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Abstract: Monthly streamflow has elements of stochasticity, seasonality, and periodicity. Spectral 
analysis and time series analysis can, respectively, be employed to characterize the periodical 
pattern and the stochastic pattern. Both Burg entropy spectral analysis (BESA) and configurational 
entropy spectral analysis (CESA) combine spectral analysis and time series analysis. This study 
compared the predictive performances of BESA and CESA for monthly streamflow forecasting in 
six basins in Northwest China. Four criteria were selected to evaluate the performances of these two 
entropy spectral analyses: relative error (RE), root mean square error (RMSE), coefficient of 
determination (R2), and Nash–Sutcliffe efficiency coefficient (NSE). It was found that in Northwest 
China, both BESA and CESA forecasted monthly streamflow well with strong correlation. The 
forecast accuracy of BESA is higher than CESA. For the streamflow with weak correlation, the 
conclusion is the opposite. 

Keywords: monthly streamflow forecasting; Burg entropy; configurational entropy; entropy 
spectral analysis time series analysis 

 

1. Introduction 

Accurate streamflow forecasting is important for developing measures to flood control, river 
training, navigation, reservoir operation, hydropower generation plan and water resources 
management. Time series models, such as autoregressive (AR) or autoregressive moving average 
(ARMA) models, as proposed by Box and Jenkins [1], are generally used for monthly streamflow 
forecasting [2–4]. These models assume that streamflow time series is stochastic and are linear which 
limits their application [5]. Monthly streamflow time series not only exhibits stochastic characteristics 
but also seasonal and periodic patterns. Entropy spectral analysis can extract important information 
of time series, such as the periodic characteristics [6–11]. Therefore, combining entropy spectral 
theory with time series analysis provides a new way for streamflow forecasting. Considering 
frequency f as a random variable, Burg [12] defined entropy, called Burg entropy, and developed an 
algorithm for the estimation of spectral density function of time series using the principle of 
maximum entropy (POME). The algorithm is termed Burg entropy spectral analysis (BESA) and has 
been widely used for spectral analysis of geomagnetic series [13], climate indices [8,14], surface air 
temperature [15], tide levels [16], precipitation and runoff series [17], and flood stage [18]. BESA is 
recommended as better than traditional methods for long-term hydrological forecasting [19–23].  
Huo et al. [24] applied BESA to simulate and predict groundwater in the west of Shandong province 
plain of the Yellow River downstream and achieved satisfactory results. Wang and Zhu [25] 
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considered that implicit periodic components of monthly and annual hydrological time series were 
better identified by BESA. Shen et al. [26] proposed a more rigorous recursion algorithm for 
maximum entropy spectral estimation method. In addition to meeting forward and backward 
minimum error of BESA, the algorithm also needed to satisfy a condition that the optimal prediction 
error was orthogonal to the signal. It was considered that the spectral density resolution of this 
method was higher than that of BESA. Boshnakov and Lambert-Lacroix [27] proposed an extension 
of the periodic Levinson-Durbin algorithm which was considered more reliable. However, multi-
peak spectral density is difficult to determine under non-stationary conditions. Hence, monthly 
streamflow that features strong seasonal and periodic characteristics cannot be well simulated [28]. 

Frieden [29] was the first to use configurational entropy in image reconstruction and Gull and 
Daniell [30] applied it to radio astronomy. Based on the finite length cepstrum model, Wu [31] 
deduced an explicit spectral density function estimation formula and solved the complex calculation 
problem of CESA. Nadeu [32] regarded that spectral estimation precision of CESA was higher than 
that of BESA for both ARMA and MA, while the corresponding precisions were quite similar for AR. 
Katsakos et al. [33] found that the precision was higher when the spectral density of white noise series 
was estimated. Based on the spectral density estimation formula constructed by Wu, Cui, and Singh 
[28] derived a single variable streamflow forecasting model and found that the forecasting accuracy 
of CESA was superior to BESA for 19 different rivers in the US. For monthly streamflow forecasting, 
resolution and reliability of CESA were better than those of BESA. 

The objective of this paper therefore was to compare the forecast performances of BESA and 
CESA for monthly streamflow forecasting in Northwestern China. The paper is organized as follows. 
First, a brief introduction to streamflow forecasting is given. Second, a maximum entropy spectral 
analysis prediction model is derived and evaluation methods are discussed. Third, application to 
streamflow forecasting is discussed. Fourth, results are discussed. Finally, conclusions were given. 

2. Derivation and Evaluation of Maximum Entropy Spectral Analysis Prediction Model 

2.1. Maximum Entropy Model 

Let streamflow time series frequency f be a random variable, and the normalized spectral density 
P(f) be taken as the probability density function. Thus, the Burg entropy can be defined as 

[ ]( ) ln ( ) d
W

B W
H f P f f

−
= −  (1) 

The configurational entropy is defined in the same form as the Shannon entropy and can be 
written as 

[ ]( ) ( ) ln ( ) d
W

C W
H f P f P f f

−
= −   (2) 

where W = 1/(2Δt) is the Nyquist fold-over frequency and f is the frequency that varies from −W to 
W, Δt is the sampling period, P(f) is the normalized spectral density of streamflow series. 

2.2. Constraints for Model 

For a given streamflow time series, the constraints can be formed from the relationship between 
the spectral density P(f) and autocorrelation function ρ(n), which can be written as 

2( ) ( )
W i fn t

W
n P f e df N n Nπρ Δ

−
= − ≤ ≤ ，  (3) 

where Δt is the discretization or sampling interval, and 1i = − . N is normally taken from ¼ up to 
½ of the series length according to the periodicity of streamflow. 
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2.3. Determination of Spectral Density 

To obtain the least biased spectral density P(f) by entropy maximizing, one needs to maximize 
the Burg and configurational entropies. Entropy maximizing can be done by using the method of 
Lagrange multipliers in which the Lagrangian function for the Burg entropy and configurational 
entropies can be formulated as follows: 

[ ] 2( ) ln ( ) ( ) ( )
NW W i fn t

B nW W
n N

L f P f df P f e df nπλ ρΔ

− −
=−

 = − − −     (4) 

[ ] 2( ) ( ) ln ( ) ( ) ( )
NW W i fn t

C nW W
n N

L f P f P f df P f e df nπλ ρΔ

− −
= −

 = − − −     (5) 

where λn, n = 0, 1, 2, …, N, are the Lagrange multipliers. Taking the partial derivative of Equations 
(4) and (5) with respect to P(f) and equating the derivative to zero, the least-biased spectral densities 
P(f) obtained from the maximization of the Burg entropy and configurational entropy, respectively, are 

1( )
exp( 2 )

B N

n
n N

P f
i fn tλ π

=−

= −
− Δ

 
(6) 

2( ) exp( 1 )
N

i fn t
C n

n N

P f e πλ Δ

=−

= − −   (7) 

It can be seen from the above two equations that the spectral density derived from the Burg 
entropy is in the form of inverse of polynomials, while the one from the configurational entropy is in 
the exponential form, which is easier to manipulate. The form in Equation (6) suggests that BESA is 
related to a linear prediction process. 

2.4. Solution of the BESA Model 

The spectral density derived is defined in the same form as the autoregressive model. On the 
basis of minimum of the forward and backward prediction error, a method of parameter estimation 
was presented by Burg, which can be written as 

1 1( ) ( ), 1, 2,..., 1
( )

,
k k k

k
k

a i k a k i i k
a i

k i k
− −+ − = −

=  =
 (8) 

where ( )ka i is the i-th parameter value of the k-order autoregressive model, and the parameter 
kk  is 

estimated by minimizing the forward and backward prediction error. 

1 1
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=
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(9) 

where 0 0( ) ( ) ( )f be t e t x t= = , x(t) is the streamflow time series.  
For configurational entropy, the Lagrange multipliers and the extension of autocorrelation 

function can be computed by cepstrum analysis. Then, Wu [31] deduced the explicit solution based 
on the maximization of configurational entropy. Taking the inverse Fourier transform of the log-
magnitude of Equation (7), it becomes 

[ ]{ }
-

1 ln ( ) exp( 2 ) exp( 2 ) exp( 2 )
NW W

nW W
n N

P f i k t df i fn t i fk t dfπ λ π π
−

= −

 + Δ = − Δ Δ 
 
   (10) 

where the second part of the left side of Equation (10) can be denoted as 
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[ ]( ) ln ( ) exp( 2 )
W

W
e k P f i fk t dfπ

−
= Δ  (11) 

Doing the integration of both sides of Equation (10), one gets 

( )
N

k n k n
n N

e kδ λ δ −
= −

+ = −   (12) 

where δn is the Dirac delta function defined as 

1, 0
0, 0n

n

n
δ

=
=  ≠

 (13) 

Equation (12) can be expanded as a set of N linear equations: 

0

1

= e(0) 1
= e(1)

= e( )N N

λ
λ

λ

− −
−

−


 
(14) 

Equation (14) shows that the Lagrange multipliers can be determined from the values of 
cepstrum which entails the spectral density that is obtained from Equation (7). It is the main 
difference from Burg entropy. 

For convenience of solving for the spectral density function, Nadeu [32] developed a simple 
method for computing cepstrum based on the use of the causal part of autocorrelation, where ρ(n) is 
used only for −N ≤ n ≤ N. Thus, cepstrum can be estimated by the following recursive relation: 

( )
1

1
2 ( ) ( ) 0

( )
0 0

n

k

k
n e k n k n

e n n

n

ρ ρ
−

=

  − − >  =   
 ≤

 ，

，

 (15) 

On the other hand, for the configurational entropy, the autocorrelation is extended with the 
inverse relationship of Equation (15) using the autocepstrum as 

1

1

( )( ) ( ) ( )
2

n

k

e n k
n e k n k

n
ρ ρ

−

=

= + −  (16) 

Therefore, with model order m determined, the autocorrelation function can be estimated as 

1
( ) ( )

m

k
k

m a m k m Nρ ρ
=

= − ≤ ，  (17) 

with extension coefficients ( )k

k
a e k

m
= , and m is the model order. 

Equation (17) extends the autocorrelation function with the configurational entropy maximized. 
Surprisingly, the autocorrelation extends with a linear combination of past lags, which is the same 
with the Burg entropy or the AR method. Thus, Equation (17) can be also written as 

1
( ) ( )

m

k
k

t a t k t Tρ ρ
=

= − > ，  (18) 

where T is the total time period.  
The extended autocorrelation in Equation (18) is a linear combination of the previous values 

weighted with coefficients ka . Burg (1975) suggested weighing time series using the extension 
coefficients as 

1
( ) ( )

m

k
k

x t a x t k t T
=

= − > ，  (19) 

Equation (19) represents the forecast using the entropy-based extended autocorrelation. It has 
been shown by Burg and Krstanovic and Singh [12,19–21] that Equation (19) satisfies the least squares 
prediction. 



Entropy 2017, 19, 597  5 of 14 

 

2.5. Determination of Model Order 

The order of forecasting model m is identified by the Bayesian Information Criterion (BIC) [34]. 
BIC can reduce the order of the model by penalizing free parameters more strongly compared with 
AIC (Akaike information criterion). 

2( ) ln lnBIC m N m Nεσ= +  (20) 

where N is the length of time series and 2
εσ  is the variance of residual.  

2.6. Procedure for Streamflow Forecasting 

The computation procedure for monthly streamflow forecasting is shown in Figure 1. The 
computation steps are as follows: (1) Streamflow data x(t) are normalized with Equation (21). (2) The 
parameters in the model (BESA and CESA) are estimated and the cepstrum values are determined 
for computing the Lagrange multipliers. (3) The forecast order m is identified by the Bayesian 
Information Criterion (BIC) and monthly streamflow is forecasted. (4) The prediction results of 
streamflow series are obtained by inverse normalization and exponential transformation. 

[ ]( ) ln ( )y t zscore x t=  (21) 

where zscore is a standardized function and y(t) is a logarithmic sequence minus the mean divided 
by the standard deviation of the original sequence. 

 
Figure 1. The computation procedure of entropy spectral analysis. 

2.7. Evaluation of Model Forecast Performances 

Four criteria were selected to evaluate the prediction model performance: relative error (RE), 
root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency 
coefficient (NSE). The relative error provides the average magnitude of differences between observed 
values and predicted values relative to observed values. RMSE also represents the difference between 
observed and predicted values, however, it is scale-dependent. The coefficient of determination is 
defined as the square of the coefficient of correlation. It ranges between 0 and 1, and its higher values 
indicate better prediction. The Nash–Sutcliffe efficiency coefficient, defined by Nash and Sutcliffe 
[35], ranges from negative infinity to 1. Higher values of NSE represent more agreement between 
model predictions and observations, and negative values indicate that the model is worse than the 
mean value as a predictor. 

( ) ( )
( )1

1 N
f o

i o

Q i Q i
RE

N Q i=

−
=   (22) 

( ) ( )( )2

1

1

N

o f
i

Q i Q i
RMSE

N
=

−
=

−

  (23) 

input: x(1), x(2), …, x(T) output: x(T+1), x(T+2),..., x(T+N) 

a1, a2, … am

PB(f) and PC(f) 
 

λ1, λ2, …,	λN 

maximizing HB(f) and HC(f) 
ρ(1),	ρ(2), …,	ρ(N) 

m determined by BIC 
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where N is the number of observed streamflow data, Qo(i) is the i-th observed streamflow, Qf(i) is the 
i-th forecasted streamflow, oQ  and fQ  are the average values of observed and forecasted 
streamflow, respectively. 

3. Application to Streamflow Forecasting 

3.1. Observed Data and Characteristics 

The two entropy spectral analysis methods, BESA and CESA, were testedusing observed 
streamflow data from six river sites on the Yellow River, Heihe River, Zamu River, Xiying River, 
Datong River, and Daxia River. The Yellow River has a large drainage area of 752,443 km2, with an 
average monthly streamflow of 633 m3/s. Datong River and Daxia River are tributaries of the Yellow 
River. These two rivers have drainage areas of 151,33 km2 and 7154 km2, with average monthly 
streamflow of 88 m3/s and 27 m3/s, respectively. Zamu River and Xiying River belong to the Shiyang 
River watershed, with drainage areas of 851 km2 and 1120 km2. The Heihe River is the second largest 
interior river in Northwest China, with a drainage area of 130,000 km2. Six hydrological stations 
selected in this paper are located in the Yellow River, Heihe River and Shiyang River, respectively. 
Tangnaihai station is located on the mainstream of Yellow River, while Xiangtang and Zheqiao 
stations are located on the tributary of Yellow River, Zamusi and Jiutiaoling stations are situated on 
the Shiyang River. Yingluoxia station is located in the Heihe River and it marks the boundary 
between the upstream and middle reaches. The location and basic information of each station are 
shown in Figure 2 and Table 1. 

 
Figure 2. The location of selected stations. 
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Table 1. Basic information of steamflow data for selected stations. 

No. Station Longitude Latitude River 
Basin Area

(km2) 
Catchment Area

(km2) 
Record Length 

Average 
(m3/s) 

Peak
(m3/s) 

1 Xiangtang 102°51′E 36°22′N Datong 15133 15,126 1950–2016 88 506 
2 Yingluoxia 100°11′E 38°48′N Heihe 130,000 10,009 1954–2012 51 214 
3 Zamusi 102°34′E 37°42′N Zamu 851 851 1952–2010 8 58.2 
4 Jiutiaoling 102°03′E 37°52′N Xiying 1120 1077 1972–2010 10 43.7 
5 Tangnaihai 100°09′E 35°30′N Yellow 752,443 121,972 1956–2016 633 3550 
6 Zheqiao 103°16′E 35°38′N Daxia 7154 6843 1963–2016 27 210 

Monthly streamflow box-plots with all available data are presented in Figure 3. The bottom (Q1) 
and top (Q3) of the box are the first and third quartiles of streamflow, and the band inside the box is 
the median of streamflow. The inter quartile range (IQR) is equal to the difference between first and 
third quartiles. The limit of whiskers is called the inner fence which is 1.5 IQR from the quartile and 
the outer fence is 3 IQR from the quartile. Outliers are points that fall outside the limits of whiskers. 
+ represents mild outliers which are between an inner and outer fence. × represents the extreme 
outliers which are beyond one of the outer fences. As shown in Figure 3, streamflow is concentrated 
during the flood season (June–September), and it drops down in the non-flood season. Because 
precipitation is the most important streamflow supply and the precipitation in these basins is 
concentrated during June–September. 

There are many mild and extreme outliers for monthly streamflow data during the flood season 
at Xiangtang and Zheqiao stations, respectively. This is mainly due to poor vegetation coverage and 
barren hills in Datong River (Xiangtang station) downstream regions. Meanwhile, rainfall is mainly 
concentrated from June to September and mainly consists of heavy rain. Daxia River (Zheqiao station) 
upstream and downstream flow through the rocky mountainous region and loess plateau, separately. 
Serious soil erosion, heavy rain, mudslides, and landslides are frequent there. Streamflow during the 
flood season has many positive outliers for every station (Figure 3), and logarithmic processing is 
able to reduce the skewness of positive outliers in Section 2.7. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 3. Monthly streamflow for selected stations. (a) Xiangtang station; (b) Yingluoxia station; (c) 
Zamusi station; (d) Jiutiaoling station; (e) Tangnaihai station; (f) Zheqiao station. 
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3.2. Comparison the Results of BESA and CESA 

It is shown in a previous study that with the increase of the training time, both the accuracy of 
the training time and the precision of the lead time do not increase. Streamflow is forecasted by the 
two entropy spectral analysis methods with a five year training time (2003–2007) and a three year 
lead time (2008–2010) for representative stations. The simulated values and observed values for the 
two entropy spectrum models during the training period are shown in Figure 4. Both models were 
capable of simulating preferably streamflow variations at all stations. However, simulation results 
were better for the short leading time than that of the long leading time. The error between observed 
and simulated values was increasing with the lead time extension. The simulation values were better 
in drought seasons than in flood seasons, which mainly reflected the peak position and peak values. 
The maximum discharge during the flood seasons for six rivers appeared in different months for 
every year. This may lead to one month in advance or delay for the simulated values than the 
observed values for both methods. The predicted streamflow in the flood seasons was lower than 
observed streamflow for some stations. It was mostly at Yingluoxia, Tangnaihai and Zheqiao stations. 
Compared with CESA, the predicted and observed values were closer in flood seasons for BESA 
model. Overall, the simulation of streamflow time series at the above stations was superior for BESA 
to CESA. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 4. Streamflow forecasted using entropy spectral analysis of representative stations in training 
time. (a) Xiangtang station; (b) Yingluoxia station; (c) Zamusi station; (d) Jiutiaoling station; (e) 
Tangnaihai station; (f) Zheqiao station. 

The forecasted values and observed values for two entropy spectral models in the lead time are 
shown in Figure 5. For Xiangtang, Yingluoxia, Zamusi, and Jiutiaoling stations, both models 
satisfactorily forecasted streamflow. In the first lead year, two models accurately forecasted the time 
of maximum monthly streamflow at Xiangtang, Yingluoxia, and Jiutiaoling stations. Nevertheless, 
the predicted maximum streamflow for the last two years appeared one month earlier or later. At 
Zamusi station, BESA accurately forecasted the bi-modal values of the flood season for the lead time, 
while CESA did not. BESA forecasted the number of peaks in the following two years, but the peak 
position appeared one month earlier or later. At Tangnaihai and Zheqiao stations, the difference 
between the predicted and observed values for BESA model was large. However, CESA still did not 
forecast the multimodal pattern of partial flood season, while uni-modal year of streamflow in the 
flood season had better forecast results. 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 5. Streamflow forecasted using entropy spectral analysis of representative stations in lead time. 
(a) Xiangtang station; (b) Yingluoxia station; (c) Zamusi station; (d) Jiutiaoling station; (e) Tangnaihai 
station; (f) Zheqiao station. 

The performance metrics of the models are shown in Table 2. It can be seen that the optimum 
order of BESA and CESA models range from 8 to 16 and 8 to 13, respectively. The R2 and NSE values 
at Xiangtang, Yingluoxia, Zamusi, and Jiutiaoling stations during the training period were relatively 
high, with the values of over 0.86 and 0.70, respectively. The R2 and NSE values at Tangnaihai and 
Zheqiao stations were lower than at the former four stations. The simulation of streamflow time series 
during the training period for BESA was better than that of CESA for the former four stations, and 
performance metrics were superior to CESA. For the other stations, the simulation results were 
equivalent for the two models. Streamflow forecasting by the two entropy spectrum models was 
good at Xiangtang, Yingluoxia, Zamusi, and Jiutiaoling stations during the verification period. The 
corresponding R2 and NSE values were all higher than 0.88 and 0.70, respectively. However, 
streamflow forecasting at Tangnaihai and Zheqiao stations was relatively poor. Although the R2 

values were more than 0.76, the NSE values were between 0.48 and 0.49. BESA performed better at 
Xiangtang, Yingluoxia, Zamusi, and Jiutiaoling stations while CESA was more suitable for 
forecasting streamflow at Tangnaihai and Zheqiao stations. 

Table 2. Results of forecasting at representative stations by two entropy methods. 

Station Model Model Order 
Training Time (2003–2007) Lead Time (2008–2010)

RE RMSE R2 NSE RE RMSE R2 NSE

xiangtang 
BESA 16 0.169 19.4 0.953 0.904 0.376 27.3 0.913 0.773 
CESA 11 0.231 24.5 0.920 0.840 0.405 28.1 0.890 0.760 

yingluoxia 
BESA 8 0.202 17.3 0.915 0.834 0.235 21.2 0.912 0.798 
CESA 10 0.267 22.8 0.874 0.708 0.185 21.1 0.917 0.801 

zamusi 
BESA 14 0.207 2.7 0.913 0.832 0.268 2.5 0.925 0.838 
CESA 12 0.316 3.7 0.864 0.690 0.382 3.5 0.840 0.684 

jiutiaoling 
BESA 11 0.229 4.5 0.920 0.768 0.245 4.9 0.915 0.755 
CESA 13 0.346 5.1 0.868 0.697 0.318 5.4 0.886 0.707 

tangnaihai 
BESA 13 0.312 303.3 0.750 0.548 0.295 354.8 0.759 0.482 
CESA 8 0.335 340.3 0.805 0.447 0.360 273.0 0.861 0.693 

zheqiao 
BESA 15 0.362 19.0 0.621 0.255 0.291 9.1 0.876 0.618 
CESA 8 0.466 17.8 0.640 0.365 0.369 8.6 0.843 0.659 
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Comparison of monthly streamflow estimated by BESA and CESA and observed values during 
the verification period is shown in Figure 6 and Figure 7, respectively. The slope of the trend line was 
closer to 1, indicating that the bias between predicted and observed values was smaller. The larger 
R2 suggested that the correlation between predicted and observed values was better. That is to say, 
the predicted values were much closer to the observed values. At Xiangtang, Yingluoxia, Zamusi, 
and Jiutiaoling stations, the trend line slope of BESA was much closer to 1 than that of CESA and the 
corresponding R2 was higher. By contrast, the trend line slope of CESA was much closer to 1 than 
that of BESA at Tangnaihai and Zheqiao stations, and the correlation coefficient was much higher.  

Above all, the fitness of BESA for simulating the observed streamflow sequence was better than 
that of CESA. The forecast accuracy of BESA at Xiangtang, Yingluoxia, Zamusi, and Jiutiaoling 
stations was better than that of CESA. Nevertheless, it was the opposite at Tangnaihai station. Neither 
model made better forecasts at Zheqiao station. 

 
 

(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Forecasted values of Burg entropy spectral analysis (BESA) related to observed values in the 
lead time. (a) Xiangtang station; (b) Yingluoxia station; (c) Zamusi station; (d) Jiutiaoling station;  
(e) Tangnaihai station; (f) Zheqiao station. 
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Figure 7. Forecasted values of configurational entropy spectral analysis (CESA) related to observed 
values in the lead time. (a) Xiangtang station; (b) Yingluoxia station; (c) Zamusi station; (d) Jiutiaoling 
station; (e) Tangnaihai station; (f) Zheqiao station. 

3.3. Comparison with Other Autocorrelation Models 

The autoregressive coefficients of BESA and CESA are obtained by maximizing Burg entropy 
and Configurational entropy, respectively. In order to demonstrate the improved accuracy of the 
predictions, we performed comparison with two other autocorrelation models. The first one is the 
AR model, and its coefficients are calculated by Yule-Walker function. The second one is the seasonal 
autoregressive model (SAR), and it rearranges the streamflow by month to avoid the seasonality. The 
comparison of the performance metrics is shown in Table 3. It can be seen that the BESA and CESA 
performed better than the AR and SAR models. This is because the BESA and CESA combine the 
maximum entropy principle and spectral analysis. The model estimated by maximum entropy 
principle is unbiased with all available data and no further hypothesis are needed. The spectral 
analysis can detect the periodical pattern of time series. Thus, BESA and CESA is more accurate and 
reliable than AR and SAR model. 

Table 3. Comparison of the performance metrics by four models. 

Station 
BESA CESA AR SAR 

NSE of TT NSE of LT NSE of TT NSE of LT NSE of TT NSE of LT NSE of TT NSE of LT
xiangtang 0.904 0.773 0.840 0.760 0.686 0.666 0.564 0.631 
yingluoxia 0.834 0.798 0.708 0.801 0.612 0.755 0.429 0.624 

zamusi 0.832 0.838 0.690 0.684 0.644 0.524 0.479 0.540 
jiutiaoling 0.768 0.755 0.697 0.707 0.585 0.511 0.456 0.466 
tangnaihai 0.548 0.482 0.447 0.693 0.495 0.34 0.403 0.373 

zheqiao 0.255 0.618 0.365 0.659 0.485 0.144 0.364 0.728 

Notes: TT represents training time and LT represents lead time. AR: autoregressive; SAR: seasonal 
autoregressive. 

4. Discussion 

Despite the fact that the six hydrological stations are in the same area, they differ in factors such 
as the type of river, control catchment area, vegetation condition, and human activities. Datong River 
(Xiangtang station), Daxia River (Zheqiao station), and the Yellow River (Yingluoxia station) belong 
to outflow rivers, whereas Heihe River (Yingluoxia station), Xiying River (Jiutiaoling station), and 
Zamu River (Zamusi station) belong to interior rivers. As the upstream of Yellow River, the 
catchment area of Tangnaihai station is the largest, which is about 120,000 km2. Both Xiangtang and 
Zheqiao stations are located on the tributary of Yellow River, while Zamusi and Jiutiaoling stations 
are situated on the Shiyang River. Although four hydrological stations are located on the 
downstream, the catchment area are all less than 20,000 km2. Yingluoxia station is located on the 
upstream Heihe River, with a catchment area of 10,009 km2. For Xiangtang, Zamusi and Jiutiaoling 
stations, the upper reaches of piedmont watershed scale have good vegetation coverage and little 
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human activity. By comparison, vegetation coverage is slightly poorer in the middle and lower 
reaches. Yingluoxia station is located on the Heihe upstream, but its catchment area and vegetation 
coverage are similar to the upstream of the watershed mentioned above. The impact of human 
activity is small above Tangnaihai station. In addition, industrial and agricultural water use is rare. 
Since the 1990s, the grassland has a tendency to gradually degradation. The upstream piedmont of 
Daxia River (i.e., Zheqiao station-owned) stony mountainous area covered with pasture except for 
few woods. Its downstream flow through loess plateau with ravines crossbar, poor vegetation and 
serious soil erosion and concentrated human activities. 

Whether outliers, control catchment area, vegetation condition, and human activities, all reflect 
correlation of streamflow data. The autocorrelation of the six stations is shown in Figure 8. It can be 
seen that the autocorrelation of Tangnaihai and Zheqiao stations is relatively low (i.e., the 
autocorrelation coefficient is less than 0.5 at the 12th lag, and other stations are higher than 0.6). Based 
on the level of autocorrelation, the six stations can be grouped into two categories. The 
autocorrelation in the first category (Xiangtang, Yingluoxia, Zamusi, and Jiutiaoling stations) is 
higher than the second category (Tangnaihai and Zheqiao stations). As streamflow forecasting is 
based on the autocorrelation with the past series, the streamflow series with strong correlation will 
be more reliable forecasted. Thus, streamflow forecasting effects of the first category are better than 
the second category. BESA fitness may be better and unbiased because of the difference methods of 
the two forecast models. For BESA, the autoregressive coefficients are calculated by Levinson–Burg 
algorithm, which is developed from the AR model. For CESA, the autoregressive coefficients are 
calculated by cepstrum estimation. Therefore, entropy spectrum analysis methods need to be chosen 
carefully according to the situation of the study area. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 8. Autocorrelation plot of representative stations. (a) Xiangtang station; (b) Yingluoxia station; 
(c) Zamusi station; (d) Jiutiaoling station; (e) Tangnaihai station; (f) Zheqiao station. 

The six stations selected in this paper are all located in Northwest China. Streamflow is 
principally composed of precipitation. Precipitation is the main recharge source of streamflow among 
them. Annual precipitation mainly occurs during June to September. All six rivers originate from 
alpine regions where April and May are spring flood periods, and flood is mainly formed by snow 
melt. Although annual precipitation mainly occurs during June to September, rainfall is mostly heavy 
rain and the month with maximum precipitation is not fixed. Hence, the maximum monthly 
streamflow is also unset. The input of autoregressive model is only previous monthly streamflow 
data, which may influence the forecast accuracy of the autoregressive model in the flood season. 
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Therefore, adding precipitation as a predictor, selecting one or more models with high accuracy in 
the flood season, and using the entropy spectrum model and its combination (such as combined 
streamflow forecasting based on cross entropy [36]) to forecast can be used as the next research 
direction. 

5. Conclusions 

Two entropy spectral analysis methods (Burg entropy and configurational entropy) are mainly 
developed for streamflow forecasting in Northwest China. The following conclusions are drawn from 
this study: 

1. The autoregressive coefficients obtained by maximizing Burg entropy and configurational 
entropy leads to more reliable than those by Levinson-Durbin algorithm. So, the streamflow 
forecasted by BESA and CESA is more accurate than that of the AR and SAR models. 

2. For the streamflow with strong correlation, both BESA and CESA forecast monthly streamflow 
well. The R2 and NSE were over 0.84 and 0.68, respectively. The forecast accuracy of BESA is 
higher than that of CESA. For the streamflow with weak correlation, the conclusion is the 
opposite. 

3. The time of peak flow forecasted by both models (BESA and CESA) may be either earlier or later 
than observed. The peak flow is generally underestimated by both models. BESA accurately 
forecasted the bi-modal values of the flood season for the lead time, while CESA had better 
forecast results for the streamflow data with weak correlation.  

4. In Northwest China, streamflow in the flood periods is principally composed of precipitation. 
The month with maximum precipitation is not fixed. Hence, the study of streamflow 
characteristics and spectral pattern associated with the precipitation can be used as the next 
research direction. 
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