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Abstract: We consider the sets of quasi-regular points in the countable symbolic space. We measure
the sizes of the sets by Billingsley-Hausdorff dimension defined by Gibbs measures. It is shown
that the dimensions of those sets, always bounded from below by the convergence exponent of
the Gibbs measure, are given by a variational principle, which generalizes Li and Ma’s result and
Bowen’s result.

Keywords: measure theoretic entropy; Gibbs measure; Hausdorff dimension; symbolic dynamical
system; Bowen Lemma; quasi-regular point

1. Introduction

Let (X, T) be a topological system, where T : X → X is a continuous transformation on a
metric space X. Denote the set of Borel probability measures on X by M(X) and endow it with
weak∗-topology induced by Cb(X), which stands for the set of all bounded continuous functions on X.
For any x ∈ X, and n ≥ 1, define the orbit measure

∆x,n :=
1
n

n−1

∑
i=0

δTix.

Write V(x) for the collection of all accumulation points of the sequence orbit measures {∆x,n}n≥1

in the sense of weak∗-topology ofM(X). Denote byMT(X) the set of T-invariant Borel probability
measures on X. For µ ∈ MT(X), the set Gµ of µ-generic points is defined by

Gµ :=
{

x ∈ X : ∆x,n
w∗−→ µ, n→ ∞

}
When X is a compact metric space, Bowen [1] proved that for any µ ∈ MT(X), the topological

entropy htop(Gµ) does not exceed the measure-theoretic entropy hµ. In his proof, Bowen consider the
following quasi-regular point set: for t ≥ 0, define

QR(t) :=
{

x ∈ X : ∃µ ∈ V(x) with hµ ≤ t
}

.

Then he obtained htop(QR(t)) ≤ t which implied that htop(Gµ) ≤ hµ.
As a basic dynamic model, the symbolic system always attract much attention for its intrinsic

property. In the setting of finite symbolic space, it is well known that there is a close relationship
between the indexes topological entropy and dimension, i.e., topological entropy is different from
Hausdorff dimension by a multiplier under the usual metric. However, as a generalization of Hausdorff
dimension, the index Billingsley dimension (see the definition in Section 2) provides more ways to
measure the fractal sets. In this note, we only consider Billingsley dimensions defined by Gibbs

Entropy 2017, 19, 532; doi:10.3390/e19100532 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19100532
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 532 2 of 13

measures. Denote by XN = {1, · · · , N}N (N ≥ 2) the finite symbolic space endowed with the product
topology and define the shift map T : XN → XN by

T(x1x2 · · · ) = (x2x3 · · · ).

Let ϕ : XN → R be a potential with summable variations. It is well known that ϕ admits a unique
Gibbs measure ν. Li and Ma in [2] consider the quasi-regular point set Qν(t) with respect to a Gibbs
measure ν :

Qν(t) :=
{

x ∈ XN : ∃µ ∈ V(x) with
hµ

Pϕ −
∫

ϕdµ
≤ t
}

,

where Pϕ denotes the Gurevich pressure of ϕ and 0 ≤ t ≤ 1.

Theorem 1 ([2]). Assume that ϕ has summable variations and denote the unique Gibbs measure by ν. Then for
any 0 6 t 6 1 we have

dimν Qν(t) = t.

When ν is the uniform distribution on XN Billingsley dimension is just Hausdorff dimension
under the usual metric on XN . Hence, the above dimension formula generalizes Bowen’s result [3].

When X is the countable symbolic space, the situation changes. One key point is that X is
non-compact space under the product topology, which leads to a phenomenon that the potential
ϕ which admits a Gibbs measure has upper bound but no lower bound. Therefore, there exists
T-invariant measure µ such that the integral

∫
ϕdµ is infinite. In the sequel, unless otherwise stated,

we always denote by X the countable symbolic space.
We still denote by ϕ a potential on X and by ν the corresponding Gibbs measure. For any

µ ∈ MT(X), define the entropy dimension of ν with respect to µ by

β(ν|µ) := lim sup
k→∞

lim sup
N→∞

−∑ω∈Σk
N

µ([ω]) ln µ([ω])

−∑ω∈Σk
N

µ([ω]) ln ν([ω])
,

where Σk
N = {1, 2, . . . , N}k and [ω] denotes a cylinder (see the definition in Section 2). We define the

convergence exponent of ν by

αν := inf
{

t > 0 :
∞

∑
n=1

νt([n]) < +∞
}

.

For 0 ≤ t ≤ 1, define the quasi-regular point set with respect to ν by

QRν(t) =
{

x ∈ X : ∃µ ∈ V(x) with β(ν|µ) ≤ t
}

.

Our main result in this note is the following.

Theorem 2. Let ϕ be a potential function of summable variations admitting a unique Gibbs measure ν with
convergence exponent αν. For 0 ≤ t ≤ 1, we have

dimν QRν(t) = max{αν, t}. (1)

We give four remarks:

(1) In the setting of finite symbolic space, according to Propositions 3 and 4 (see Section 2) we have
β(ν|µ) = hµ

Pϕ−
∫

ϕdµ
, thus the set QRν(t) on the above is the same as the set Qν(t) in Theorem 1.

By a fact that the convergence exponent of Gibbs measure is zero in the finite symbolic space,
we have generalized Theorem 1 and Bowen ’s result in [1].



Entropy 2017, 19, 532 3 of 13

(2) The dimension formula (1) implies the dimension upper bound of generic point set. In fact, for any
µ ∈ MT(X), we have Gµ ⊂ QRν(t) for t = β(ν|µ). Thus, we obtain dimν Gµ ≤ max{αν, β(ν|µ)},
which was proved by Fan, Li and Ma in [3]. More precisely, they showed

dimν Gµ = max
{

αν, β(ν|µ)
}

. (2)

(3) There are two main reasons to choose Gibbs measure to define Billingsley dimension. One reason
is that Gibbs measure has quasi-Bernoulli property (see Lemma 1). On the other hand, note a fact
that Lebsgue measure is boundedly equivalent with Gauss measure in the continued fraction
system on [0, 1). Hence, by taking a suitable Gibbs measure on X, one can apply Theorem 2 to the
Gauss map related to the continued fractions. Moreover, by transferring dimension result from
the symbolic space to the interval [0, 1) [3], we can obtain the corresponding dimension formula
for quasi-regular point set in expanding Markov Rényi dynamical system ([4], p. 148).

(4) When (X, T) is a topologically mixing countable Markov shift with BIP property ([5], p. 97),
the corresponding dimension formula can be proved by a parallel argument.

Let us present the idea of the proof. We first use set operation to describe the limit property
possessed by the point in QRν(t). Next, we adopt the finite-symbol-approximation technique
developed in [3] to obtain the dimension upper-bound. There are two main problems to deal with.
One problem is that the relative entropy h(ν|µ) may be infinite. The other one is that we need
approximate a class of sets depending on infinite T-invariant measures. However, the authors in [3]
approximated a class of sets depending on only one T-invariant measure. In fact, we prove Theorem 3 by
combining the ideas in [2,3]. For the lower bound, we draw support from the dimension formula (2).

The article is organized as follows. In Section 2, we give some preliminaries. Section 3 is devoted
to the main result of this article.

2. Preliminaries

In this section, we introduce notations and some useful known facts. We denote by X the countable
symbolic space NN endowed with the product topology and define the shift map T : X → X by

(Tx)n = xn+1.

An element (x1 · · · xn) ∈ Nn is called an n-length word. Let A∗ = ⋃∞
n=0 Nn stand for the set of all

finite words, where N0 denotes the set of empty word. Given x = (x1x2 · · · ) ∈ X and m > n > 1,

x|mn = (xn · · · xm)

denotes a subword of x. For ω = (ω1 · · ·ωn) ∈ Nn, the n-cylinder [ω] is defined by

[ω] = {x ∈ X : x|n1 = ω}.

We will denote by Cn the set of all n-cylinders for n > 0. There is a one-to-one correspondence
between Nn and Cn. Let C∗ = ⋃∞

n=0 Cn denote the set of all cylinders. For j, N > 1 we will write

Σj
N = {1, · · · , N}j, C j

N = {[ω] : ω ∈ Σj
N}.

2.1. Billingsley Dimension

Let A ⊂ X and υ ∈ M(X) be a non-atomic Borel probability measure. Define

Hδ
s(A) = inf

{
∞

∑
i=1

υs(Ui) : A ⊂
∞⋃

i=1

Ui, υ(Ui) < δ for i ≥ 1

}
and Hs(A) = lim inf

δ→0
Hs

δ(A).
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Thus, there exists s0 such that Hs(A) = ∞ for s < s0 and Hs(A) = 0 for s > s0. This s0 we
define to be Billingsley dimension of A with respect to υ and denote it by dimυ A. In fact, Billingsley
dimension dimυ is just Hausdorff dimension dimH under the metric ρυ: for any x, y ∈ X, if x = y, we
define ρυ(x, y) = 0; otherwise

ρυ(x, y) = υ([x|n1 ]),

where n = min{k > 0 : xk+1 6= yk+1}. One can show that ρυ is a ultrametric. Let n > 1 be an
integer. Define

δn = sup{υ([ω]) : ω ∈ Nn}.

The following proposition means that the ρυ-distance of two points uniformly tends to zero when
they approach each other in the sense of Bowen.

Proposition 1 ([3]). For {δn}n>1 defined on the above, one has

lim
n→∞

δn = 0.

The reader may consult [6] for more information on Billingsley dimension.

2.2. Metrization of the w∗-Topology

Recall that we endow M(X) with the w∗-topology induced by Cb(X). In this subsection,
we introduce a metric to describe the w∗-topology ofM(X).

For every cylinder [ω] ∈ C∗, we choose a positive number a[ω] so that

∑
[ω]∈C∗

a[ω] = 1,

where the sum is taken over all cylinders.
For µ, υ ∈ M(X), define

d∗(µ, υ) = ∑
[ω]∈C∗

a[ω]|µ([ω])− υ([ω])|.

The following proposition shows that the metric d∗ is compatible with the w∗-topology ofM(X).

Proposition 2 ([3]). Let {µn}n>1 ⊂M(X) and µ ∈ M(X). Then µn converges in w∗-topology to µ if and
only if limn→∞ d∗(µn, µ) = 0.

According to [7], we call a collection F of Borel subset of X a convergence-determining class if,
for every µ ∈ M(X) and {µn} ⊂ M(X), convergence µn(A) → µ(A) for all µ−continuity set in F
implies µn

w∗−→ µ. As a corollary of Proposition 2, the cylinder set C∗ is a convergence-determining class.

2.3. Gibbs Measure

We use Gibbs measures to induce metrics on X. The following facts about Gibbs measures can be
found in [5].

Recall that for a function ϕ : X → R, called potential function, the n-order variation of ϕ is defined by

varn ϕ := sup{|ϕ(x)− ϕ(y)| : x, y ∈ X, x|n1 = y|n1}.

We say that a potential ϕ has summable variations if

∞

∑
n=1

varn ϕ < +∞.
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It is easy to see that a potential ϕ with summable variations is uniformly continuous on X.
The Gurevich pressure of ϕ with summable variations is defined to be the limit

Pϕ := lim
n→∞

1
n

ln ∑
Tnx=x

eSn ϕ(x)1[a](x),

where a ∈ N and it can be shown that the limit exists and is independent of a (see [8]).
An invariant probability measure ν is called a Gibbs measure associated to a potential function ϕ

if it satisfies the Gibbsian property: there exist constants C > 1 and P ∈ R such that

1
C

6
ν([x1x2 · · · xn])

exp(Sn ϕ(x)− nP)
6 C (3)

holds for any n > 1 and any x ∈ X. It is known ([9]) that a potential function ϕ with summable
variations admits a unique Gibbs measure ν iff the Gurevich pressure Pϕ < +∞. Assume that ϕ

admits a unique Gibbs measure νϕ. Then the constant P in (3) is equal to the Gurevich pressure Pϕ.
Let ϕ∗ = ϕ− Pϕ, we have

Pϕ∗ = 0 and νϕ∗ = νϕ.

Hence, without loss of generality, we always suppose Pϕ = 0 in the rest of this paper. A trivial
fact is that the Gibbsian property (3) implies that ϕ has no lower bound but upper bound, i.e.,

∀x ∈ X, ϕ(x) 6 ln C. (4)

The Gibbsian property implies the quasi-Bernoulli property which is a key point in the proof of
dimension upper bound in Section 3.

Lemma 1 ([3]). Let ν be a Gibbs measure associated to potential ϕ. For any k words ω1, · · · , ωk, we have

C−(k+1)ν([ω1 · · ·ωk]) 6 ν([ω1]) · · · ν([ωk]) 6 Ck+1ν([ω1 · · ·ωk]).

For any T-invariant Borel probability measure µ, define the relative entropy of ν with respect to µ by

h(ν|µ) = lim sup
k→∞

−1
k ∑

ω∈Nk

µ([ω]) ln ν([ω]).

It is trivially true that h(µ|µ) = hµ.

Proposition 3 ([3]). Assume that ϕ has summable variations and admits a unique Gibbs measure ν. Then for
any invariant measure µ ∈ MT(X), we have

h(ν|µ) = lim
k→∞
−1

k ∑
ω∈Nk

µ([ω]) ln ν([ω]) = −
∫

X
ϕ dµ.

By Proposition 3, we can rewrite the variational principle ([5], p. 86) in the following form

Pϕ = sup
µ∈MT(X)

{
hµ − h(ν|µ) : h(ν|µ) < +∞

}
. (5)

Recall that we assume that Pϕ = 0. It is known that the supremum in the variational principle (5)
is attained only by a Gibbs measure ν with hν < ∞ if such Gibbs measure exits ([5], p. 89). It follows
that when ν 6= µ, we have h(ν|µ) > hµ, which implies h(ν|µ) > 0.
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Now we introduce two exponents. Define the convergence exponent of ν by

αν := inf
{

t > 0 :
∞

∑
n=1

ν([n])t < +∞
}

.

For any µ ∈ MT(X), define the entropy dimension of ν with respect to µ by

β(ν|µ) := lim sup
k→∞

lim sup
N→∞

Hk,N(µ, µ)

Hk,N(ν, µ)
,

where
Hk,N(ν, µ) := − ∑

ω∈Σk
N

µ([ω]) ln ν([ω]).

The convergence exponent αν reflects the mass distribution of ν. Moreover, αν has the following
property.

Lemma 2 ([3]). Let αν be the convergence exponent of Gibbs measure ν associated to a potential function ϕ.
Then for any ε > 0 there exist constants C0 and M such that

∑
ω∈Nk

ν([ω])αν+ε 6 C0Mk, (∀k > 1). (6)

If µ = ν, it is clear that β(ν|µ) = 1. However, we have the following claim.

Proposition 4 ([3]). Let µ ∈ MT(X) and ϕ be a potential function of summable variations. Assume that ϕ

admits a unique Gibbs measure ν with convergence exponent αν. If ν 6= µ and h(ν|µ) < +∞, then

β(ν|µ) =
hµ

h(ν|µ) ; (7)

if h(ν|µ) = +∞, we have
β(ν|µ) 6 αν. (8)

3. Proof of the Main Result

The proof is divided into two parts. First, we shall prove

dimν QRν(t) ≤ max{αν, t}.

We introduce a technical lemma. For every word ω ∈ Σn
N of length n and every word u ∈ Σk

N of
length k with k 6 n, denote by p(u|ω) the frequency of appearances of u in ω, i.e.,

p(u|ω) =
τu(ω)

n− k + 1
,

where τu(ω) denotes the number of j with 1 6 j 6 n− k + 1, so that ωj · · ·ωj+k−1 = u.

Lemma 3 ([10]). For any h > 0, δ > 0, k ∈ N and n ∈ N large enough, we have

]

{
ω ∈ Σn

N : ∑
u∈Σk

N

−p(u|ω) ln p(u|ω) 6 kh

}
6 exp(n(h + δ)).
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Theorem 3. Let ϕ be a potential function of summable variations admitting a unique Gibbs measure ν with
convergence exponent αν. For 0 ≤ t ≤ 1, we have

dimν QRν(t) ≤ max{αν, t}.

Proof. Fix ε1 > 0, we define, for N1 > 1,

Mε1(N1) =

{
µ ∈ MT(X) : ∑

u∈Σ
N1
N1

µ([u]) > 1− ε1

}
.

It is clear that {Mε1(N1)}N1≥1 monotonically converges toMT(X). Hence we have

QRν(t) =
⋃

N1≥1

Hε1(N1),

where
Hε1(N1) =

{
x ∈ X : ∃µ ∈ V(x) ∩Mε1(N1) with β(ν|µ) ≤ t

}
.

Fix ε2 > 0. According to the definition of β(ν|µ), we have

Hε1(N1) ⊂
⋃
l≥1

⋂
k≥l

⋃
r≥1

⋂
N≥r

Aε1,ε2(N1, k, N),

where

Aε1,ε2(N1, k, N) =

{
x ∈ X : ∃µ ∈ V(x) ∩Mε1(N1) with

Hk,N(µ, µ)

Hk,N(ν, µ)
≤ t + ε2

}
.

By the σ-stability and monotonicity of Hausdorff dimension, we have

dimν QRν(t) ≤ sup
N1≥1

lim inf
k→∞

lim inf
N→∞

dimν Aε1,ε2(N1, k, N).

According to the definition of V(x) and Proposition 2, we have

Aε1,ε2(N1, k, N) =
⋂

m≥1

⋂
j≥1

⋃
n≥j

Bε1,ε2(N1, k, N, m, n),

where

Bε1,ε2(N1, k, N, m, n) =

{
x ∈ X : ∃µ ∈ Mε1(N1) s.t. d∗(∆x,n, µ) <

1
m

,
Hk,N(µ, µ)

Hk,N(ν, µ)
≤ t + ε2

}
.

For m large enough, by the uniformness of Hk,N(·, ·), we have

Bε1,ε2(N1, k, N, m, n) ⊂ Cε1,ε2(N1, k, N, m, n),

where

Cε1,ε2(N1, k, N, m, n) =

{
x ∈ X : ∃µ ∈ Mε1(N1) s.t. d∗(∆x,n, µ) <

1
m

,
Hk,N(∆x,n, ∆x,n)

Hk,N(ν, ∆x,n)
≤ t + 2ε2

}
.

Clearly, the parameters n, m, N, k and N1 successively go to the infinity. In the sequel, we will
write C(k, N, n) for Cε1,ε2(N1, k, N, m, n) for simplicity.

Now we shall give a suitable covering of Aε1,ε2(N1, k, N). Consider the (n + k− 1)-prefixes of the
points in C(k, N, n):
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Λn(k, N) :=
{

x1 · · · xn+k−1 ∈ Nn+k−1 : x ∈ C(k, N, n)
}

.

Let δn = sup{ν([ω]) : ω ∈ Nn}. According to Proposition 1 we have limn→∞ δn = 0. Then
the cylinder set {[ω] : ω ∈ ⋃n≥j Λn(k, N)} forms a δj+k−1-covering of Aε1,ε2(N1, k, N). Assume that
γ > max{αν, t} and γ < 3/2 without loss of generality. By the definition of γ- Hausdorff measure,
we have

Hγ
δj+k−1

(Aε1,ε2(n1, k, N)) 6 ∑
n≥j

∑
ω∈Λn(k,N)

νγ([ω]).

It suffices to dominate the outer sum in the above inequality by a constant. Recall that τu(ω)

denotes the number of times that the subword u appears in ω. Given a word ω ∈ Λn(k, N), we say
that (τu(ω))u∈Σk

N
is the appearance distribution with respect to Σk

N of ω. Write Dn(k, N) for the set

of such appearance distributions of all elements of Λn(k, N). Clearly we have ]Dn(k, N) 6 nNk
since

there are at most Nk possible words u in Σk
N . Given a distribution (τu) ∈ Dn(k, N), write

D((τu)) :=
{

ω ∈ Λn(k, N) : τu(ω) = τu, ∀u ∈ Σk
N

}
.

Thus, we have

∑
ω∈Λn(k,N)

νγ([ω]) 6 nNk
max

(τu)∈Dn(k,N)
∑

ω∈D((τu))

νγ([ω]). (9)

In order to dominate the sum on the right-hand side in the above inequality, we shall decompose
D((τu)) into disjoint union of some sets. Given ω = ω1 · · ·ωn+k−1 ∈ D((τu)), a subword
ωjωj+1 · · ·ωj+m−1 is called a maximal (N, k)-run subword of ω if m > k, ωj−1 > N, ωj+m > N,
and ωj+i 6 N for 0 6 i 6 m − 1. On the other hand, we say that a subword between maximal
(N, k)-run subwords is a “bad subword”. Thus, the element of D((τu)) is just like

ω = Br1Wn1 Br2 · · ·Wnt Brt+1 , (10)

where Bri stands for “bad subword” with length ri and Wni stands for maximal (N, k)-run subword
with length ni. Write

K := ∑
u∈Σk

N

τu and s :=
⌊

n− K
k

⌋
+ 1.

It is clear that every element in D((τu)) has at most s maximal (N, k)-run subwords, which implies
that t 6 s. Moreover, by setting Kt := ∑t

i=1 ni, we have

Kt = K + t(k− 1)

and

r1 > 0, rt+1 > 0, ri > 1 (2 6 i 6 t) and Kt +
t+1

∑
i=1

ri = n + k− 1. (11)

For 1 6 t 6 s, let Dt be the set of words in D((τu)) with t maximal (N, k)-run subwords. Clearly,
D((τu)) is a disjoint union of Dt’s, i.e.,

D((τu)) =
s⊔

t=1

Dt. (12)

Next, we continue to partition Dt by the length pattern of “bad subword” and maximal (N, k)-run
subword. Recall that every word ω ∈ Dt has the form (10). We say that (r, n) := (r1, n1, r2, · · · , nt, rt+1)

is the length pattern of “bad subword” and maximal (N, k)-run subword. Let Lt stand for the set of
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all such length pattern of ω in Dt. Given a length pattern (r, n) ∈ Lt, we denote by B(r, n) the set of
elements of Dt with the length pattern (r, n). Thus, Dt is partitioned into B(r, n)’s. It follows that

∑
ω∈Dt

νγ([ω]) 6 ]Lt max
(r,n)∈Lt

∑
ω∈B(r,n)

νγ([ω]). (13)

We shall estimate the cardinal of Lt and the sum on the right-hand side in the above inequality.
First, note that every length pattern (r, n) ∈ Lt is just corresponding to the integer solution of the
following equation set

{ ∑t
i=1 ni = Kt, ni > k(1 6 i 6 t),

∑t+1
i=1 ri = n + k− 1− Kt, r1 > 0, rt+1 > 0, ri > 1 (2 6 i 6 t).

By the elementary combinatorial theory, we have

]Lt 6
(K− 1)!

(K− t)!(t− 1)!
(n− K− (t− 1)k + t)!
t!(n− K− (t− 1)k)!

.

According to the definition ofMε1(N1), for any µ ∈ Mε1(N1) and k, N ≥ N1, we have

∑
u∈Σk

N

µ([u]) > 1− ε1.

By the definition of C(k, N, n), for x ∈ C(k, N, n) there exists µ ∈ Mε1(N1) such that
d∗(∆x,n, µ) < 1

m . Thus, when m is taken large enough, we have

K
n

= ∑
u∈Σk

N

τu

n
= ∑

u∈Σk
N

∆x,n([u]) > 1− 2ε1.

In other word, we have

1− K
n

< 2ε1.

Note that the parameter n goes to the infinity before k. For any δ > 0, when n is taken large
enough, by the Stirling formula we have

(K− 1)!
(K− t)!(t− 1)!

(n− K− (t− 1)k + t)!
t!(n− K− (t− 1)k)!

6 enδ/2,

which leads to
]Lt 6 enδ/2. (14)

On the other hand, denote by D′t the set of finite words by deleting all “bad subwords” of ω

in Dt, i.e.,
D′t =

{
Wn1 · · ·Wnt : ω = Br1Wn1 · · ·Wnr Brt+1 ∈ Dt

}
.

By the quasi-Bernoulli property of Gibbs measure ν, we have

∑
ω∈B(r,n)

νγ([ω]) 6 C2γ(t+1) ∑
ω∈B(r,n)

t+1

∏
i=1

νγ([Bri (ω)])
t

∏
i=1

νγ([Wni (ω)])

6 C2γ(t+1) ∑
ω∈B(r,n)

t+1

∏
i=1

νγ([Bri (ω)]) ∑
ω∈B(r,n)

t

∏
i=1

νγ([Wni (ω)])

6 Cγ(4t+5)V ∑
ω∈D′t

νγ([ω]), (15)
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where
V := ∑

ω∈B(r,n)
νγ([Br1(ω) · · · Brt+1(ω)]).

By (11), we have ∑t+1
i=1 ri 6 n− K. Thus, by Lemma 2, there exist constants C0 > 0 and M > 0

such that
V 6 ∑

ω∈Nn−K

νγ([ω]) 6 C0Mn−K.

This, together with (13), (14) and (15), yields

∑
ω∈Dt

νγ([ω]) 6 C0Cγ(4t+5)Mn−Kenδ/2 ∑
ω∈D′t

νγ([ω]). (16)

By the definition of s and the fact that t 6 s, for the same δ > 0 as above, when ε1 is taken small
enough we have

C0Cγ(4t+5)Mn−K 6 enδ/2,

which, in combination with (16), gives

∑
ω∈Dt

νγ([ω]) 6 enδ ∑
ω∈D′t

νγ([ω]). (17)

In order to bound the sum on the right-hand side in (17), we estimate the cardinal of D′t and the
ν-size of the cylinder, respectively. First, let D̃t be the set of finite words obtained by replacing each
“bad subword” Bri of ω in Dt by a finite word composed of digit N + 1 with length ri. Clearly both sets
D̃t and D′t have the same cardinal and each subword u ∈ Σk

N appears τu times in ω of D̃t. It is time to
use Lemma 3 by taking

h =
1
k

(
∑

u∈Σk
N

−τu

n
ln

τu

n
− n− K

n
ln

n− K
n

)
.

Then, for the same δ > 0 as above and for n large enough we have

]D′t = ]D̃t 6 exp(n(h + δ)). (18)

Given ω ∈ D′t, let (τ′u) stand for the appearance distribution with respect to Σk
N of ω. Then,

we have
|ω| = Kt and τu 6 τ′u 6 τu + (t− 1)(k− 1) 6 τu + n− K.

That leads to

0 ≤ τ′u
n
− τu

n
≤ 1− K

n
< 2ε1. (19)

For any ω = ω1 · · ·ωKt ∈ D′t, by the Gibbsian property and (4), we have

k ln ν([ω1 · · ·ωKt ]) 6 k ln C + k
Kt−1

∑
i=0

ϕ(Tix)

= k ln C +
k−2

∑
i=0

(k− 1− i)ϕ(Tix) +
Kt−1

∑
i=Kt−k+1

(Kt − i)ϕ(Tix) +
Kt−k

∑
i=0

k−1

∑
l=0

ϕ(Ti+l x)

6 (Kt + k2 − k + 1) ln C + ∑
u∈Σk

N

τ′u ln ν([u]),
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where x ∈ [ω] and the last inequality follows from the Gibbsian property and (4). In combination
with (18), this gives

∑
ω∈D′t

νγ([ω]) ≤ ]D′t max
ω∈D′t

νγ([ω])

≤ exp

n(h + δ) +
γ

k

{
∑

u∈Σk
N

τ′u ln ν([u]) + (Kt + k2) ln C
}

= exp
{

nL(γ, n, k, (τ′u))
}

,

where

L(γ, n, k, (τ′u)) = h +
γ

k ∑
u∈Σk

N

τ′u
n

ln ν([u]) +
γ

kn
(Kt + k2) ln C + δ.

Now we shall give a negative upper-bound of L(γ, n, k, (τ′u)). According to (19), we can take
ε1 > 0 small enough and n large enough such that

1
k ∑

u∈Σk
N

τ′u
n

ln ν([u]) ≤ 1
k ∑

u∈Σk
N

τu

n
ln ν([u]) + δ = −1

k
Hk,N(ν, ∆x,n) + δ.

At the same time, by noting that Kt ≤ n + k− 1, we can take k and n large enough such that

γ

kn
(Kt + k2) ln C 6 δ/2 .

In combination with the last two inequalities, we have

L(γ, n, k, (τ′u)) ≤ h− γ
1
k

Hk,N(ν, ∆x,n) + (3/2 + γ)δ ≤ h− γ
1
k

Hk,N(ν, ∆x,n) + 3δ.

Recall that γ > t. We can take ε2 > 0 small enough such that γ > t + 2ε2. Then, we can take δ > 0
small enough and k, N large enough such that

γ >
1
k Hk,N(∆x,n, ∆x,n) + 7δ

1
k Hk,N(ν, ∆x,n)

.

It follows that

L(γ, n, k, (τ′u)) ≤ h− 1
k

Hk,N(∆x,n, ∆x,n)− 4δ = −1
k

n− K
n

ln
n− K

n
− 4δ.

Observe that the function x ln x is bounded in (0, 1]. Then we can take k large enough such that

−1
k

n− K
n

ln
n− K

n
≤ δ.

Thus, we have
L(γ, n, k, (τ′u)) ≤ −3δ,

and

∑
ω∈D′t

νγ([ω]) ≤ exp(−3nδ).

In combination with (9), (12) and (17), this yields

∑
ω∈Λn(k,N)

νγ([ω]) 6 snNk
e−2nδ ≤ e−nδ.
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Thus, we have for any γ > max{αν, t},

Hγ
δj+k−1

(Aε1,ε2(N1, k, N)) 6 ∑
n≥j

∑
ω∈Λn(k,N)

νγ([ω]) ≤ ∑
n≥j

e−nδ.

Then it follows that
dimν QRν(t) 6 γ.

Thus, we obtain
dimν QRν(t) 6 max{αν, t}.

Now we shall show the lower bound.

Theorem 4. Let ϕ be a potential function of summable variations admitting a unique Gibbs measure ν with
convergence exponent αν. For 0 ≤ t ≤ 1, we have

dimν QRν(t) ≥ max{αν, t}.

Proof. According to the dimension formula (2) (see also [3]), it suffices to find a T-invariant measure
µ ∈ MT(X) satisfying β(ν|µ) = t. In fact, the generic point set Gµ ⊂ QRν(t), thus we have

dimν QRν(t) ≥ dimν Gµ = max{αν, t}.

Consider the subspace XN := {1, 2, · · · , N}∞, where N > 1 is a positive integer. Let B denote
the set of Bernoulli measures on XN . Then B is homeomorphic to a simplex {(p1, p2, · · · , pN) ∈
[0, 1]N : ΣN

i=1 pi = 1}. By the entropy formula of Bernoulli measure it is clear that hµ is continuous on B.
Bearing in mind that the restriction ϕ|XN of ϕ on XN is a continuous bounded function, by Proposition 4,

the entropy dimension β(ν|µ) = hµ

−
∫

ϕdµ
is continuous on B. Thus, there exists a T-invariant measure

µ∗ ∈ MT(XN) ⊂MT(X) such that β(ν|µ∗) = t. We finish the proof.
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