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Abstract: The model for a broadcast channel with confidential messages (BC-CM) plays an important
role in the physical layer security of modern communication systems. In recent years, it has been
shown that a noiseless feedback channel from the legitimate receiver to the transmitter increases
the secrecy capacity region of the BC-CM. However, at present, the feedback coding scheme for
the BC-CM only focuses on producing secret keys via noiseless feedback, and other usages of the
feedback need to be further explored. In this paper, we propose a new feedback coding scheme for
the BC-CM. The noiseless feedback in this new scheme is not only used to produce secret keys for the
legitimate receiver and the transmitter but is also used to generate update information that allows
both receivers (the legitimate receiver and the wiretapper) to improve their channel outputs. From a
binary example, we show that this full utilization of noiseless feedback helps to increase the secrecy
level of the previous feedback scheme for the BC-CM.

Keywords: Broadcast channel with confidential messages; noiseless feedback; secrecy capacity region;
source coding with side information

1. Introduction

Wyner, in his outstanding paper on the degraded wiretap channel [1], first studied secure
transmission over a physically degraded broadcast channel in the presence of an additional wiretapper.
Wyner showed that the secrecy capacity (the maximum transmission rate with perfect secrecy
constraint) of the degraded wiretap channel model was given by

Cd
s = max

P(x)
(I(X; Y)− I(X; Z)), (1)

where X, Y and Z are the channel input, channel output for the legitimate receiver and channel output
for the wiretapper, respectively, and they satisfy the Markov chain X → Y → Z. Note here that the
secrecy capacity defined in (1) can be viewed as the difference between the main channel capacity
I(X; Y) (the channel for the transmitter and the legitimate receiver) and the wiretap channel capacity
I(X; Z) (the channel for the transmitter and the wiretapper). Later, Csiszár and Körner [2] extended
Wyner’s work [1] to a more general case: the broadcast channel with confidential messages (BC-CM),
where common and confidential messages were transmitted through a discrete memoryless general
broadcast channel (without the degradedness assumption X → Y → Z), and the common message
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was intended to be decoded by both the legitimate receiver and the wiretapper, while the confidential
message was only allowed to be decoded by the legitimate receiver. The secrecy capacity region (the
capacity region with the perfect secrecy constraint) of this generalized model is determined in [2], and
it is given by

Cs = {(R0, R1) : 0 ≤ R0 ≤ min{I(U; Y), I(U; Z)}
0 ≤ R1 ≤ I(V; Y|U)− I(V; Z|U)}, (2)

where U and V respectively represent the common message and the confidential message, and R0 and
R1 are the transmission rates of the common message and the confidential message, respectively. Here
note that from (2), it is not difficult to show that the secrecy capacity Cs (the maximum transmission
rate of the confidential message with the perfect secrecy constraint) of the BC-CM is given by

Cs = max
P(v,x)

[I(V; Y)− I(V; Z)]+, (3)

where the function [x]+ = x if x ≥ 0, else [x]+ = 0, and Cs is also called the secrecy capacity of the
general wiretap channel. The work of [1] and [2] lays the foundation of the physical layer security in
modern communication systems.

Recently, Ahlswede and Cai [3] found that if the legitimate receiver sent his own channel output
Y back to the transmitter through a noiseless feedback channel, the secrecy capacity region Cs of the
BC-CM could be expanded to an achievable secrecy rate region

C f−cai
s = {(R0, R1) : 0 ≤ R0 ≤ min{I(U; Y), I(U; Z)}

0 ≤ R1 ≤ min{[I(V; Y|U)− I(V; Z|U)]+ + H(Y|Z, U, V), I(V; Y|U)}}, (4)

where the auxiliary random variables U and V are defined similarly as those in (2). The coding scheme
of the region C f−cai

s combines Csiszár and Körner’s coding scheme for the BC-CM [2] with the idea
of using a secret key to encrypt the transmitted message, where the secret key is generated from the
noiseless feedback. Note here that the region C f−cai

s is an inner bound on the secrecy capacity C f
s of

the BC-CM with noiseless feedback, and to the best of the authors’ knowledge, C f
s remains unknown.

Similar to the work of [2], using (4), Ahlswede and Cai also provided an achievable secrecy rate R f−cai
s

(lower bound on the secrecy capacity) of the general wiretap channel with noiseless feedback, and it is
given by

R f−cai
s = max

P(v,x)
min{[I(V; Y)− I(V; Z)]+ + H(Y|V, Z), I(V; Y)}, (5)

where V is defined in the same way as in (2). In [3], Ahlswede and Cai further pointed out that for the
degraded wiretap channel with noiseless feedback (the Markov chain X → Y → Z holds), the secrecy
capacity Cd f

s was given by

Cd f
s = max

P(x)
min{I(X; Y)− I(X; Z) + H(Y|X, Z), I(X; Y)}. (6)

Here, note that the secrecy capacities in (5) and (6) can be viewed as a combination of two parts:
the first part is the difference between the main channel capacity (I(V; Y) or I(X; Y)) and the wiretap
channel capacity (I(V; Z) or I(X; Z)), and the second part is the rate H(Y|V, Z) (H(Y|X, Z)) of a secret
key generated by the noiseless feedback and shared between the legitimate receiver and the transmitter.
Comparing (6) with (1) and (5) with (3), it is easy to see that by using the noiseless feedback to generate
a secret key encrypting the transmitted message, the secrecy capacity of the wiretap channel can
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be enhanced. Besides the work of [3], other related works on the BC-CM or wiretap channel in the
presence of noiseless feedback are in [4–7].

In this paper, we re-visit the BC-CM with noiseless feedback investigated by Ahlswede and Cai [3]
(see Figure 1), and we propose a new achievable secrecy rate region for this feedback model. The
coding scheme for this achievable region combines the previous Ahlswede and Cai’s scheme [3] with
the Wyner-Ziv scheme for lossy source coding with side information [8], i.e., compared with Ahlswede
and Cai’s scheme, in our new scheme, the noiseless feedback is not only used to produce the secret
key but also used to generate an update information that allows the legitimate receiver to improve his
channel output. From a binary example, we show that this full utilization of noiseless feedback helps
to obtain a larger achievable secrecy rate of the confidential message.

Figure 1. Broadcast channel with confidential messages and noiseless feedback.

Now the remainder of this paper is organized as follows. Section 2 is about the problem
formulation and the main result of this paper. A binary example is provided in Section 3.
Final conclusions are presented in Section 4.

2. Problem Formulation and New Result

Notations: In this paper, random variables are written in upper case letters (e.g. V), real values are
written in lower case letters (e.g. v), and members of the alphabet are written in calligraphic letters
(e.g. V). Random vectors and their values are written in a similar way. The probability Pr{V = v} is
shortened to P(v). In addition, for the remainder of this paper, the base of the logarithm is 2.

Model description: Suppose that the common message W0 is chosen to be transmitted, and it is
uniformly distributed over its alphabetW0 = {1, 2, ..., M0}. Analogously, the confidential message
W1 is chosen to be transmitted, and it is uniformly distributed over its alphabetW1 = {1, 2, ..., M1}.
The channel is discrete and memoryless with input XN , outputs YN , ZN , and has transition probability
P(y, z|x). At time i (1 ≤ i ≤ N), the legitimate receiver receives the channel output Yi, and he sends
the previous channel outputs Y1,...,Yi−1 back to the transmitter via a noiseless feedback channel. Hence
at time i, the channel encoder fi is denoted by

Xi =

{
fi(W0, W1), i = 1
fi(W0, W1, Yi−1), 2 ≤ i ≤ N.

(1)

Here we should note that fi does not need to be deterministic and stochastic encoding is also
allowed. For the legitimate receiver, after receiving YN , he uses a decoding mapping ψ1 : YN →
W0 ×W1, to obtain Ŵ0 and Ŵ1, which are estimations of the transmitted messages W0 and W1,
respectively. The legitimate receiver’s decoding error probability Pe1 is defined by

Pe1 =
1

M0M1

M0

∑
i=1

M1

∑
j=1

Pr{ψ1(yN) 6= (i, j)|(i, j) sent}. (2)

For the wiretapper, after receiving ZN , he uses a decoding mapping ψ2 : ZN →W0, to obtain W̌0,
which is an estimation of the transmitted message W0. Moreover, the wiretapper also tries to decode
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the transmitted message W1 via his own channel output ZN , and his equivocation (uncertainty) about
W1 is denoted by

∆ =
1
N

H(W1|ZN). (3)

The wiretapper’s decoding error probability Pe2 is defined by

Pe2 =
1

M0

M0

∑
i=1

Pr{ψ2(zN) 6= i|i sent}. (4)

Finally, using similar criteria in [1] and [2], if for any small positive number ε, there exists an
encoding-decoding scheme with parameters M0, M1, N, Pe1 and Pe2 such that

log M0

N
≥ R0 − ε,

log M1

N
≥ R1 − ε, ∆ ≥ R1 − ε, Pe1 ≤ ε, Pe2 ≤ ε, (5)

we say that the rate pair (R0, R1) is achievable with perfect secrecy. The secrecy capacity region C f
s is

composed of all achievable secrecy rate pairs satisfying (5), and the following Theorem 1 provides an
inner bound on C f

s .

Theorem 1. The secrecy capacity region C f
s of the discrete memoryless BC-CM with noiseless feedback satisfies

C f
s ⊇ C f−new

s , (6)

where

C f−new
s = {(R0, R1) : 0 ≤ R0 ≤ min{I(U; Y, V1), I(U; Z, V2)} − I(U, V, Y; V0, V2|Z)

0 ≤ R1 ≤ min{[I(V; Y, V1|U)− I(V; Z, V2|U)]+ + H(Y|Z, U, V, V2), I(V; Y, V1|U)}
0 ≤ R0 + R1 ≤ min{I(U; Y, V1), I(U; Z, V2)}+ I(V; Y, V1|U)− I(V1; U, V, Y|V0, Y)

−I(V2; U, V, Y|V0, Z)−max{I(V0; U, V, Y|Y), I(V0; U, V, Y|Z)}},

the joint probability mass function P(v0, v1, v2, u, v, x, y, z) is denoted by

P(v0, v1, v2, u, v, x, y, z) = P(v0, v1, v2|u, v, y)P(y, z|x)P(x|u, v)P(v|u)P(u), (7)

and the auxiliary random variables V0, V1, V2, V, U take values in finite alphabets.

Proof. The coding scheme for the inner bound C f−new
s combines the previous Ahlswede and Cai’s

scheme of the model of Figure 1 with a “generalized” Wyner-Ziv scheme for lossy source coding with
side information [8], and the details of the proof of Theorem 1 are in Appendix A.

Remark 1. There are some notes on Theorem 1; see the following.

• Comparing our new inner bound C f−new
s with the previous Ahlswede and Cai’s inner bound C f−cai

s , in
general, we do not know which one is larger. In the next section, we consider a binary case of the BC-CM
with noiseless feedback, and compute these inner bounds for this binary case. From this binary example,
we show that the maximum achievable R1 (the transmission rate of the confidential message with perfect
secrecy constraint) in C f−new

s is larger than that in C f−cai
s , however, the enhancement of R1 is at the cost of

reducing the transmission rate of the common message R0.
• Note here that in C f−new

s , the auxiliary random variable U represents the encoded sequence for the common
message and V represents the encoded sequence for both the common and confidential messages. The
auxiliary random variable V0 is both the legitimate receiver and the wiretapper’s estimation of U, and the
index of V0 is related to the update information generated by the noiseless feedback. The auxiliary random
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variable V1 is the legitimate receiver’s estimation of V, and V2 is the wiretapper’s estimation of V. Both the
indexes of V1 and V2 are with respect to the update information. The inner bound C f−new

s is constructed
by using the feedback to generate a secret key shared between the legitimate receiver and the wiretapper,
and generate update information used to construct estimation of the transmitted sequences U and V. The
estimation of U and V helps both the legitimate receiver and the wiretapper to improve their own received
symbols Y and Z.

3. Binary Example of the BC-CM with Noiseless Feedback

Now we consider a binary case of the model of Figure 1. In this case, the channel input is X and
output Y, Z takes values in {0, 1}, and they satisfy

Y = X + Z1, Z = X + Z2, (1)

where Z1 ∼ Bern(p) (p < 0.5) and Z2 ∼ Bern(q) (q < 0.5) are the channel noises for the
transmitter-legitimate receiver’s channel and transmitter-wiretapper’s channel, respectively, and
they are independent of each other and the channel input X.

Without noiseless feedback, letting P(U = 0) = α, P(U = 1) = 1− α, P(V = 0) = β, P(V = 1) =
1− β, U + V = X, using the fact that U is independent of V, and substituting (1) into (2), it is not
difficult to calculate the secrecy capacity region Cb

s of the binary BC-CM, and it is given by

Cb
s = {(R0, R1) : 0 ≤ R0 ≤ min{1− h(β ? p), 1− h(β ? q)}

0 ≤ R1 ≤ h(β ? p)− h(p)− h(β ? q) + h(q)}, (2)

where h(x) = −x log(x)− (1− x) log(1− x) and a ? b = a + b− 2ab. Here, note that the region (2) is
achieved when α = 0.5.

With noiseless feedback, first, we compute Ahlswede and Cai’s achievable secrecy rate region
for this binary case. Letting P(U = 0) = α, P(U = 1) = 1− α, P(V = 0) = β, P(V = 1) = 1− β,
U + V = X, using the fact that U is independent of V, and substituting (1) into (4), it is not difficult to
calculate Ahlswede and Cai’s achievable secrecy rate region Cb f ∗

s for this binary case, and it is given by

Cb f ∗
s = {(R0, R1) : 0 ≤ R0 ≤ min{1− h(β ? p), 1− h(β ? q)}

0 ≤ R1 ≤ min{h(β ? p)− h(p), [h(β ? p)− h(p)− h(β ? q) + h(q)]+ + h(p)}}, (3)

where [x]+ = x if x ≥ 0, else [x]+ = 0. Comparing (3) with (2), it is easy to see that the noiseless
feedback enhances the secrecy capacity region of the binary BC-CM. Here the region (3) is achieved
when α = 0.5.

Then, it remains to compute our new achievable secrecy rate region for this binary case. Letting
V1 = (U, V), V2 = U, V0 = Z1, P(U = 0) = α, P(U = 1) = 1− α, P(V = 0) = β, P(V = 1) = 1− β,
U + V = X, using the fact that U is independent of V, and substituting (1) into C f−new

s of Theorem 1,
it is not difficult to show that the achievable secrecy rate region Cb f

s of our new feedback scheme is
given by

Cb f
s = {(R0, R1) : 0 ≤ R0 ≤ min{1− h(β ? p)− h(p), 1− h(β)− h(q)}

0 ≤ R1 ≤ min{h(β), h(β)− h(β ? q) + h(p) + h(q)}
0 ≤ R1 + R2 ≤ min{1− h(β)− h(p)− h(q), 1− h(β ? q)− h(p)}}. (4)

The achievability of Cb f
s can be explained by the following simple block length-(n) scheme.
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• First note that in the following explanation, the channel input xN for the i-th block (1 ≤ i ≤ n)
is denoted by x̃i, and similar conventions are applied to uN , vN , vN

0 , vN
1 , vN

2 , yN , zN , zN
1 and

zN
2 . For each block, the transmitted message is composed of a common message, a confidential

message, a dummy message and update information.
• (Encoding): In the i-th block (2 ≤ i ≤ n), after the transmitter receives the feedback channel output

ỹi−1, he generates a secret key from ỹi−1 and uses this key to encrypt the confidential message of
the i-th block. In addition, since ỹi−1 = x̃i−1 ⊕ z̃1,i−1, the transmitter also knows the legitimate
receiver’s channel noise z̃1,i−1 at the i-th block, and thus he chooses ṽ0,i = ỹi−1 ⊕ x̃i−1 = z̃1,i−1
as an estimation of ũi−1, ṽ1,i = (ũi−1, ṽi−1) as the legitimate receiver’s estimation of x̃i−1, and
ṽ2,i = ũi−1 as the wiretapper’s estimation of x̃i−1. Note that x̃i−1 = ũi−1 ⊕ ṽi−1 and the update
information is part of the indexes of ṽ0,i, ṽ1,i and ṽ2,i.

• (Decoding at the legitimate receiver): The legitimate receiver does backward decoding, i.e., the
decoding starts from the last block. In block n, the legitimate receiver applies Ahlswede and Cai’s
decoding scheme [3] to obtain his update information for block n. Then using the channel output
ỹn as side information, the legitimate receiver applies Wyner-Ziv’s decoding scheme [8] to obtain
ṽ0,n and ṽ1,n. Since ṽ0,n = z̃1,n−1, the legitimate receiver knows the legitimate receiver’s channel
noise for block n− 1, and thus he computes ỹn−1 ⊕ z̃1,n−1 to obtain x̃n−1 and the corresponding
transmitted message for block n− 1. Repeating the above decoding scheme, the legitimate receiver
obtains the entire transmitted messages (including both confidential and common messages) for
all blocks, and since he also knows the secret keys, the real messages are decrypted by him.

• (Decoding at the wiretapper): The wiretapper also does backward decoding. In block n, the
wiretapper receives z̃n, and he applies Ahlswede and Cai’s decoding scheme [3] to obtain his
update information for block n. Then using the channel output z̃n as side information, the
wiretapper applies Wyner-Ziv’s decoding scheme [8] to obtain ṽ0,n and ṽ2,n. Since ṽ2,n = ũn−1, the
wiretapper knows the common message for block n− 1. Repeating the above decoding scheme,
finally, the wiretapper obtains the entire common messages for all blocks.

The following Figure 2 shows the achievable secrecy rate region Cb f
s of our new scheme, Ahlswede

and Cai’s achievable secrecy rate region Cb f ∗
s and the secrecy capacity region Cb

s of the binary BC-CM
without feedback for p = 0.05 and q = 0.01, which implies that the wiretapper’s channel noise is
smaller than the legitimate receiver’s. From Figure 2, it is easy to see that when the wiretapper’s
channel noise is smaller than the legitimate receiver’s, the secrecy rate R1 of the binary BC-CM without
feedback is 0, which implies that perfect secrecy can not be achieved, and the secrecy rate R1 is
enhanced by using noiseless feedback. Moreover, we see that our new scheme performs better than
Ahlswede and Cai’s in enhancing the secrecy rate R1, however, we should notice that the boosting of
the secrecy rate R1 is at the cost of reducing the rate R0 of the common message.

The following Figure 3 shows the achievable secrecy rate region Cb f
s of our new scheme, Ahlswede

and Cai’s achievable secrecy rate region Cb f ∗
s , and the secrecy capacity region Cb

s of the binary BC-CM
without feedback for p = 0.05 and q = 0.1, which implies that the wiretapper’s channel noise is larger
than the legitimate receiver’s. From Figure 3, it is easy to see that noiseless feedback enhances the
secrecy rate of the BC-CM without feedback. However, we also should notice that the enhancement of
the secrecy rate R1 is at the cost of reducing the rate R0 of the common message.
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Figure 2. The comparison of our new scheme with Ahlswede-Cai’s scheme and Csiszár-Körner’s
scheme of the BC-CM without feedback for p = 0.05 and q = 0.01.

Figure 3. The comparison of our new scheme with Ahlswede-Cai’s scheme and Csiszár-Körner’s
scheme of the BC-CM without feedback for p = 0.05 and q = 0.1.

4. Conclusions

In this paper, we propose a new coding scheme for the BC-CM with noiseless feedback. From a
binary example, we show that our new feedback scheme performs better than the existing feedback
scheme in enhancing the secrecy level of the BC-CM. However, we should notice that this enhancement
of the secrecy level is at the cost of reducing the rate of the common message.
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TLA Three letter acronym
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BC-CM broadcast channel with confidential messages

Appendix A Proof of Theorem 1

Appendix A.1 Preliminary

For a given probability P(x), the identical independent distributed (i.i.d.) generated sequence xN

is called ε-typical if

|NxN (x)
N

− P(x)| ≤ εP(x),

where
NxN (x)

N is the frequency of symbol x appearing in the sequence xN . The set, which is composed
of all ε-typical xN , is denoted by TN

ε (P(x)), and it is called the typical set. The following four lemmas
about the typical set are extensively used in information theory.

Lemma A1. (Covering Lemma [9]): Let XN satisfy P(XN ∈ TN
ε
′ (P(x)))→→ 1 as N → ∞. Also let M be

an integer larger than 2Nr for some r ≥ 0, and let {YN(m)}M
m=1 be a set composed of i.i.d. generated sequences

YN (according to the probability P(y)) such that {XN , {YN(m)}M
m=1} are mutually independent. Then, for

any probability P(x, y) with marginal probabilities P(x) and P(y), there exists a ε > 0 such that

lim
N→∞

P(∀m ∈ {1, 2, ..., M}, (XN , YN(m)) /∈ TN
ε (P(x, y))) = 0

if r > I(X; Y) + δ(ε), where δ(ε)→ 0 as ε→ 0.

Lemma A2. (Packing Lemma [9]): Let XN be an i.i.d. generated random vector with distribution P(x). Also
let M be an integer smaller than 2Nr for some r ≥ 0, and let {YN(m)}M

m=1 be a set composed of i.i.d. generated
sequences YN according to the probability P(y), and each YN(m) in the set is independent of XN . Then for any
probability P(x, y) with marginal probabilities P(x) and P(y), there exists a ε > 0 such that

lim
N→∞

P(∃m ∈ {1, 2, ..., M} s.t. (XN , YN(m)) ∈ TN
ε (P(x, y))) = 0

if r < I(X; Y)− δ(ε), where δ(ε)→ 0 as ε→ 0.

Lemma A3. (Generalized Packing Lemma [9]): For some r1, r2, r3 ≥ 0, let M1, M2, M3 be integers
satisfying M1 ≤ 2Nr1 , M2 ≤ 2Nr2 and M3 ≤ 2Nr3 , respectively. Also let {UN

i (m)}Mi
m=1 (i = 1, 2, 3)

be a set composed of i.i.d. generated sequences UN
i (with respect to the distribution P(ui)) such that

(UN
1 (m1), UN

2 (m2), UN
3 (m3)) are mutually independent for any m1, m2, m3. Then for any probability

P(u1, u2, u3) with marginal probabilities P(u1), P(u2) and P(u3), there exists a ε > 0 such that

lim
N→∞

P
(
∃mi ∈ {1, 2, ..., Mi} s.t. (UN

1 (m1), UN
2 (m2), UN

3 (m3)) ∈ TN
ε (P(u1, u2, u3))

)
= 0

if r1 + r2 + r3 < I(U1; U2) + I(U3; U1, U2)− δ(ε), where δ(ε)→ 0 as ε→ 0.
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Lemma A4. (Balanced coloring lemma [3, p. 260]): For any ε1, ε2, ε3, δ > 0, sufficiently large N and all
i.i.d. generated YN according to the distribution P(y), there exists a γ- coloring

c : TN
ε1
(P(y))→ {1, 2, .., γ}

of TN
ε1
(P(y)) such that for all joint distribution P(u, v, v2, y, z) with marginal distribution P(u, v, v2, z) and

|TN
P(y|z,u,v,v2)

(zN ,uN ,vN ,vN
2 )|

γ > 2Nε2 , (zN , uN , vN , vN
2 ) ∈ TN

ε3
(P(z, u, v, v2)),

|c−1(k)| ≤
|TN

P(y|z,u,v,v2)
(zN , uN , vN , vN

2 )|(1 + δ)

γ
, (A1)

for k = 1, 2, ..., γ, where c−1 is the inverse image of c.

Lemma A4 implies that if yN , zN , uN , vN and vN
2 are jointly typical, for given zN , uN , vN and vN

2 ,
the number of yN ∈ TN

P(y|z,u,v,v2)
(zN , uN , vN , vN

2 ) for a certain color k (k = 1, 2, ..., γ), which is denoted

by |c−1(k)|, is upper bounded by
|TN

P(y|z,u,v,v2)
(zN ,uN ,vN ,vN

2 )|(1+δ)

γ . By using Lemma A1, it is easy to see
that the typical set TN

P(y|z,u,v,v2)
(zN , uN , vN , vN

2 ) maps into at least

|TN
P(y|z,u,v,v2)

(zN , uN , vN , vN
2 )|

|TN
P(y|z,u,v,v2)

(zN ,uN ,vN ,vN
2 )|(1+δ)

γ

=
γ

1 + δ
(A2)

colors. On the other hand, the typical set TN
P(y|z,u,v,v2)

(zN , uN , vN , vN
2 ) maps into at most γ colors.

Appendix A.2 Code Construction

Definitions:

• Transmission takes place over n blocks, and each block is of length N. Define the confidential
message W1 by W1 = (W1,1, ..., W1,n), where W1,i (1 ≤ i ≤ n) is for block i and takes values in
{1, 2, ..., 2NR1}. Further divide W1,i into W1,i = (W1,1,i, W1,2,i), where W1,j,i (j = 1, 2) takes values in
{1, 2, ..., 2NR1,j}, and R1,1 + R1,2 = R1.

• Define the common message W0 by W0 = (W0,1, ..., W0,n), where W0,i (1 ≤ i ≤ n) is for block i and
takes values in {1, 2, ..., 2NR0}.

• Let W
′

be a randomly generated dummy message transmitted over all blocks, and it is denoted by

W
′
= (W

′
1, ..., W

′
n), where W

′
i (1 ≤ i ≤ n) is for block i and it takes values in {1, 2, ..., 2NR

′
}.

• Let W∗0 and W∗1 be update information transmitted over all blocks, and they are respectively
denoted by W∗0 = (W∗0,1, ..., W∗0,n) and W∗1 = (W∗1,1, ..., W∗1,n), where W∗0,i and W∗1,i (1 ≤ i ≤ n)

are for block i and take values in {1, 2, ..., 2NR̃0} and {1, 2, ..., 2NR̃1}, respectively. Further divide
W∗0,i into W∗0,i = (W∗0,0,i, W∗0,1,i, W∗0,2,i), where W∗0,j,i (j = 0, 1, 2) takes values in {1, 2, ..., 2NR̃0,j}, and
R̃0,0 + R̃0,1 + R̃0,2 = R̃0. Moreover, further divide W∗1,i into W∗1,i = (W∗1,0,i, W∗1,1,i), where W∗1,j,i

(j = 0, 1) takes values in {1, 2, ..., 2NR̃1,j}, and R̃1,0 + R̃1,1 = R̃1.
• Let X̃i, Ỹi, Z̃i, Ũi, Ṽi, Ṽ0,i, Ṽ1,i and Ṽ2,i be the random vectors for block i (1 ≤ i ≤ n). Define

Xn = (X̃1, ..., X̃n), and similar convention is applied to Yn, Zn, Un, Vn, Vn
0 , Vn

1 and Vn
2 . The

specific values of the above random vectors are denoted by lower case letters.

Code construction:

• In each block i (1 ≤ i ≤ n), randomly produce 2N(R0+R̃0) i.i.d. sequences ũi according to the
probability P(u), and index them as ũi(w0,i, w∗0,0,i, w∗0,1,i, w∗0,2,i), where w0,i ∈ {1, 2, ..., 2NR0}, w∗0,0,i ∈
{1, 2, ..., 2NR̃0,0}, w∗0,1,i ∈ {1, 2, ..., 2NR̃0,1} and w∗0,2,i ∈ {1, 2, ..., 2NR̃0,2}. Here note that R̃0,0 + R̃0,1 +

R̃0,2 = R̃0.
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• For a given ũi(w0,i, w∗0,0,i, w∗0,1,i, w∗0,2,i), randomly produce 2N(R1+R
′
+R̃1) i.i.d. sequences ṽi

according to the conditional probability P(v|u), and index them as ṽi(w1,1,i, w1,2,i, w
′
i , w∗1,0,i, w∗1,1,i),

where w1,1,i ∈ {1, 2, ..., 2NR1,1}, w1,2,i ∈ {1, 2, ..., 2NR1,2}, w
′
i ∈ {1, 2, ..., 2NR

′
}, w∗1,0,i ∈

{1, 2, ..., 2NR̃1,0} and w∗1,1,i ∈ {1, 2, ..., 2NR̃1,1}. Here note that R1,1 + R1,2 = R1 and R̃1,0 + R̃1,1 = R̃1.
• The sequence x̃i is i.i.d. produced according to a new discrete memoryless channel (DMC)

with transition probability P(x|u, v). The inputs and output of this new DMC are ũi, ṽi and x̃i,
respectively.

• In each block i (1 ≤ i ≤ n), generate ṽ0,i in two ways: the first way is to produce 2N(R̃0,0+R̃
′
0) i.i.d.

sequences ṽ0,i according to the probability P(v0|u, v, y), and index them as ṽ0,i(1; w∗0,0,i, w∗1,0,i, l1,0,i),

where 1 represents the first way to define ṽ0,i, w∗0,0,i ∈ {1, 2, ..., 2NR̃0,0}, w∗1,0,i ∈ {1, 2, ..., 2NR̃1,0}
and l1,0,i ∈ {1, 2, ..., 2N(R̃

′
0−R̃1,0)}; the second way is to produce 2N(R̃0,0+R̃

′
0) i.i.d. sequences ṽ0,i

according to the probability P(v0|u, v, y), and index them as ṽ0,i(2; w∗0,0,i, l2,0,i), where 2 represents

the second way to define ṽ0,i, w∗0,0,i ∈ {1, 2, ..., 2NR̃0,0}, and l2,0,i ∈ {1, 2, ..., 2NR̃
′
0}.

• In each block i (1 ≤ i ≤ n), produce 2N(R̃0,1+R̃1,1+R̃
′
1) i.i.d. sequences ṽ1,i according to the

probability P(v1|u, v, y), and index them as ṽ1,i(w∗0,1,i, w∗1,1,i, l1,i), where w∗0,1,i ∈ {1, 2, ..., 2NR̃0,1},
w∗1,1,i ∈ {1, 2, ..., 2NR̃1,1} and l1,i ∈ {1, 2, ..., 2NR̃

′
1}.

• In each block i (1 ≤ i ≤ n), produce 2N(R̃0,2+R̃
′
2) i.i.d. sequences ṽ2,i according to the

probability P(v2|u, v, y), and index them as ṽ2,i(w∗0,2,i, l2,i), where w∗0,2,i ∈ {1, 2, ..., 2NR̃0,2} and

l2,i ∈ {1, 2, ..., 2NR̃
′
2}.

Encoding scheme:

• In block 1, the transmitter chooses ũ1(w0,1, 1, 1, 1) and ṽ1(w1,1,1, w1,2,1 = 1, w
′
1, 1, 1) to transmit.

• In block i (2 ≤ i ≤ n − 1), the transmitter receives the feedback
ỹi−1, and he tries to select a pair of sequences (ṽ0,i−1, ṽ1,i−1) such that
(ṽ0,i−1(1; w∗0,0,i−1, w∗1,0,i−1, l1,0,i−1), ṽ1,i−1(w∗0,1,i−1, w∗1,1,i−1, l1,i−1), ũi−1, ṽi−1, ỹi−1) are jointly
typical sequences. If there are more than one pair (ṽ0,i−1, ṽ1,i−1), randomly choose one; if there is
no such pair, an error is declared. Based on Lemma A1, it is easy to see that the error probability
goes to 0 if

R̃0,0 + R̃
′
0 ≥ I(V0; U, V, Y), (A3)

R̃0,1 + R̃1,1 + R̃
′
1 ≥ I(V1; U, V, Y, V0). (A4)

Moreover, the transmitter also tries to select a pair of sequences (ṽ0,i−1, ṽ2,i−1) such
that (ṽ0,i−1(2; w∗0,0,i−1, l2,0,i−1), ṽ2,i−1(w∗0,2,i−1, l2,i−1), ũi−1, ṽi−1, ỹi−1) are jointly typical sequences.
If there are more than one pair (ṽ0,i−1, ṽ2,i−1), randomly choose one; if there is no such pair, an
error is declared. Based on Lemma A1, it is easy to see that the error probability goes to 0 if
(A3) and

R̃0,2 + R̃
′
2 ≥ I(V2; U, V, Y, V0) (A5)

hold. Once the transmitter selects such pairs (ṽ0,i−1, ṽ1,i−1) and (ṽ0,i−1, ṽ2,i−1), he chooses
ũi(w0,i, w∗0,0,i−1, w∗0,1,i−1, w∗0,2,i−1) to transmit.
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Before choosing the transmitted codeword ṽi, produce a mapping gi : ỹi−1 → {1, 2, ..., 2NR1,2}.
Furthermore, we define Ki = gi(Ỹi−1) as a random variable uniformly distributed over
{1, 2, ..., 2NR1,2}, and it is independent of all the random vectors and messages of block i.
Here note that Ki is the secret key known by the transmitter and the legitimate receiver, and
ki = gi(ỹi−1) ∈ {1, 2, ..., 2NR2} is a specific value of Ki. Reveal the mapping gi to the transmitters,
legitimate receiver and the wiretapper. Once the transmitter finds a pair (ṽ0,i−1, ṽ1,i−1)

such that (ṽ0,i−1(1; w∗0,0,i−1, w∗1,0,i−1, l1,0,i−1), ṽ1,i−1(w∗0,1,i−1, w∗1,1,i−1, l1,i−1), ũi−1, ṽi−1, ỹi−1)

are jointly typical sequences, and finds a pair (ṽ0,i−1, ṽ2,i−1) such that
(ṽ0,i−1(2; w∗0,0,i−1, l2,0,i−1), ṽ2,i−1(w∗0,2,i−1, l2,i−1), ũi−1, ṽi−1, ỹi−1) are jointly typical sequences,

he chooses ṽi(w1,1,i, w1,2,i ⊕ ki, w
′
i , w∗1,0,i−1, w∗1,1,i−1) to transmit.

• In block n, the transmitter receives ỹn−1, and he finds a pair (ṽ0,n−1, ṽ1,n−1) such
that (ṽ0,n−1(1; w∗0,0,n−1, w∗1,0,n−1, l1,0,n−1), ṽ1,n−1(w∗0,1,n−1, w∗1,1,n−1, l1,n−1), ũn−1, ṽn−1, ỹn−1)

are jointly typical sequences. Moreover, he also finds a pair (ṽ0,n−1, ṽ2,n−1) such that
(ṽ0,n−1(2; w∗0,0,n−1, l2,0,n−1), ṽ2,n−1(w∗0,2,n−1, l2,n−1), ũn−1, ṽn−1, ỹn−1) are jointly typical sequences.
Then he chooses ũn(1, w∗0,0,n−1, w∗0,1,n−1, w∗0,2,n−1) and ṽn(1, 1, 1, w∗1,0,n−1, w∗1,1,n−1) to transmit.

Decoding scheme for the legitimate receiver: The legitimate receiver does backward decoding after
the transmission of all n blocks is finished. For block n, first, he tries to select a unique ũn such that
(ũn, ỹn) are jointly typical. If there is no ũn or multiple ones exist, an decoding error is declared. Using
Lemma A2, the error probability goes to 0 if

R̃0,0 + R̃0,1 + R̃0,2 ≤ I(U; Y). (A6)

Then, he tries to select a unique ṽn such that (ũn, ṽn, ỹn) are jointly typical. If there is no ṽn or
multiple ones exist, an decoding error is declared. Using Lemma A2, the error probability goes to 0 if

R̃1,0 + R̃1,1 ≤ I(V; Y|U). (A7)

When ũn and ṽn are successfully decoded, the legitimate receiver extracts w∗0,0,n−1, w∗0,1,n−1,
w∗0,2,n−1, w∗1,0,n−1, w∗1,1,n−1 from them. Then using Wyner-Ziv’s decoding scheme [8] for the source
coding with side information, the legitimate receiver tries to find unique ṽ0,n−1 and ṽ1,n−1 such
that given w∗0,0,n−1, w∗0,1,n−1, w∗0,2,n−1, w∗1,0,n−1 and w∗1,1,n−1, (ṽ0,n−1, ṽ1,n−1, ỹn−1) are jointly typical
sequences. If there is no ṽ1,n−1 or multiple ones exist, an decoding error is declared. Based on Lemma
A2 and Lemma A3, the error probability goes to 0 if

R̃
′
1 ≤ I(V1; V0, Y), (A8)

R̃
′
1 + R̃

′
0 − R̃1,0 ≤ I(V0; Y) + I(V1; V0, Y). (A9)

For block n− 1, after ṽ1,n−1 is successfully decoded, the legitimate receiver tries to select a unique
ũn−1 such that (ũn−1, ỹn−1, ṽ1,n−1) are jointly typical. Based on Lemma A2, the error probability goes
to 0 if

R0 + R̃0 ≤ I(U; Y, V1). (A10)

Then he tries to select a unique ṽn−1 such that (ũn−1, ṽn−1, ỹn−1, ṽ1,n−1) are jointly typical. If there
is no ṽn−1 or multiple ones exist, an decoding error is declared. Using Lemma A2, the error probability
goes to 0 if

R1,1 + R1,2 + R
′
+ R̃1,0 + R̃1,1 ≤ I(V; Y, V1|U). (A11)
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When ũn−1 and ṽn−1 are successfully decoded, the legitimate receiver extracts w0,n−1, w1,1,n−1,
w1,2,n−1 ⊕ kn−1, w

′
n−1, w∗0,0,n−2, w∗0,1,n−2, w∗0,2,n−2, w∗1,0,n−2 and w∗1,1,n−2 from it. Since the legitimate

receiver knows the key kn−1 = gn−1(ỹn−2), the transmitted messages w0,n−1, w1,1,n−1 and w1,2,n−1 for
block n− 1 are obtained. Repeat the above decoding scheme, the entire transmitted messages for all
blocks are obtained by the legitimate receiver.

Decoding scheme for the wiretapper: The wiretapper also does backward decoding after the
transmission of all n blocks is finished. For block n, first, he tries to select a unique ũn such that
(ũn, z̃n) are jointly typical. If there is no ũn or multiple ones exist, an decoding error is declared. Using
Lemma A2, the error probability goes to 0 if

R̃0,0 + R̃0,1 + R̃0,2 ≤ I(U; Z). (A12)

When ũn is successfully decoded, the wiretapper extracts w∗0,0,n−1, w∗0,1,n−1 and w∗0,2,n−1 from
them. Then using Wyner-Ziv’s decoding scheme [8] for the source coding with side information,
the wiretapper tries to find unique ṽ0,n−1 and ṽ2,n−1 such that given w∗0,0,n−1, w∗0,1,n−1 and w∗0,2,n−1,
(ṽ0,n−1, ṽ2,n−1, z̃n−1) are jointly typical sequences. If there is no ṽ2,n−1 or multiple ones exist, an
decoding error is declared. Based on Lemma A2 and Lemma A3, the error probability goes to 0 if

R̃
′
2 ≤ I(V2; V0, Z), (A13)

R̃
′
2 + R̃

′
0 ≤ I(V0; Z) + I(V2; V0, Z). (A14)

For block n− 1, after ṽ2,n−1 is successfully decoded, the wiretapper tries to select a unique ũn−1

such that (ũn−1, z̃n−1, ṽ2,n−1) are jointly typical. Based on Lemma A2, the error probability goes to 0 if

R0 + R̃0 ≤ I(U; Z, V2). (A15)

When ũn−1 is successfully decoded, the legitimate receiver extracts w0,n−1, w∗0,0,n−2, w∗0,1,n−2 and
w∗0,2,n−2 from it. Repeat the above decoding scheme, the entire common messages for all blocks are
obtained by the wiretapper.

Appendix A.3 Equivocation Analysis

For all blocks, the equivocation ∆ is bounded by

∆ =
1

nN
H(W0, W1|Zn) ≥ 1

nN
H(W1|Zn, W0)

(a)
=

1
nN

(H(W11|Zn, W0) + H(W12|Zn, W0, W11)), (A16)

where (a) is from the definitions W11 = (W1,1,1, ..., W1,1,n) and W12 = (W1,2,1, ..., W1,2,n).
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The first part H(W11|Zn, W0) of (A16) can be lower bounded by

H(W11|Zn, W0) ≥ H(W11|Zn, W0, Un, Vn
2 )

(b)
= H(W11|Zn, Un, Vn

2 )

= H(W11, Zn, Un, Vn
2 )− H(Zn, Un, Vn

2 )

= H(W11, Zn, Un, Vn
2 , Vn)− H(Vn|W11, Zn, Un, Vn

2 )− H(Zn, Un, Vn
2 )

(c)
= H(Zn, Vn

2 |Un, Vn) + H(Un, Vn)− H(Vn|W11, Zn, Un, Vn
2 )− H(Zn, Vn

2 |Un)− H(Un)

= H(Vn|Un)− H(Vn|W11, Zn, Un, Vn
2 )− I(Zn, Vn

2 ; Vn|Un)

(d)
= (n− 1)NR1,1 + (n− 2)NR1,2 + (n− 1)NR

′
+ (n− 1)N(R̃1,0 + R̃1,1)

−H(Vn|W11, Zn, Un, Vn
2 )− I(Zn, Vn

2 ; Vn|Un)

(e)
≥ (n− 1)NR1,1 + (n− 2)NR1,2 + (n− 1)NR

′
+ (n− 1)N(R̃1,0 + R̃1,1)

−nNI(V; Z, V2|U)− H(Vn|W11, Zn, Un, Vn
2 )

( f )
≥ (n− 1)NR1,1 + (n− 2)NR1,2 + (n− 1)NR

′
+ (n− 1)N(R̃1,0 + R̃1,1)

−nNII(V; Z, V2|U)− nNε
′
, (A17)

where (b) is from H(W0|Un) = 0, (c) is from H(W11|Vn) = 0, (d) is from the construction of Un and
Vn, (e) is from the fact that the channel is memoryless, and (f) is from the fact that given w11, un, vn

2
and zn, the wiretapper tries to select unique vn such that (vn, zn, vn

2 , un) are jointly typical, and based
on Lemma A2, the wiretapper’s decoding error probability tends to 0 if

R1,2 + R
′
+ R̃1,0 + R̃1,1 ≤ I(V; Z, V2|U), (A18)

then using Fano’s inequality, we have 1
nN H(Vn|W11, Zn, Un, Vn

2 ) ≤ ε
′
, where ε

′ → 0 as n, N → ∞.
Moreover, the second part H(W12|Zn, W0, W11) of (A16) can be lower bounded by

H(W12|Zn, W0, W11)

≥
n−1

∑
i=2

H(W1,2,i|Zn, W0, W11, W1,2,1 = 1, ..., W1,2,i−1, W1,2,i ⊕ Ki)

(g)
=

n−1

∑
i=2

H(W1,2,i|Z̃i−1, W1,2,i ⊕ Ki)

≥
n−1

∑
i=2

H(W1,2,i|Z̃i−1, Ũi−1, W1,2,i ⊕ Ki) (A19)

=
n−1

∑
i=2

H(Ki|Z̃i−1, Ũi−1, W1,2,i ⊕ Ki)

( f )
=

n−1

∑
i=2

H(Ki|Z̃i−1, Ũi−1)

≥
n−1

∑
i=2

H(Ki|Z̃i−1, Ũi−1, Ṽi−1, Ṽ2,i−1),

where (e) is from the Markov chain W1,2,i → (Z̃i−1, W1,2,i ⊕ Ki) →
(W0, W11, W1,2,1, ..., W1,2,i−1, Z̃1, ..., Z̃i−2, Z̃i, ..., Z̃n), (f) is from Ki → (Z̃i−1, Ũi−1) → W1,2,i ⊕ Ki.
Now it remains to bound H(Ki|Z̃i−1, Ũi−1, Ṽi−1, Ṽ2,i−1) in (A19), see the followings.
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From Lemma A4 and (A2), we know that the typical set TN
P(y|z,u,v,v2)

(zN , uN , vN , vN
2 ) maps into at

least γ
1+δ colors. Choosing γ = |TN

P(y|z,u,v,v2)
(zN , uN , vN , vN

2 )| and notice that

|TN
P(y|z,u,v,v2)

(zN , uN , vN , vN
2 )|

≥ (1− ε1)2N(1−ε2)H(Y|U,V,V2,Z), (A20)

where ε1, ε2 → 0 as N → ∞, thus we can conclude that

H(Ki|Z̃i−1, Ũi−1, Ṽi−1, Ṽ2,i−1) ≥ log
γ

1 + δ

≥ log
1− ε1

1 + δ
+ N(1− ε2)H(Y|U, V, V2, Z). (A21)

Substituting (A21) into (A19), we have

H(W12|Zn, W0, W11) ≥ (n− 2) log
1− ε1

1 + δ
+ (n− 2)N(1− ε2)H(Y|U, V, V2, Z). (A22)

Finally, substituting (A17) and (A22) into (A16), we have

∆ ≥ n− 1
n

(R1,1 + R
′
+ R̃1,0 + R̃1,1) +

n− 2
n

R1,2 − I(V; Z, V2|U)− ε
′

+
n− 2
nN

log
1− ε1

1 + δ
+

n− 2
n

(1− ε2)H(Y|U, V, V2, Z). (A23)

The bound (A23) implies that if

R
′
+ R̃1,0 + R̃1,1 ≥ I(V; Z, V2|U)− H(Y|U, V, V2, Z) (A24)

we can prove that ∆ ≥ R1,1 + R1,2 − ε by choosing sufficiently large n and N.
The achievable secrecy rate region can be obtained from (A3), (A4), (A5), (A6), (A7), (A8), (A9),

(A10), (A11), (A12), (A13), (A14), (A15), (A18) and (A24). To be specific, first, using R̃0 = R̃0,0 +

R̃0,1 + R̃0,2, R̃1 = R̃1,0 + R̃1,1, the Markov chain (V0, V1, V2) → (U, V, Y) → (Y, Z), and applying
Fourier-Motzkin elimination to eliminate R̃0,0, R̃0,1, R̃0,2, R̃1,0, R̃1,1, R̃

′
0, R̃

′
1 and R̃

′
2 from (A3), (A4), (A5),

(A6), (A7), (A8), (A9), (A12), (A13) and (A14), we have

R̃0 ≥ I(U, V, Y; V0, V2|Z), (A25)

R̃0 + R̃1 ≥ I(U, V, Y; V1|V0, Y) + I(U, V, Y; V2|V0, Z)

+ max{I(V0; U, V, Y|Y), I(V0; U, V, Y|Z)}. (A26)

Then, using R1 = R1,1 + R1,2, R̃1 = R̃1,0 + R̃1,1, and applying Fourier-Motzkin elimination to eliminate
R1,1, R1,2, R̃1,0, R̃1,1, R

′
from (A10), (A11), (A15), (A18), (A24), (A25) and (A26), the achievable secrecy

rate region C f−new
s in Theorem 1 is obtained. The proof of Theorem 1 is completed.
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