 0.966

sLTS (α = 0.75, 80 grids) 10.4 2.08 0.886 0.709 11.7 2.36 0.854 0.67
sLTS (α = 0.65, 80 grids) 2.12 3.66 × 10−1 0.972 0.899 2.89 5.13 × 10−1 0.966 0.887
sLTS (α = 0.5, 80 grids) 1.37 1.46 × 10−1 0.984 0.896 1.53 1.97 × 10−1 0.976 0.909

sparse γ-linear reg (γ = 0.1) 1.13 9.16 × 10−2 0.964 0.97 0.961 5.38 × 10−2 0.982 0.977
sparse γ-linear reg (γ = 0.5) 1.28 1.5 × 10−1 0.986 0.952 1.00 8.48 × 10−2 0.988 0.958

p = 200, ε = 0.3, ρ = 0.2 p = 200, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 8.11 3.4 × 10−1 0.77 0.951 8.02 6.51 × 10−1 0.81 0.91
RLARS 3.6 1.7 × 10−1 0.71 0.978 2.67 1.02 × 10−1 0.76 0.984

sLTS (α = 0.75, 80 grids) 11.5 1.16 0.738 0.809 11.9 1.17 0.78 0.811
sLTS (α = 0.65, 80 grids) 3.34 3.01 × 10−1 0.94 0.929 4.22 4.08 × 10−1 0.928 0.924
sLTS (α = 0.5, 80 grids) 4.02 3.33 × 10−1 0.892 0.903 4.94 4.44 × 10−1 0.842 0.909

sparse γ-linear reg (γ = 0.1) 2.03 1.45 × 10−1 0.964 0.924 3.2 2.86 × 10−1 0.94 0.936
sparse γ-linear reg (γ = 0.5) 1.23 7.69 × 10−2 0.988 0.942 3.13 2.98 × 10−1 0.944 0.94
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Table 3. Outlier Pattern (b) with p = 100, 200, ε = 0.1 and ρ = 0.2, 0.5.

p = 100, ε = 0.1, ρ = 0.2 p = 100, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.48 5.31 × 10−2 0.982 0.518 2.84 5.91 × 10−2 0.98 0.565
RLARS 0.85 6.58 × 10−3 0.93 0.827 0.829 7.97 × 10−3 0.91 0.885

sLTS (α = 0.85, 80 grids) 0.734 5.21 × 10−3 0.998 0.964 0.684 3.76 × 10−3 1.0 0.961
sLTS (α = 0.75, 80 grids) 0.66 1.78 × 10−3 1.0 0.975 0.648 1.59 × 10−3 1.0 0.961
sLTS (α = 0.65, 80 grids) 0.734 2.9 × 10−3 1.0 0.96 0.66 1.74 × 10−3 1.0 0.962

sparse γ-linear reg (γ = 0.1) 0.577 8.54 × 10−4 1.0 0.894 0.545 5.44 × 10−4 1.0 0.975
sparse γ-linear reg (γ = 0.5) 0.581 7.96 × 10−4 1.0 0.971 0.546 5.95 × 10−4 1.0 0.977

p = 200, ε = 0.1, ρ = 0.2 p = 200, ε = 0.1, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.39 2.57 × 10−2 0.988 0.696 2.57 2.54 × 10−2 0.944 0.706
RLARS 1.01 5.44 × 10−3 0.896 0.923 0.877 4.82 × 10−3 0.898 0.94

sLTS (α = 0.85, 80 grids) 0.708 1.91 × 10−3 1.0 0.975 0.790 3.40 × 10−3 0.994 0.97
sLTS (α = 0.75, 80 grids) 0.683 1.06 × 10−4 1.0 0.975 0.635 7.40 × 10−4 1.0 0.977
sLTS (α = 0.65, 80 grids) 1.11 1.13 × 10−2 0.984 0.956 0.768 2.60 × 10−3 0.998 0.968

sparse γ-linear reg (γ = 0.1) 0.603 5.71 × 10−4 1.0 0.924 0.563 3.78 × 10−3 1.0 0.979
sparse γ-linear reg (γ = 0.5) 0.592 5.04 × 10−4 1.0 0.982 0.566 4.05 × 10−3 1.0 0.981

Table 4. Outlier Pattern (b) with p = 100, 200, ε = 0.3 and ρ = 0.2, 0.5.

p = 100, ε = 0.3, ρ = 0.2 p = 100, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.81 6.88 × 10−2 0.956 0.567 3.13 7.11 × 10−2 0.97 0.584
RLARS 2.70 7.69 × 10−2 0.872 0.789 2.22 6.1 × 10−2 0.852 0.855

sLTS (α = 0.75, 80 grids) 3.99 1.57 × 10−1 0.856 0.757 4.18 1.54 × 10−1 0.878 0.771
sLTS (α = 0.65, 80 grids) 3.2 1.46 × 10−1 0.888 0.854 2.69 1.08 × 10−1 0.922 0.867
sLTS (α = 0.5, 80 grids) 6.51 4.62 × 10−1 0.77 0.772 7.14 5.11 × 10−1 0.844 0.778

sparse γ-linear reg (γ = 0.1) 1.75 3.89 × 10−2 0.974 0.725 1.47 2.66 × 10−2 0.976 0.865
sparse γ-linear reg (γ = 0.5) 1.68 3.44 × 10−2 0.98 0.782 1.65 3.58 × 10−2 0.974 0.863

p = 200, ε = 0.3, ρ = 0.2 p = 200, ε = 0.3, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 2.71 3.32 × 10−2 0.964 0.734 2.86 3.05 × 10−2 0.974 0.728
RLARS 3.03 4.59 × 10−2 0.844 0.876 2.85 4.33 × 10−2 0.862 0.896

sLTS (α = 0.75, 80 grids) 3.73 7.95 × 10−2 0.864 0.872 4.20 8.17 × 10−2 0.878 0.87
sLTS (α = 0.65, 80 grids) 4.45 1.23 × 10−1 0.85 0.886 3.61 8.95 × 10−2 0.904 0.908
sLTS (α = 0.5, 80 grids) 9.05 4.24 × 10−1 0.66 0.853 8.63 3.73 × 10−1 0.748 0.864

sparse γ-linear reg (γ = 0.1) 1.78 1.62 × 10−2 0.994 0.731 1.82 1.62 × 10−2 0.988 0.844
sparse γ-linear reg (γ = 0.5) 1.79 1.69 × 10−2 0.988 0.79 1.77 1.51 × 10−2 0.996 0.77

Table 5. No contamination case with p = 100, 200, ε = 0 and ρ = 0.2, 0.5.

p = 100, ε = 0, ρ = 0.2 p = 100, ε = 0, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 0.621 1.34 × 10−3 1.0 0.987 0.621 1.12 × 10−3 1.0 0.987
RLARS 0.551 7.15 × 10−4 0.996 0.969 0.543 6.74 × 10−4 0.996 0.971

sLTS (α = 0.75, 40 grids) 0.954 4.47 × 10−3 1.0 0.996 0.899 4.53 × 10−3 1.0 0.993
sparse γ-linear reg (γ = 0.1) 0.564 7.27 × 10−4 1.0 0.878 0.565 6.59 × 10−4 1.0 0.908
sparse γ-linear reg (γ = 0.5) 0.59 1.0 × 10−3 1.0 0.923 0.584 8.47 × 10−4 1.0 0.94

p = 200, ε = 0, ρ = 0.2 p = 200, ε = 0, ρ = 0.5

Methods RMSPE MSE TPR TNR RMSPE MSE TPR TNR

Lasso 0.635 7.18 × 10−4 1.0 0.992 0.624 6.17 × 10−4 1.0 0.991
RLARS 0.55 3.63 × 10−4 0.994 0.983 0.544 3.48 × 10−4 0.996 0.985

sLTS (α = 0.75, 40 grids) 1.01 3.76 × 10−3 1.0 0.996 0.909 2.47 × 10−3 1.0 0.996
sparse γ-linear reg (γ = 0.1) 0.584 4.45 × 10−4 1.0 0.935 0.573 3.99 × 10−4 1.0 0.938
sparse γ-linear reg (γ = 0.5) 0.621 6.55 × 10−4 1.0 0.967 0.602 5.58 × 10−4 1.0 0.966
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5.6. Computational Cost

In this subsection, we consider the CPU times for Lasso, RLARS, sLTS and our method. The data
were generated from the simulation model in Section 5.1. The sample size and the number of
explanatory variables were set to be n = 100 and p = 100, 500, 1000, 2000, 5000, respectively. In Lasso,
RLARS and sLTS, all parameters were used by default (see Section 5.3). Our method used the estimate
of the RANSAC algorithm as an initial point. The number of candidates for the RANSAC algorithm
was set to 1000. The parameters γ and γ0 were set to 0.1 and 0.5, respectively. No method used parallel
computing methods. Figure 1 shows the average CPU times over 10 runs in seconds. All results were
obtained in R Version 3.3.0 with an Intel Core i7-4790K machine. sLTS shows very high computational
cost. RLARS is faster, but does not give a good estimate, as seen in Section 5.5. Our proposed method
is fast enough even for p = 5000.
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Figure 1. CPU times (in seconds).

6. Real Data Analyses

In this section, we use two real datasets to compare our method with comparative methods in
real data analysis. We show the best result of comparative methods among some parameter situations
(e.g., Section 5.3).

6.1. NCI-60 Cancer Cell Panel

We applied our method and comparative methods to regress protein expression on gene
expression data at the cancer cell panel of the National Cancer Institute. Experimental conditions were
set in the same way as in Alfons et al. [4] as follows. The gene expression data were obtained
with an Affymetrix HG-U133A chip and the normalized GCRMAmethod, resulting in a set of
p = 22,283 explanatory variables. The protein expressions based on 162 antibodies were acquired
via reverse-phase protein lysate arrays and log2 transformed. One observation had to be removed
since all values were missing in the gene expression data, reducing the number of observations to
n = 59. Then, the KRT18 antibody was selected as the response variable because it had the largest
MAD among 162 antibodies, i.e., KRT18 may include a large number of outliers. Both the protein
expressions and the gene expression data can be downloaded via the web application CellMiner
(http://discover.nci.nih.gov/cellminer/). As a measure of prediction performance, the root trimmed
mean squared prediction error (RTMSPE) was computed via leave-one-out cross-validation given by:

RTMSPE =

√√√√1
h

h

∑
i=1

(e)2
[i:n],

http://discover.nci.nih.gov/cellminer/
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where e2 = ((y1 − xT
1 β̂[−1])2, . . . , (yn − xT

n β̂[−n])2) and (e)2
[1:n] ≤ · · · ≤ (e)2

[n:n] are the order statistics

of e2 and h = b(n + 1)0.75c. The choice of h is important because it is preferable for estimating
prediction performance that trimmed squares does not include outliers. We set h in the same way as in
Alfons et al. [4], because the sLTS detected 13 outliers in Alfons et al. [4]. In this experiment, we used
the estimate of the RANSAC algorithm as an initial point instead of sLTS because sLTS required high
computational cost with such high dimensional data.

Table 6 shows that our method outperformed other comparative methods for the RTMSPE with
high dimensional data. Our method presented the smallest RTMSPE with the second smallest number
of explanatory variables. RLARS presented the smallest number of explanatory variables, but a much
larger RTMSPE than our method.

Table 6. Root trimmed mean squared prediction error (RTMSPE) for protein expressions based on the
KRT18 antibody (NCI-60 cancer cell panel data), computed from leave-one-out cross-validation.

Methods RTMSPE 1 Selected Variables

Lasso 1.058 52
RLARS 0.936 18

sLTS 0.721 33
Our method (γ = 0.1) 0.679 29
Our method (γ = 0.5) 0.700 30

1 This means the number of non-zero elements.

6.2. Protein Homology Dataset

We applied our method and comparative methods to the protein sequence dataset used for
KDD-Cup 2004. Experimental conditions were set in the same way as in Khan et al. [2] as follows.
The whole dataset consists of n = 145,751 protein sequences, which has 153 blocks corresponding to
native protein. Each data point in a particular block is a candidate homologous protein. There were
75 variables in the dataset: the block number (categorical) and 74 measurements of protein features.
The first protein feature was used as the response variable. Then, five blocks with a total of n = 4141
protein sequences were selected because they contained the highest proportions of homologous
proteins (and hence, the highest proportions of potential outliers). The data of each block were split
into two almost equal parts to get a training sample of size ntra = 2072 and a test sample of size
ntest = 2069. The number of explanatory variables was p = 77, consisting of four block indicators
(Variables 1–4) and 73 features. The whole protein, training and test dataset can be downloaded from
http://users.ugent.be/~svaelst/software/RLARS.html. As a measure of prediction performance,
the root trimmed mean squared prediction error (RTMSPE) was computed for the test sample given by:

RTMSPE =

√√√√1
h

h

∑
i=1

(e)2
[i:ntest ]

,

where e2 = ((y1 − x1
T β̂)2, . . . , (yntest − xT

ntest β̂)
2) and (e)2

[1:ntest ]
≤ · · · ≤ (e)2

[ntest :ntest ]
are the order

statistics of e2 and h = b(ntest + 1)0.99c, b(ntest + 1)0.95c or b(ntest + 1)0.9c. In this experiment,
we used the estimate of sLTS as an initial point.

Table 7 shows that our method outperformed other comparative methods for the RTMSPE.
Our method presented the smallest RTMSPE with the largest number of explanatory variables. It might
seem that other methods gave a smaller number of explanatory variables than necessary.

http://users.ugent.be/~svaelst/software/RLARS.html
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Table 7. Root trimmed mean squared prediction error in the protein test set.

Trimming Fraction

Methods 1% 5% 10% 1 Selected Variables

Lasso 10.697 9.66 8.729 22
RLARS 10.473 9.435 8.527 27

sLTS 10.614 9.52 8.575 21
Our method (γ = 0.1) 10.461 9.403 8.481 44
Our method (γ = 0.5) 10.463 9.369 8.419 42

1 This means the number of non-zero elements.

7. Conclusions

We proposed robust and sparse regression based on the γ-divergence. We showed desirable robust
properties under both homogeneous and heterogeneous contamination. In particular, we presented the
Pythagorean relation for the regression case, although it was not shown in Kanamori and Fujisawa [11].
In most of the robust and sparse regression methods, it is difficult to obtain the efficient estimation
algorithm, because the objective function is non-convex and non-differentiable. Nonetheless,
we succeeded to propose the efficient estimation algorithm, which has a monotone decreasing property
of the objective function by using the MM-algorithm. The numerical experiments and real data analyses
suggested that our method was superior to comparative robust and sparse linear regression methods
in terms of both accuracy and computational costs. However, in numerical experiments, a few results
of performance measure “TNR” were a little less than the best results. Therefore, if more sparsity
of coefficients is needed, other sparse penalties, e.g., the Smoothly Clipped Absolute Deviations
(SCAD) [22] and the Minimax Concave Penalty (MCP)[23], can also be useful.
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Appendix A

Proof of Theorem 1. For two non-negative functions r(x, y) and u(x, y) and probability density
function g(x), it follows from Hölder’s inequality that:

∫
r(x, y)u(x, y)g(x)dxdy ≤

(∫
r(x, y)αg(x)dxdy

) 1
α
(∫

u(x, y)βg(x)dxdy
) 1

β

,

where α and β are positive constants and 1
α + 1

β = 1. The equality holds if and only if

r(x, y)α = τu(x, y)β for a positive constant τ. Let r(x, y) = g(y|x), u(x, y) = f (y|x)γ, α = 1 + γ

and β = 1+γ
γ . Then, it holds that:

∫ (∫
g(y|x) f (y|x)γdy

)
dg(x)

≤
{∫ (∫

g(y|x)1+γdy
)

dg(x)
} 1

1+γ
{∫ (∫

f (y|x)1+γdy
)

dg(x)
} γ

1+γ

.

The equality holds if and only if g(y|x)1+γ = τ( f (y|x)γ)
1+γ

γ , i.e., g(y|x) = f (y|x) because g(y|x)
and f (y|x) are conditional probability density functions. Properties (i), (ii) follow from this inequality,
the equality condition and the definition of Dγ(g(y|x), f (y|x); g(x)).
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Let us prove Property (iii). Suppose that γ is sufficiently small. Then, it holds that
f γ = 1 + γ log f + O(γ2). The γ-divergence for regression is expressed by:

Dγ(g(y|x), f (y|x); g(x))

=
1

γ(1 + γ)
log
∫ {∫

g(y|x)(1+γ log g(y|x)+O(γ2))dy
}

g(x)dx

− 1
γ

log
∫ {∫

g(y|x)(1 + γ log f (y|x) + O(γ2))dy
}

g(x)dx

+
1

1+γ
log
∫ {∫

f (y|x)(1+γ log f (y|x) + O(γ2))dy
}

g(x)dx

=
1

γ(1+γ)
log

{
1+γ

∫ (∫
g(y|x) log g(y|x)dy

)
g(x)dx+O(γ2)

}
− 1

γ
log
{

1 + γ
∫ (∫

g(y|x) log f (y|x)dy
)

g(x)dx + O(γ2)

}
1

1 + γ
log
{

1 + γ
∫ (∫

f (y|x) log f (y|x)dy
)

g(x)dx + O(γ2)

}
=

1
(1 + γ)

∫ (∫
g(y|x) log g(y|x)dy

)
g(x)dx

−
∫ (∫

g(y|x) log f (y|x)dy
)

g(x)dx + O(γ)

=
∫

DKL(g(y|x), f (y|x))g(x)dx + O(γ).

Proof of Theorem 2. We see that:∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx

=
∫ (∫

{(1−ε) f (y|x; θ∗)+εδ(y|x)} f (y|x; θ)γdy
)

g(x)dx

= (1− ε)

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
g(x)dx

}
+ ε

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

}
.

It follows from the assumption ε < 1
2 that:

{
ε
∫ (∫

δ(y|x) f (y|x; θ)γdy
)

g(x)dx
} 1

γ

<

{
1
2

∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

} 1
γ

<

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

} 1
γ

= ν fθ ,γ.
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Hence, ∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx =

(1−ε)

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
g(x)dx

}
+O

(
ν

γ
fθ ,γ

)
.

Therefore, it holds that:

dγ(g(y|x), f (y|x; θ); g(x))

= − 1
γ

log
∫ (∫

g(y|x) f (y|x; θ)γdy
)

g(x)dx

+
1

1 + γ
log

∫ (∫
f (y|x; θ)1+γdy

)
g(x)dx

= − 1
γ

log
∫ (∫

f (y|x; θ∗) f (y|x; θ)γdy
)

g(x)dx

+
1

1 + γ
log

∫ (∫
f (y|x; θ)1+γdy

)
g(x)dx

− 1
γ

log(1− ε) + O
(

ν
γ
fθ ,γ

)
= dγ( f (y|x; θ∗), f (y|x; θ); g(x))

− 1
γ

log(1− ε) + O
(

ν
γ
fθ ,γ

)
.

Then, it follows that:

Dγ(g(y|x), f (y|x; θ); g(x))− Dγ(g(y|x), f (y|x; θ∗); g(x))

− Dγ( f (y|x; θ∗), f (y|x; θ); g(x))

= {−dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x; θ); g(x))}
− {−dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x; θ∗); g(x))}
− {−dγ( f (y|x; θ∗), f (y|x; θ∗); g(x)) + dγ( f (y|x; θ∗), f (y|x; θ); g(x))}
= dγ(g(y|x), f (y|x; θ); g(x))− dγ( f (y|x; θ∗), f (y|x; θ); g(x))

−dγ(g(y|x), f (y|x; θ∗); g(x))+dγ( f (y|x; θ∗), f (y|x; θ∗); g(x))

= O (νγ) .

Proof of Theorem 3. We see that:∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx

=

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
(1− ε(x))g(x)dx

+
∫ (∫

δ(y|x) f (y|x; θ)γdy
)

ε(x)g(x)dx
}

.
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It follows from the assumption ε(x) < 1
2 that:

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
ε(x)g(x)dx

} 1
γ

<

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)

2
dx
} 1

γ

<

{∫ (∫
δ(y|x) f (y|x; θ)γdy

)
g(x)dx

} 1
γ

= ν fθ,γ
.

Hence, ∫ (∫
g(y|x) f (y|x; θ)γdy

)
g(x)dx

=

{∫ (∫
f (y|x; θ∗) f (y|x; θ)γdy

)
(1− ε(x))g(x)dx

}
+ O(νγ

fθ ,γ).

Therefore, it holds that:

dγ(g(y|x), f (y|x; θ); g(x))

= − 1
γ

log
∫ (∫

g(y|x) f (y|x; θ)γdy
)

g(x)dx

+
1

1 + γ
log

∫ (∫
f (y|x; θ)1+γdy

)
g(x)dx

= − 1
γ

log
{∫ (∫

f (y|x; θ∗) f (y|x; θ)γdy
)
(1−ε(x))g(x)dx

}
+ O(νγ

fθ ,γ) +
1

1 + γ
log

∫ (∫
f (y|x; θ)1+γdy

)
g(x)dx

= dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x)) + O(νγ
fθ ,γ)

− 1
1 + γ

log
∫ (∫

f (y|x; θ)1+γdy
)
(1− ε(x))g(x)dx

+
1

1 + γ
log

∫ (∫
f (y|x; θ)1+γdy

)
g(x)dx

= dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))

+ O(νγ
fθ ,γ)−

1
1 + γ

log
{

1−
∫

ε(x)g(x)dx
}

.
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Then, it follows that:

Dγ(g(y|x), f (y|x; θ); g(x))

− Dγ(g(y|x), f (y|x; θ∗); g(x))

− Dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))

= {−dγ(g(y|x), g(y|x); g(x)) + dγ(g(y|x), f (y|x; θ); g(x))}
− {−dγ(g(y|x), g(y|x); g(x))+dγ(g(y|x), f (y|x; θ∗); g(x))}
− {−dγ( f (y|x; θ∗), f (y|x; θ∗); (1− ε(x))g(x))

+dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))}
= dγ(g(y|x), f (y|x; θ); g(x))

− dγ( f (y|x; θ∗), f (y|x; θ); (1− ε(x))g(x))

− dγ(g(y|x), f (y|x; θ∗); g(x))

+ dγ( f (y|x; θ∗), f (y|x; θ∗); (1− ε(x))g(x))

= O (νγ) .
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