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Abstract: The problem of measuring the disparity of a particular probability density function from a
normal one has been addressed in several recent studies. The most used technique to deal with the
problem has been exact expressions using information measures over particular distributions. In this
paper, we consider a class of asymmetric distributions with a normal kernel, called Generalized
Skew-Normal (GSN) distributions. We measure the degrees of disparity of these distributions from
the normal distribution by using exact expressions for the GSN negentropy in terms of cumulants.
Specifically, we focus on skew-normal and modified skew-normal distributions. Then, we establish
the Kullback–Leibler divergences between each GSN distribution and the normal one in terms of their
negentropies to develop hypothesis testing for normality. Finally, we apply this result to condition
factor time series of anchovies off northern Chile.

Keywords: Shannon entropy; negentropy; skew-normal; modified skew-normal; Kullback–Leibler
divergence; condition factor

1. Introduction

Recent studies deal with the problem of measuring the disparity of a particular probability density
function (pdf) from the normal one [1]. A typical technique to deal with the problem has been exact
expressions using information measures over particular distributions. For example, Vidal et al. [2]
measure the sensitivity of the skewness parameter using the L1 distance between symmetric and
asymmetric distributions. Stehlík [3] proved results on the decomposition of Kullback–Leibler (KL)
divergences [4] in the gamma and normal family for divergence between the Maximum Likelihood
Estimator (MLE) of the canonical parameter and the canonical parameter of the regular exponential
family [5]. Contreras-Reyes and Arellano-Valle [6] considered Jeffrey’s (J) divergence [7] to compare the
multivariate Skew-Normal (SN) from the normal distribution, and Gómez-Villegas et al. [8] assessed
the effect of kurtosis deviations from normality on conditional distributions, such as the multivariate
exponential power family. Main et al. [9] evaluated the local effect of asymmetry deviations from
normality using the KL divergence measure of the SN distribution and then compared the local
sensitivity with Mardia’s and Malkovich–Afifi’s skewness indexes. They also agree on the use of the
SN model to regulate the asymmetry of an empirical distribution because it reflects the deviation in a
tractable way. Dette et al. [10] characterizes the “disparity” between the skew-symmetric models and
their symmetric counterparts in terms of the total variation distance, which is later used to construct
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priors. The paper provides additional insights, to those provided in Vidal et al. [2], on the interpretation
of this distance and also discusses the usage of the KL divergence among several other distances.

Some recent applications of measuring the disparity of a particular pdf from the normal one
using negentropy include those by Gao and Zhang [11] and Wang et al. [12], where the negentropy
method has been successfully applied to seismic wavelet estimation. Pires and Ribeiro [13] considered
the negentropy to measure the distance of non-Gaussian information from the normal one in
independent components, with application to Northern Hemispheric winter monthly variability of a
high-dimensional quasi-geostrophic atmospheric model. Furthermore, Pires and Hannachi [14] used a
tensorial invariant approximation of the multivariate negentropy in terms of a linear combination of
squared coskewness and cokurtosis. Then, the method was applied to global sea surface temperature
anomalies, after data anomalies were tested through a non-Gaussian distribution.

In this paper, we develop a procedure, based on KL divergences, to test the significance of
the skewness parameter in the Generalized Skew-Normal (GSN) distributions, a flexible class of
distributions that includes the SN and normal ones as particular cases. We consider asymptotic
expansions of moments and cumulants for the negentropy of two particular cases: the SN and
Modified Skew-Normal (MSN) distributions. Given that SN distributions do not accomplish the
regularity condition of Fisher Information Matrix (FIM) at η = 0, normality is tested based on the
MSN distribution [15]. This allows one to implement an asymptotic normality test for testing the
significance of the skewness parameter. Numerical results are studied by: (a) comparing numerical
integration methods with proposed asymptotic expansions; (b) comparing the asymptotic test with the
likelihood ratio test and the asymptotic normality test given by Arrué et al. [15] ; and (c) applying the
proposed test to condition factor time series of anchovy (Engraulis ringens).

This paper is organized as follows: information theoretic measures are described in Section 2.
In Section 3, we provide an asymptotic expansion in terms of the corresponding cumulants for the GSN,
SN and MSN negentropies. We also express the KL and J divergences among each GSN distribution
and the normal one in terms of negentropies (as cumulants’ expansion series) to develop the hypothesis
test about the significance of the skewness parameter together with a simulation study (Section 4). A
simulation study is given in Section 5. In Section 6, the real data of the condition factor time series of
anchovies off northern Chile illustrate the usefulness of the developed methodology. The discussion
concludes the paper.

2. Shannon Entropy and Related Measures

The Shannon Entropy (SE) of a random variable Z with pdf f is given by:

H(Z) = −E{log f (Z)}. (1)

The SE of a localization-scale random variable X = µ + σZ does not depend on µ and is such
that H(X) = log σ + H(Z) (see, e.g., [16]). The SE could serve to define a measure of disparity from
normality, the so-called negentropy [17], which is zero for a Gaussian variable and positive for any
distribution. It is defined by:

N(Z) = H(Z′0)− H(Z), (2)

where Z′0 is a normal random variable with the same mean and variance as those of Z. Equation
(2) expresses the negentropy in terms of the standardized version of Z, say Z∗, as N(Z) = H(Z0)−
H(Z∗) = N(Z∗); here, Z∗ has zero mean and unit variance. Thus, negentropy measures essentially
the amount of information that departs from the normal entropy. Furthermore, clearly, the negentropy
becomes the KL divergence (see Equation (3) below) between Z∗ and Z0.

Given that the calculus of negentropy presents a computational challenge, where the integral
involves the pdf of Z [16,18], different approximations of negentropy are used, such as cumulants’
expansion series [17,19]. Withers and Nadarajah [19] provided exact and explicit series expansions
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for the SE and negentropy of a standardized pdf f on R, in terms of cumulants. Yet, they did not
perform numerical studies that allow evaluation and comparison with other procedures in some
specific families of distributions.

Other measures related to the SE are KL and J divergences. They measure the degree of divergence
between the distributions of two random variables Z1 and Z2 with pdfs f1 and f2, respectively. The KL
divergence of the pdf for Z1 from the pdf for Z2 is defined as:

K(Z1, Z2) = E
[

log
{

f1(Z1)

f2(Z1)

}]
. (3)

as indicated in the notation, the expectation is defined with respect to the pdf f1 for Z1. Since in general
K(Z1, Z2) differs from K(Z2, Z1), the J divergence is considered as a symmetric version of the KL
divergence, which is defined by:

J(Z1, Z2) = K(Z1, Z2) + K(Z2, Z1). (4)

3. Generalized Skew-Normal Distributions

An attractive class of Skew-Symmetric (SS) distributions defined in terms of the pdf appears
in Azzalini [20], Azzalini and Capitanio [21] and Gupta et al. [22]:

f (z; η) = 2 f (z)G{w(z; η)}, z ∈ R, (5)

where η ∈ R represents a skewness/shape parameter, f and G are the respective pdf and cumulative
distribution function (cdf) of symmetrical continuous distributions and w(z; η) is an odd function of z,
with w(0; η) = 0 for any fixed value of η. Furthermore, we assume that w(z; η0) = 0 for all z and some
value η0 of η (typically η0 = 0), so that f (z; η0) = f (z), thus recovering symmetry.

The notation Z ∼ SS(η; f , G, w) expresses that random variable Z has a distribution with the pdf
given by (5). If f (z) = φ(z) represents the pdf of the standardized normal distribution, denoted by
N(0, 1), then (5) becomes a family of skew-symmetric distributions generated by the normal kernel,
the GSN family. In this case, Z ∼ GSN(η; G, w) emerges. An important property of the GSN random
variable Z is that all its moments are finite. In particular, it possesses the same even moments of
Z0 ∼ N(0, 1). For instance, E(Z2) = 1, and so, Var(Z) = 1 − µ2

z , where µz = E(Z). The most
popular GSN distribution is Skew-Normal (SN) [23], for which w(z; η) = ηz and G(z) = Φ(z) is the
cdf of the standardized normal distribution. Therefore, Z ∼ SN(η) expresses that Z follows an
SN distribution. The location-scale extension of the SS pdf in (5) follows by applying the Jacobian
method to the linear random variable X = µ + σZ, where µ ∈ R and σ > 0. In this case, we state
that X follows an SS distribution with location parameter µ, scale parameter σ and shape/skewness
parameter η and obtains X ∼ SS(µ, σ2, η; f , G, w). Furthermore, we write X ∼ GSN(µ, σ2, η; G, w) if
f = φ, X ∼ GSN(µ, σ2, η; G) if f = φ and w(z; η) = ηz; and X ∼ SN(µ, σ2, η) if f = φ, w(z; η) = ηz
and G = Φ.

Two other members of the GSN family that have been studied recently are the Skew-Normal-Cauchy
(SNC) distribution [24,25], which follows from (5) by taking f (z) = φ(z), w(z; η) = ηz and G(z) =

1/2+ (1/π)arctan(z), and the Modified Skew-Normal (MSN) distribution [15], for which f (z) = φ(z),
w(z; η) = ηz/

√
1+ z2 and G(z) = Φ(z). Nadarajah and Kotz [24] recall that the SNC distribution

appears to attain a higher degree of sharpness than the normal distribution, i.e., disparity exists from
the common normal distribution produced by the skewness parameter η. A random variable Z with
the SNC or MSN distribution is denoted, respectively, by Z ∼ SNC(η) or Z ∼ MSN(η) and by X ∼
SNC(µ, σ2, η; G) or X ∼ MSN(µ, σ2, η; G) for their respective location-scale extensions.
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We consider the SE for the GSN subclass, i.e., the SE of Z ∼ GSN(η; G, w). Thus, assuming
a normal kernel in (5), we get the GSN-SE given by:

H(Z) = H(Z0)− E (log [2G{w(Z; η)}]) , (6)

where H(Z0) = (1/2) log(2πe) is the SE of Z0. It is assumed that a specific skewness value η0 exists
so that w(z; η0) = 0 and so that G{w(z; η0)} = 1/2, thus recovering symmetry at η = η0. Therefore,
at η = η0, Z and Z0 have the same distribution and thus the same SE.

Let µz = E(Z) and σ2
z = Var(Z) be the mean and variance of Z ∼ GSN(η; G, w), respectively,

which must constitute functions of the skewness parameter η. Since σ2
z = 1 − µ2

z and H(Z′0) =

log σz + H(Z0), we get from (2) that the negentropy of Z becomes:

N(Z) =
1
2

log (1− µ2
z) + E (log [2G{w(Z; η)}]) . (7)

Since at η = η0, we have by symmetry µz = 0 and w(Z; η0) = 0, so the negentropy in this case is
null, as expected. Clearly, SE and negentropy depend on the choice of the functions G(·) and w(·; η).
In this paper, we consider both families of GSN distributions for which η0 = 0, with w(z; 0) = w(0; η) =

0 and w(−z; η) = w(z;−η), thus following that −Z ∼ GSN(−η; G, w) and recovering the normality
at η = 0. Examples of this type of functions are w(z; η) = ηu(z) and w(z; η) = u(ηz) for some odd

function u(z), with u(0) = 0. In this case, recalling that ηZ d
= τZτ , where Zτ ∼ GSN(τ; G, w), τ = |η|,

and “ d
=” denotes equality in the distribution, we obtain:

E (log [2G{w(Z; η)}]) = E (log [2G{w(Zτ ; τ)}]) , (8)

thus H(Z) = H(Zτ) and N(Z) = N(Zτ). That is, the entropy and negentropy of Z ∼ SN(η) depend
on the skewness parameter η only through its absolute value τ = |η|.

We have interest in both KL and J divergences for a GSN distribution with respect to the normal
distribution. that is, assuming in (3) and (4) that Z1 = Z ∼ GSN(η; G, w) and Z2 = Z0. In this case,

remembering that ηZ d
= τZτ , where Zτ ∼ GSN(τ; G, w) and τ = |η|, we have K(Z, Z0) = K(Zτ , Z0)

and K(Z0, Z) = K(Z0, Zτ), with:

K(Zτ , Z0) = E (log [2G{w(Zτ ; τ)}]) and K(Z0, Zτ) = −E (log [2G{w(Z0; τ)}]) . (9)

Therefore, J(Z, Z0) = J(Zτ , Z0), with:

J(Zτ , Z0) = E (log [2G{w(Zτ ; τ)}])− E (log [2G{w(Z0; τ)}]) . (10)

We also develop asymptotic expansions of the J divergence for the SN and MSN distributions
from the normal distribution. To do this, we consider the following preliminary result, the proof of
which stems from (9) and (10) by using the Taylor expansion of ζ(z; τ) = log[2G{w(z; τ)}] at z = 0
and also because of the facts that (a) all moments of Zτ ∼ GSN(τ; G, w) are finite and (b) Zτ and Z0

contain the same even moments.

Lemma 1. Consider the composite function ζ(z; τ) = log[2G{w(z; τ)}], τ > 0, by assuming that both
functions G(z) and w(z; τ) are infinitely differentiable; hence, also ζ(z; τ) is infinitely differentiable at z = 0. If
Zτ ∼ GSN(τ; G, u), then:

K(Zτ , Z0) =
∞

∑
k=1

ζ(k)(0; τ)

k!
E(Zk

τ), (11)

J(Zτ , Z0) =
∞

∑
k=1

ζ(2k−1)(0; τ)

(2k− 1)!
E(Z2k−1

τ ),
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where ζ(k)(z; τ) is the k-th derivative of ζ(z; τ). Moreover, from (11), the expressions (6) and (7) for the SE and
negentropy of the GSN distributions have the forms:

H(Zτ) =
1
2

log(2πe)−
∞

∑
k=1

ζ(k)(0; τ)

k!
E(Zk

τ),

N(Zτ) =
1
2

log(1− µ2
τ) +

∞

∑
k=1

ζ(k)(0; τ)

k!
E(Zk

τ),

respectively, where µτ = E(Zτ).

Notice in Lemma 1 that the coefficient ζ(k)(0; τ) depends on the derivatives of G(z) and w(z; τ) at
z = 0, which change for different GSN distributions. Moreover, since the expansion of ζ(z; τ) emerges
around z = 0 by assuming a fixed τ, the approximations may not be reasonable for some values of τ.

3.1. Skew-Normal Distribution

If Z ∼ SN(η) or Z ∼ SN(0, 1, η) represents an SN random variable, then its pdf is:

f (z; η) = 2φ(z)Φ(ηz), z ∈ R.

Clearly, if η = η0 = 0, then (12) reduces to the N(0, 1)-pdf. The SN random variable Z can be
conveniently represented as a linear combination of half-normal and normal variables through the
following stochastic representation [26]:

Z d
= δ|U0|+

√
1− δ2U, (12)

where δ = η/
√

1 + η2, U0 and U are independent and identically distributed with a unit normal
distribution. In particular, since the half-normal random variable |U0| has mean b =

√
2/π and

variance one, it follows from (12) that the mean and variance of Zτ , τ = |η|, are given by:

E(Zτ) = bδτ and Var(Zτ) = 1− (bδτ)
2, (13)

where δτ = τ/
√

1 + τ2.
In the SN case, G(z) = Φ(z) and w(z; η) = ηz, which are both infinitely differentiable functions

at z = 0. Consequently, the function ζ(z; τ) = ζ0(τz) = log{2Φ(τz)} is also infinitely differentiable
at z = 0, thus admitting a Taylor expansion about zero. Therefore, since ζ(k)(z; τ) = τkζk(τz), where
ζk(x) is the k-th derivative of ζ0(x) = log {2Φ(x)}, the expansion (11) in Lemma 1 of E{ζ(Zτ ; τ)} =
E{ζ0(τZτ)}, Zτ ∼ SN(τ), becomes:

E{ζ0(τZτ)} =
∞

∑
k=1

τkκkµk
k!

, (14)

where κk = ζk(0) and µk = E(Zk
τ) (see Appendix A).

In summary, since the even moments of Zτ ∼ SN(τ) are also the even moments of Z0,
Equation (14) can be rewritten as:

E{ζ0(τZτ)} =
∞

∑
k=1

τ2kκ2k
(2k)!

µ2k︸ ︷︷ ︸
E{ζ0(τZ0)}

+
∞

∑
k=1

τ2k−1κ2k−1
(2k− 1)!

µ2k−1︸ ︷︷ ︸
J(Zτ ,Z0)

.

Hence, considering also Equation (13), we can compute for the SN case the results for the KL and
J divergences, SE and negentropy given in Lemma 1 using the following Proposition 1.
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Proposition 1. Let Zτ ∼ SN(τ) and Z0 ∼ N(0, 1). Then:

K(Zτ , Z0) =
∞

∑
k=1

τkκkµk
k!

, (15)

J(Zτ , Z0) = b
∞

∑
k=1

κ2k−1δ2k−1
τ

(2k− 1)!

k

∑
m=1

ak(m)τ2m−1,

H(Zτ) =
1
2

log(2πe)− K(Zτ , Z0),

N(Zτ) =
1
2

log {1− (bδτ)
2}+ K(Zτ , Z0),

where the coefficients ak(m), k = 1, 2, . . ., are given in the Appendix A.

To gain a more complete analysis of the behavior of these series, we need appropriate forms for
the calculation of the coefficients κk = ζk(0), k = 1, 2, . . . (see Appendix A).

3.2. Modified Skew-Normal Distribution

The pdf for a random variable Z with MSN distribution, denoted by Z ∼ MSN(η), is given by:

f (z) = 2φ(z)Φ {η u(z)} , z ∈ R,

where u(z) = z/
√

1 + z2. Similarly to the SN case, the MSN random variable Zτ ∼ MSN(τ), τ = |η|,
has even moments equal to the corresponding even moments of the standardized normal random
variable Z0 [15], i.e., µ2k = (2k − 1)!! = (2k)!/(2kk!) (for odd moments µ2k−1(τ), k = 1, 2, . . ., see
Appendix A).

In the MSN case, G(w) = Φ(w) and w(z; τ) = τu(z) = τz/
√

1 + z2, both of which are infinitely
differentiable at z = 0. Thus, in Lemma 1, we have ζ(z; τ) = ζ0{τu(z)}, where ζ0(x) = log{2Φ(x)}
is also infinitely differentiable at z = 0. Thus, the series expansion of E{ζ(Zτ ; τ)} = E[ζ0{τu(Zτ)}],
Zτ ∼ MSN(τ), can be obtained from (11) for which we need the derivatives of the composite function
ζ0{τu(z)} = log[2Φ{τu(z)}]. Another way to obtain these derivatives is to define random variable
Z∗τ = u(Zτ) = Zτ/

√
1 + Z2

τ and using (14) with Zτ and µk = E(Zτ) replaced by Z∗τ and µ∗k =

E{(Z∗τ)k}, respectively. Thus, we obtain the series expansion:

E{ζ0(τZ∗τ)} =
∞

∑
k=1

τkκk
k!

µ∗k .

From Lemma 1, the KL and J divergences, SE and negentropy for the MSN case can be computed
using the following Proposition 2.

Proposition 2. Let Zτ ∼ MSN(τ) and Z0 ∼ N(0, 1). Then:

K(Zτ , Z0) =
∞

∑
k=1

τkκk
k!

µ∗k , (16)

J(Zτ , Z0) =
∞

∑
k=1

τ2k−1κ2k−1
(2k− 1)!

µ∗2k−1,

H(Zτ) =
1
2

log(2πe)− K(Zτ , Z0),

N(Zτ) =
1
2

log (1− [b{2ξ1(τ)− 1}]2) + K(Zτ , Z0).

In order to compute the quantities given by Proposition 2, we need to calculate the new moments
µ∗k = E{(Z∗τ)k}, k = 1, 2, .... Since Z∗τ = Zτ/

√
1+ Z2

τ is a random variable limited to the interval



Entropy 2017, 19, 528 7 of 18

(−1, 1), all its moments are finite. In particular, Z∗τ clearly has the same even moments as Z∗0 =

Z0/
√

1+ Z2
0 Moreover, from the Jacobian method, the pdf of Z∗τ becomes:

f ∗(u) =
2

(1− u2)3/2 φ

(
u√

1− u2

)
Φ (τu) , u ∈ (−1, 1).

Hence, the k-th moment of Z∗τ is:

µ∗k =
∫ 1

−1
uk f ∗(u)du, k = 1, 2, . . . ,

which must be computed numerically.

3.3. J Divergence between SN and MSN Distributions

In the previous sections, SN and MSN distributions were compared with the normal distribution
by means of the J divergence measure. As a byproduct, we were also computing the J divergence
between the SN and MSN distributions, both with the same skewness parameter. This allows
measuring the distance between these distributions with different w(z; η)’s. For this, we consider in

Equation (4) that Z1 ∼ SN(τ) and Z2 ∼ MSN(τ) and define the random variables Z∗i = Zi/
√

1 + Z2
i

for i = 0, 1, 2, where Z0 ∼ N(0, 1). Let µi,k = E(Zk
i ) and µ∗i,k = E{(Z∗i )

k}, i = 0, 1, 2. Recall that
µi,2k = µ0,2k and µ∗i,2k = µ∗0,2k for all k = 1, 2, . . .. Thus, using (4) and then the Taylor expansion of
ζ0(x) = log{Φ(x)} around x = 0, Proposition 3 is obtained:

Proposition 3. Let Z0 ∼ N(0, 1), Z1 ∼ SN(τ) and Z2 ∼ MSN(τ). Define the random variables Z∗i =

Zi/
√

1 + Z2
i , i = 1, 2. Then:

J(Z1, Z2) = E{ζ0(τZ1)} − E{ζ0(τZ∗1 )}+ E{ζ0(τZ∗2 )} − E{ζ0(τZ2)}
= J(Z1, Z0)− J(Z∗1 , Z0) + J(Z∗2 , Z0)− J(Z2, Z0),

where as before:

J(Zi, Z0) =
∞

∑
k=1

τ2k−1 µi,2k−1κ2k−1

(2k− 1)!
,

J(Z∗i , Z0) =
∞

∑
k=1

τ2k−1 µ∗i,2k−1κ2k−1

(2k− 1)!
, i = 1, 2.

Proposition 3 indicates that J divergence between SN and MSN distributions is decomposed to
the divergences of the normal distribution with each of these distributions, which depends only on
their odd moments and cumulants.

4. Asymptotic Tests

Let f (x; θ), x ∈ X , θ ∈ Θ, be the pdf of a regular parametric class of distributions, i.e.,
for which the sample space X does not depend on θ, the parametric space Θ is an open subset of
Rp, and the regularity conditions (i)–(iii) stated in Salicrú et al. [27] are satisfied. As in Salicrú et al. [27],
we denote the KL divergence between f (x; θ) and f (x; θ′), θ, θ′ ∈ Θ, by:

K(θ, θ′) =
∫
X

f (x; θ) log
{

f (x; θ)

f (x; θ′)

}
dx.
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Consider the partition θ = (θ1, θ2), where θ1 ∈ Θ1 ⊂ Rr and θ2 ∈ Θ2 = Θ ∩Θc
1 ⊂ Rp−r. Let

θ′ = (θ1, θ0
2) and consider the null hypothesis H0 : θ2 = θ0

2 for a known θ0
2 ∈ Θ ∩Θc

1. Let θ̂ = (θ̂1, θ̂2)

and θ̂′ = (θ̂1, θ0
2) be the (unrestricted) MLE of θ and θ′, respectively, both based on a random sample of

size n from X with pdf f (x; θ). Under these conditions, we have from Part (b) of Theorem 2 presented
in Salicrú et al. [27] that:

2nK(θ̂, θ̂′) = 2n
∫
X

f (x; θ̂) log

{
f (x; θ̂)

f (x; θ̂′)

}
dx d−→

n→∞
χ2

p−r, ∀ θ ∈ Θ, (17)

where “ d−→” denotes convergence in distribution and χ2
s denotes the chi-squared distribution function

with s degrees of freedom. From (17), the above null hypothesis can be tested by the statistic 2nK(θ̂, θ̂′),
which is asymptotically chi-squared distributed with p− r degrees of freedom. Specifically, for large
values of n, if we observe K(θ̂, θ̂′) = K0, then H0 is rejected at level α if P(χ2

p−r > 2nK0) ≤ α.

4.1. One-Sample Case: Test for Normality

The result in (17) can be applied for example to construct a normality test from the KL divergence
between a regular GSN distribution and the normal distribution. Specifically, consider a random
sample X1, . . . , Xn from X ∼ GSN(µ, σ2, η, G, w) and the null hypothesis H0 : η = η0 under which
G{w(z; η0)} = G(0) = 1/2; thus, the GSN random variable X becomes a N(µ, σ2) random variable.
Let θ̂ = (µ̂, σ̂2, η̂) be the MLE of θ = (µ, σ2, η) and θ̂′ = (µ̂, σ̂2, η0). Therefore, under H0 : η = η0,
we have:

2nK(θ̂, θ̂′) = 2nK(Zτ̂ , Z0)
d−→

n→∞
χ2

1, (18)

where K(Zτ̂ , Z0) is the MLE of K(Zτ , Z0), which is defined in Equation (11) of Lemma 1 and depends
only on τ̂ = |η̂|. As stated in the Introduction, normality is typically obtained from the GSN class at
η0 = 0 or equivalently τ0 = |η0| = 0.

Azzalini [20], Arellano-Valle and Azzalini [28] and Azzalini and Capitanio [23] recall the
singularity of SN FIM at η = 0, preventing the asymptotic distribution of the above statistic tests.
As suggested by Azzalini [20], a solution to recover the non-singularity of the information matrix
under the symmetry hypothesis comes from the use of the so-called centered parametrization defined
in terms of the mean, variance and the skewness parameters of the SN distribution (see also [28,29]).
Otherwise, the FIM of the MSN model is non-singular at η = 0 [15]. Thus, this model satisfies all the
standard regularity conditions of Salicrú et al. [27], leading to consistence and asymptotic normality of
the MLEs under the null hypothesis of normality. Therefore, the MSN model serves to test the null
hypothesis of normality using (18). Hence, the symmetry null hypothesis H0 : τ = 0 is rejected at level
α if P(χ2

1 > 2nK0) ≤ α, with K0 = K(Zτ̂ , Z0).

4.2. Two-Sample Case

Consider two independent samples of sizes n1 and n2 from X1 and X2, respectively; where
θ, θ′ ∈ Θ ⊂ Rp, and X1 and X2 have pdf’s f (x; θ1) and f (x; θ2), respectively. Suppose partition
θi = (θi1, θi2), i = 1, 2, and assume θ21 = θ11 ∈ Θ1 ⊂ Rr, so that θi2 ∈ Θ ∩ Θc

1 ⊂ Rp−r, i = 1, 2.
Let θ̂i = (θ̂11, θ̂i2) be the MLE of θi = (θ11, θi2), i = 1, 2, which correspond to the MLE of the full
model parameters (θ1, θ2) under null hypothesis H0 : θ21 = θ11. Thus, Part (b) of Corollary 1 in
Salicrú et al. [27] establishes that if the null hypothesis H0 : θ22 = θ12 holds and n1

n1+n2
−→

n1,n2→∞
λ, with

0 < λ < 1, then:

2n1n2

n1 + n2
K(θ̂1, θ̂2) =

2n1n2

n1 + n2

∫ ∞

−∞
f (x; θ̂1) log

{
f (x; θ̂1)

f (x; θ̂2)

}
dx d−→

n1,n2→∞
χ2

p−r. (19)
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Thus, a test of level α for the above homogeneity null hypothesis consists of rejecting H0 if:

2n1n2

n1 + n2
K(θ̂1, θ̂2) > χ2

p−r,1−α,

where χ2
p−r,α is the α-th percentile of the χ2

p−r-distribution.
Contreras-Reyes and Arellano-Valle [6] considered the result of Kupperman [30] to develop an

asymptotic test of complete homogeneity in terms of the J divergence between two SN distributions.
The SN distribution satisfies all the aforementioned regularity conditions when skewness parameter
η 6= 0. Thus, considering this condition, we can also apply (17) and (19) to obtain, respectively,
asymptotic tests with one or two samples of other hypotheses not covered by Kupperman’s test.

5. Simulations

In this section, we study the behavior of the series expansions of the SE and negentropy for
the SN and MSN distributions. In both cases, we compare the SE and negentropies obtained from
their series expansions with their corresponding “exact” versions computed from the Quadpack
numerical integration method of Piessens et al. [31]. More precisely, the “exact” expected values
E{ζ0(τZτ)} and E{ζ0(τZ∗τ)} are computed using the Quadpack method as in Arellano-Valle et al. [16],
Contreras-Reyes and Arellano-Valle [6] or Contreras-Reyes [18]. From the series expansions, the SE
and negentropies were carried out for k = 12 as in Withers and Nadarajah [19]. However, they
tend to converge for k = 4 as in the Gram–Charlier and Edgeworth expansion methods (see, e.g.,
Hyvärinen et al. [17] and Stehlík et al. [1], respectively). All proposed methods are implemented
with R software [32].

From Figure 1, we observe that the approximations by series expansions are better in the MSN
case (Panels C and D) than in the SN case (Panels A and B). Furthermore, that series expansion
approximations are quite exact for small to moderate values of the skewness parameter τ; more
specifically, for 0 ≤ τ ≤ 2 in the SN case, and 0 ≤ τ ≤ 4 in the MSN case. Additionally, Panels A and C
show that the SE decreases as τ increases, while Panels B and D indicate that the negentropy increases
with τ. Finally, as expected in both GSN models, the SE is less than or equal to the SE of the normal
model, namely H(Z0) ≈ 1.418 [6,33].
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Figure 1. Shannon entropy and negentropy for the (A,B) Skew-Normal (SN) and (C,D) Modified
Skew-Normal (MSN) cases. The blue and red lines correspond to numerical integration and cumulant
expansion series methods, respectively.

Panel A of Figure 2 shows, respectively, the behavior of the KL divergences of the SN
and MSN distributions from the normal one obtained from the expansions in series given in
Equations (15) and (16). As in Figure 1, the KL divergence between the SN and normal distributions
increases smoothly for values of τ ∈ [0, 2], but rises sharply for τ > 2. Meanwhile, the increase in
KL divergence between the MSN and normal distributions seems more stable, at least for τ ∈ [0, 5].
Crucially, for τ = |η| ≥ 2, the SN model is close to its maximum level of asymmetry, while the MSN
model does it for τ = |η| ≥ 5 (see [15] (Figure 2)).
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Figure 2. Kullback-Leibler (KL) divergence, K0 = K(Zτ , Z0), between SN and normal (solid line) and
MSN and normal (dotted line).
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Table 1 presents the observed power of the asymptotic test of normality obtained from Equation (18)
in Section 4.1, for different sample sizes and values of the skewness parameter. All these results were
obtained from 2000 simulations for a nominal level of 5%. In each simulation, the MLE of Z ∼ MSN(η)

was obtained by maximizing the log-likelihood function:

`(η) =
n
2

log(2π)− 1
2

n

∑
i=1

z2
i +

n

∑
i=1

log ζ0{ηu(zi)}, (20)

for shape parameter η and a random sample of size n from Z [15]. Table 1 shows that the proposed test
is considerably conservative since the observed rate of incorrect rejections of the normality hypothesis
is always lower than the nominal level. The proposed test is also considerably more powerful in
large samples (n ≥ 300) and values of the skewness parameter far from zero (|η| ≥ 1.2). As expected,
the power of the test increases with sample size, particularly for small values of the skewness parameter
(close to normality), given that statistic 2nK0 depends on n despite K0 being small (Figure 2).

Table 1. Observed power (both in %) of the proposed normality test using the maximum likelihood
estimator (MLE) of the MSN model from 2000 simulations for the nominal level of 5% and various
values of shape parameter η and sample size n.

n/η 0 0.1 0.2 0.3 0.4 0.8 1.2 1.6 2

50 97.55 37.02 39.45 37.39 37.60 40.07 40.82 48.37 51.29
100 97.65 46.15 45.90 47.90 46.05 50.05 56.10 66.20 75.49
200 98.05 54.25 54.30 53.65 54.50 58.80 70.55 85.20 93.25
300 98.30 57.30 57.70 58.00 58.65 62.00 77.05 92.65 98.25
400 98.55 57.20 57.65 57.15 57.50 64.10 83.95 95.80 99.65
500 98.70 58.55 59.40 59.95 58.45 66.70 86.95 97.45 99.75

Now, we compare the proposed asymptotic test with two additional tests considered by
Arrué et al. [15] for null hypothesis H0 : η = η0 versus H1 : η 6= η0: the Likelihood Radio Test
(LRT) (see Appendix A) and the asymptotic normality-based test. Since the regularity condition on
MSN’s FIM at η = 0 is satisfied, the authors proposed a distributional normal theory for testing

H0, i.e., based on asymptotic normality of MLE given by
√

n(θ̂ − θ0)
d−→N3(0, i−1

MSN(θ0)), as n→ ∞,
where θ̂ = (µ̂, σ̂2, η̂)> is the MLE of θ = (µ, σ2, η)>, θ0 = (µ, σ2, 0)> and i−1

MSN(θ0) is the inverse FIM
component related to θ0. For asymptotic normality and LRT, they conclude that H0 is rejected for large
values of τ̂ = |η̂|, and for large values of n, the coverage rate increases when η̂ exists (H0 is rejected)
(see [15] (Tables 3–5)). Analogously, in Table 6 of Arrué et al. [15], the coverage rate increase when η̂

exists for large values of n.

6. Application to Condition Factor Time Series

To apply our results to a real-world problem, we considered the Condition Factor (CF) index [34],
which serves as an important indicator of the fatness condition of fish [18]. The CF index,

CF =
W
Ŵ

(100%),

of an individual of length L is computed in terms of the observed weight W = W(L) and an estimation
Ŵ = Ŵ(L) obtained from the morphometric relationships of the expected weight E(W) at length
L. Then, the CF index is interpretable as food deficit (<100%) and abundance (>100%) conditions.
The expected length-weight relationship is described through the non-linear relationship:

E(W) = αLβ, (21)
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where α is the theoretical weight at length zero and β is the weight growth rate [35]. According to (21),
Ŵ is computed as Ŵ = α̂Lβ̂, where α̂ and β̂ are obtained by fitting the non-linear regression induced
by (21) to the length-weight data obtained from a sample of the species under study.

The CF index can be mainly affected by environmental factors such as El Niño (cold events)
or La Niña (warm events). These effects are conductors of threshold biological processes due to the
limitation of food. For these reasons, Contreras-Reyes [18] considered a threshold autoregressive
model based on the stochastic representation (12) to model CF time series. That is, by assuming an SN
distribution with skewness parameter η for the CF index [20], the condition |δ| < 1 ensures the weak
stationarity of the process. Additionally, when η is positive, CF values fall below 100% (food deficit).
Otherwise, CF values are greater than 100% (food abundance).

We applied hypothesis testing developed in Section 4 to monthly CF time series associated with
anchovy from Chile’s northern coast during the period 1990–2010, which were classified by length
and sex, for length classes 12,...,18 cm and ALL (all length classes). Therefore, the sample size of each
classification depends on the availability of the routine biological sampling program (see more details
in [18]). CF were previously standardized, since the shape parameter η is not affected by a linear
transformation of the CF [23]. Table 2 shows the η̂’s assuming an SN and MSN distribution based
on the MLE method of Azzalini [36] and Arrué et al. [15], respectively. For MSN, we considered the
log-likelihood function of Equation (20). In both models, negative and positive values of η̂ correspond
to asymmetry to the right and left, respectively (see Contreras-Reyes [18] (Figure 5)). This means that
CF of the above-mentioned classes are affected by extreme events. As expected, we find generally
that for low values of the empirical skewness index, the shape parameter of both distributions is close
to zero.

Table 2. Shape parameter estimates (η̂) of SN (reported in [18]) and MSN models for each sex and length
class L, together with its respective standard deviations (s.d). Sample size (n), empirical skewness

(
√

b̂1) and kurtosis (b̂2), as well as the log-likelihood function `(η̂) for each model fit are also reported.

Sex L n
√

b̂1 b̂2
SN MSN

η̂ s.d `(η̂) η̂ s.d `(η̂)

Male

12 213 −0.220 3.723 −1.065 0.147 −301.066 −1.717 0.662 −235.783
13 238 0.658 5.120 1.778 0.134 −332.638 2.617 0.447 −359.291
14 260 −0.147 2.885 −1.086 0.166 −367.935 0.459 0.542 −342.881
15 261 −0.030 2.755 −0.442 0.150 −369.834 0.065 0.386 450.489
16 261 0.307 3.138 1.616 0.149 −367.542 2.565 0.415 −354.073
17 221 −3.461 27.958 −3.092 0.080 −285.125 −3.597 0.524 −312.701
18 180 0.264 3.001 1.368 0.201 −253.988 2.821 0.643 −269.193
All 262 0.068 2.687 0.721 0.178 −371.192 −0.287 0.517 −131.335

Female

12 198 0.041 2.738 0.552 0.196 −280.434 −0.142 0.386 −209.551
13 228 0.917 6.103 2.267 0.128 −315.305 3.101 0.524 −326.665
14 260 0.190 2.907 1.242 0.157 −367.555 1.459 0.867 −331.373
15 260 0.076 2.672 0.728 0.174 −368.344 −0.189 0.383 −425.212
16 261 0.349 3.091 1.702 0.155 −367.160 2.631 0.475 −346.705
17 246 −0.056 3.115 −0.689 0.149 −348.487 0.041 0.754 −373.068
18 208 −0.539 4.349 −1.581 0.136 −291.484 −2.223 0.472 −313.160
All 262 0.072 2.764 0.748 0.172 −371.174 −0.267 0.401 −110.108
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Table 3. MSN Shannon entropy (H) and negentropy (N) for each sex and length class L using
expansion series of cumulants. For each time series, the KL divergence K0 = K(Zτ̂ , Z0), statistic
2nK0 of Equation (18), the Likelihood Ratio Test (LRT) statistic and its respective p-values are reported.
All values reported consider estimates η̂ (for τ̂ = |η̂|) and sample size n from Table 2.

Sex L H N K0
Asymptotic Test LRT

2nK0 p-Value Statistic p-Value

Male

12 1.187 −0.074 0.232 98.950 <0.001 98.304 <0.001
13 1.030 −0.063 0.389 185.087 <0.001 180.469 <0.001
14 1.396 −0.008 0.023 11.699 0.001 11.693 0.001
15 1.418 0.000 0.001 0.242 0.623 0.246 0.620
16 1.038 −0.066 0.381 198.700 <0.001 193.567 <0.001
17 0.873 0.050 0.546 241.472 <0.001 211.924 <0.001
18 0.999 −0.047 0.420 151.341 <0.001 146.427 <0.001
All 1.410 −0.003 0.009 4.682 0.031 4.673 0.030

Female

12 1.417 −0.001 0.002 0.873 0.350 0.903 0.342
13 0.956 −0.019 0.463 211.320 <0.001 198.516 <0.001
14 1.237 −0.062 0.183 94.892 <0.001 93.300 <0.001
15 1.415 −0.001 0.004 2.027 0.155 2.071 0.150
16 1.028 −0.062 0.391 204.117 <0.001 199.015 <0.001
17 1.418 0.000 2e-04 0.091 0.763 0.089 0.765
18 1.095 −0.080 0.324 134.967 <0.001 133.629 <0.001
All 1.411 −0.003 0.008 4.058 0.044 4.112 0.042

The values of η̂ obtained from the SN and MSN models are presented in Table 2. Since that SN
model is not regular at η = 0, we used only the MSN model to perform the test of normality and LRT
for each sample datum. The results of this analysis appear in Table 3 and are not analogous for all
the length classes in both groups. In fact, for the group of males, the null hypothesis H0 : τ = 0 is
not rejected, only in length class 15 (95% confidence level) and in class ALL (90% confidence level).
In contrast, for the group of females, the null hypothesis is not rejected for length classes 12, 15, 17
(95% confidence level) and in class ALL (90% confidence level). For both tests, we obtained similar
decisions on each time series.

According to Contreras-Reyes [18], the time series in which the shape parameter is close to zero
or when the null hypothesis is not rejected are influenced simultaneously by both normal and extreme
events as in the length class ALL, where all the fish population is included for the analysis. For length
class 17 in males, for example, the CF is susceptible to some atypical events such as the moderate-strong
El Niño event between 1991 and 1992 (high negative empirical skewness and high empirical kurtosis).
For length class 13 in both sexes, the CF is susceptible to the strong El Niño event produced between
1997 and 1998.

7. Discussion

We have presented the methodology to compute the Shannon entropy, the negentropy
and the Kullback–Leibler and Jeffrey’s divergences for a broad family of asymmetric distributions
with the normal kernel called generalized skew-normal distributions. Our method considers asymptotic
expansions regarding moments and cumulants for two particular cases: the skew-normal and modified
skew-normal distributions. We then measured the degrees of disparity of these distributions from
the normal distribution by using exact expressions for the negentropy in terms of moments and
cumulants. Additionally, given the regularity conditions accomplished by the modified skew-normal
distribution, normality was tested based on the modified skew-normal distribution. This test considered
the asymptotic behavior of the Kullback–Leibler divergence, which is determined by the negentropy for
normality disparity.
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Numerical results showed that the Shannon entropy and negentropy of the modified skew-normal
distribution are better approximated than the skew-normal one, at least for a wider range of the shape
parameter. For small to moderate values of the asymmetry parameter, where the approximations
are appropriate, we find that expansions series converge from the fourth moment/cumulant to
greater, as in the Gram–Charlier and Edgeworth expansion methods [17]. For large values of the
skewness parameter, where the expansions are inappropriate, the functions related to negentropy are
not well approximated by Taylor expansions around zero, produced by a divergence in the moment
and cumulant terms, i.e., the Taylor expansions for the expected values of the functions ζ0(τZτ)

and ζ0{τu(Zτ)} (SN and MSN case, respectively) if τ = |η| is too large. When this happens, the
normal cdf, Φ(τZτ) and Φ{τu(Zτ)} (SN and MSN case, respectively), tends to one, since according
to the stochastic representation in (12), for large values of τ, the distribution of Zτ converges to the
standardized half-normal distribution [37].

However, the normality test considered in the application used skewness parameters inside
the appropriate range. Furthermore, we plan to investigate the negentropy of the modified
skew-normal-Cauchy distribution or similar models. In addition, although the approximations are
appropriate over the range of variation of the asymmetry admitted by both models, more work should
be done in order to improve the asymptotic approximations for a greater range of the skewness
parameter values. Besides, this is not an easy task since generally it is difficult to approximate KL
divergences involving asymmetric and heavy-tailed distributions [38].

The statistical application related to condition factor time series of anchovies off northern Chile
is given. The results show that the proposed methodology serves to detect non-normal events in
these time series, which produces an empirical distribution with high presence of skewness [18].
The proposed test for normality is therefore useful to detect anomalies in condition factor time series,
linked to food deficit (positive shape parameter) or food abundance (negative shape parameter)
influenced by environmental conditions.
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Appendix A

Appendix A.1. Moments of the Skew-Normal Distribution.

The moments µk = E(Zk
τ) are given by:

µ2k = (2k− 1)!! =
(2k)!
2kk!

(even moments),

µ2k−1 =
(2k− 1)! bτ

2k−1(1 + τ2)(2k−1)/2

k−1

∑
j=0

j! (2τ)2j

(2j + 1)!(k− j− 1)!
(odd moments; [26]).
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From Proposition 2 in Martínez et al. [39], the odd moments can also be computed as:

µ2k−1 =
b ∑k

m=1 ak(m)τ2m−1

(1 + τ2)(2k−1)/2
,

where the coefficient ak(m) is computed iteratively as follows:

a1(1) = 1,

ak(1) = (2k− 1)ak−1(1), k ≥ 2,

ak(m) = 2(k− 1){ak−1(m) + ak−1(m− 1)}, 1 < m < k, k ≥ 2,

ak(k) = 2(k− 1)ak−1(k− 1), k ≥ 2.

Appendix A.2. Cumulants of the Skew-Normal Distribution

The coefficients κk = ζk(0), k = 1, 2, . . ., are related to the cumulants of the half-normal random

variable V ∼
√

χ2
1 given by K(t) = (1/2)t2 + ζ0(t) (see also [21,23]). Let Km(0) = dm

dtm Kt |t=0 be the
m-th cumulant of V and clearly K1(0) = ζ1(0) = κ1, K2(0) = 1+ ζ2(0) = 1+ κ2, and Km(0) = ζm(0) =
κm, m = 3, 4, . . .. Furthermore, from [21,23], it emerges that:

ζ1(x) =
φ(x)
Φ(x)

,

ζ2(x) = −ζ1(x){x + ζ1(x)},
ζ3(x) = −ζ2(x){x + ζ1(x)} − ζ1(x){1 + ζ2(x)},
ζ4(x) = −ζ3(x){x + ζ1(x)} − 2ζ2(x){1 + ζ2(x)} − ζ1(x)ζ3(x),

ζ5(x) = −ζ4(x){x + ζ1(x)} − 3ζ3(x){1 + ζ2(x)} − 3ζ2(x)ζ3(x)− ζ1(x)ζ4(x),
...

Recalling that b =
√

2/π, the first five coefficients κk = ζk(0) are:

κ1 = b,

κ2 = −κ2
1,

κ3 = −2κ2κ1 − κ1,

κ4 = −2κ3κ1 − 2κ2
2 − 2κ2,

κ5 = −2κ4κ1 − 6κ3κ2 − 3κ3,
...

Thus, by letting κ0 = 1, a recursive rule for these coefficients is obtained as follows:

κ1 = b,

κ2k = −(2k− 2)κ2k−2 − 2
k

∑
i=1

(
2k− 2
i− 1

)
κiκ2k−i +

(
2k− 2
k− 1

)
κ2

k ,

κ2k+1 = −(2k− 1)κ2k−1 − 2
k

∑
i=1

(
2k− 1
i− 1

)
κiκ2k−i+1, k = 1, 2, . . . .
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Appendix A.3. Odd Moments of the Modified Skew-Normal Distribution

Recalling that b =
√

2/π, the odd moments can be computed as:

µ2k−1(τ) = 2k−1(k− 1)!b {2ξk(τ)− 1} ,

with:

ξk(τ) =
∫ ∞

0
Φ
{

τu(
√

x)
} xk−1e−x/2

2kΓ(k)
dx, k = 1, 2, . . . ,

where Γ(·) denotes the usual gamma function. Note that ξk(τ) = E
[
Φ
{

τu(
√

Xk)
}]

, where Xk ∼ χ2
2k;

thus, 0 < 2ξk(τ) − 1 < 1 for all k = 1, 2, . . . and τ > 0. In particular, the first four moments are
µ1(τ) = b{2ξ1(τ)− 1}, µ2 = 1, µ3(τ) = 2b{2ξ2(τ)− 1}, and µ4 = 3.

Appendix A.4. Likelihood Radio Test

The Likelihood Radio Test (LRT) statistic [40] for a null hypotheses H0 : θ ∈ Θ0 versus H1 : θ 6∈
Θ0, Θ0 ⊂ Θ (the parametric space), is given by:

LRT = 2{`(θ̂)− `(θ̂0)},

where θ̂ is the unrestricted MLE of θ, θ̂0 is the MLE of θ under H0 and the log-likelihood function `(θ)

for MSN distributions is presented in (20). As before, normality is typically obtained from the GSN
class at η0 = 0. Because the MSN distribution satisfies the standard regularity conditions [15], the
LRT statistic is asymptotically χ2

s distributed under H0, with s = dim(Θ)− dim(Θ0) = 1 degrees of
freedom [41]. Hence, the p-value associated with the LRT is computed as 1− χ2

s (LRT), where χ2
s (LRT)

denotes the χ2
s -distribution function evaluated at the observed value of the LRT statistic.

In order to test normality, we considered the particular null hypothesis H0 : η = 0 versus
H1 : η 6= 0, with the rest of the parameters not specified. Therefore, by (20), the LRT statistic is
given by:

LRT = 2

[
−1

2

n

∑
i=1

ẑ2
i +

1
2

n

∑
i=1

ẑ2
i0 +

n

∑
i=1

log ζ0{η̂u(ẑi)}
]

,

where η̂ is the unrestricted MLE of η, ẑi and ẑi0 are the unrestricted and restricted MLE of zi =

(yi − µ)/σ, respectively; and the p-value is computed as 1− χ2
1(LRT).
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