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1. Introduction

Referring to (X, T) as a topological dynamical system (TDS for short) means that X is a compact
metric space and T is a continuous self-map. Entropy is an important topological conjugate invariant
in dynamical systems. For a factor map π : (X, T) → (Y, S), it is obvious that the entropy of (X, T)
is larger than the entropy of (Y, S). In general, the converse is false. For example, (Y, S) is a single
point system, and (X, T) have positive topological entropy, then htop(T) > htop(S). A natural question
arises whether there exists the converse inequality. In 1971, Bowen [1] considered a factor map
π : (X, T)→ (Y, S), and showed that

htop(T) ≤ htop(S) + sup
y∈Y

h(T, π−1y),

where h(T, K) denotes the entropy of a compact subset K of X.
In 1973, Ruelle [2] firstly introduced the notion of topological pressure from statistical mechanics

to dynamical systems, which is a generalization of entropy. After that, topological pressure becomes
one of basic components in thermodynamics and plays an important role in ergodic theory and
dynamical systems.

In 1973, Bowen [3] introduced the notion of topological entropy hB
top(T, K) for arbitrary subset K

in a TDS (X, T) in a way resembling Hausdorff dimension. Later, Pesin and Pitskel [4] extended it to
topological pressure of any subset.

In 2012, Fang, Huang, Yi and Zhang [5] proved the following entropy formula for a factor map
π : (X, T)→ (Y, S):

hB
top(T, E) ≤ hB

top(S, π(E)) + sup
y∈Y

h(T, π−1(y))

for any E ⊂ X. Oprocha and Zhang [6] also proved the above formula using open covers. Li , Chen
and Zhou [7] extended it to topological pressure.

In dimension theory, packing dimension is considered as important as Hausdorff dimension.
The set whose Hausdorff dimension is equal to its packing dimension is called Taylor fractal. It is
interesting to consider a set is Taylor fractal or not. Recently, Baek, Olsen, Snigireva [8] and Olsen [9]
showed that for many sets of divergence points, the packing dimension and the Hausdorff dimension
do not coincide.

Inspired by the approach of defining of the topological entropy of non-compact subset,
Feng and Huang [10] introduced the notion of packing entropy in dynamical systems, which resembles
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packing dimension. An understanding of both the topological entropy and the packing entropy of a
set provides the basis for substantially better understanding of the underlying dynamical behavior of
the set. Similarly, we call the set “dynamical” Taylor fractal if its topological entropy is equal to its
packing entropy. In [11], Zhou, Chen and Cheng showed that there are many sets of divergence points
which are not “dynamical” Taylor fractals.

Pesin [12] introduced the upper capacity pressure of a set and defined the Caratheodory dimension
of a set. The connection between topological pressure and Hausdorff dimension was given by Bowen,
who showed that for certain compact sets (quasi-circles) J ⊂ C which arise as invariant sets of fractional
linear transformations f of the Riemann sphere, the Hausdorff dimension

t∗ = dimH J

is the unique root of the equation PJ(−tϕ) = 0 where PJ is the topological pressure of the map f : J → J,
and ϕ is the geometric potential ϕ(z) = log | f ′(z)|. Barreira and Schmeling [13] have showed that BS
dimension is the unique root of topological pressure function.

Inspired by Pesin [12] and Feng and Huang [10], Wang and Chen [14] generalized it to packing
topological pressure. In [14], Wang and Chen also introduced packing version of BS dimension and
called it BSP dimension. They also showed BSP dimension is the unique root of packing topological
pressure function. Recently, Shi [15] obtained Bowen’s equation which establishes the relationship of the
packing dimension and packing pressure in dynamical systems with some conditions. This illustrates
that packing pressure provides a new technique for the study of dimension theory.

In this paper, we will firstly give a formula of the upper capacity pressure for a factor map. Then
we show there is a similar relation of packing topological pressure for a factor map. As an application,
we obtain that for a factor map with being finite to one or countable to one, the packing dimension is
preservable under the factor map.

2. Preliminaries and Main Result

Let (X, T) be a TDS, and C(X) be the set of all continuous functions on X. For any ϕ ∈ C(X),
we set Sn ϕ(x) := ∑n−1

i=0 ϕ(Ti(x)). From [16], we can define the following Bowen metric on X,

dn(x, y) := max
0≤i≤n−1

d(Ti(x), Ti(y)), for x, y,∈ X and n ∈ N.

Let K ⊂ X. A subset E is said to be an (n, ε)-separated set of K, if x 6= y ∈ E implies that dn(x, y) ≥ ε.
A subset F is said to be an (n, ε)-spanning set of K, if for any x ∈ K, there exists y ∈ F such that
dn(x, y) < ε.

Now, we give a kind of definition of topological pressure resembling Box dimension which is
called upper capacity topological pressure.

Definition 1. Reference [12] For any ϕ ∈ C(X), and any subset K ⊂ X,

Pn(ϕ, K, ε) = inf
{

∑
x∈E

eSn ϕ(x) : E is an (n, ε)-spanning set of K
}

.

The upper capacity topological pressure of K is given by

P(T, ϕ, K) = lim
ε→0

lim sup
n→∞

1
n

log Pn(ϕ, K, ε).

We can also define the upper capacity topological pressure by separated set. The two definitions
are equivalent by a standard proof. Now we state the definition as follows without the proof of
the equivalence.
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Definition 2. Reference [12] For any ϕ ∈ C(X), and any subset K ⊂ X,

Qn(ϕ, K, ε) = sup
{

∑
x∈F

eSn ϕ(x) : F is an (n, ε)-separated set of K
}

.

The upper capacity topological pressure of K is defined by

P(T, ϕ, K) = lim
ε→0

lim sup
n→∞

1
n

log Qn(ϕ, K, ε).

Remark that if ϕ = 0, it is called the upper capacity topological entropy of K and written as
h(T, K). In the following, we give the definition of packing dimension before the definition of packing
topological pressure.

Definition 3. If s ≥ 0, and δ > 0 , let

Pα
δ (Z) = sup

{
∑ |Bi|α : {Bi} are disjoint closed balls with centers in Z and |Bi| < δ

}
,

where |A| denotes the diameter of A. Since Pα
δ (Z) decreases when δ decreases, Pα

0 (Z) = lim
δ→0
Pα

δ exists.

The α-packing measure is defined by

Pα(Z) = inf

{
∑

i
Pα

0 (Zi) : Z ⊂
∞⋃

i=1

Zi

}
.

The packing dimension of Z is defined by

dimP(Z) = sup{α : Pα(Z) = ∞}.

Now, we give the packing topological pressure on arbitrary set, which is similar to packing dimension.

Definition 4. For a set Z ⊂ X and α ∈ R, 0 < δ ∈ R, ϕ ∈ C(X) and N ∈ N, let

M(Z, α, ϕ, δ, N) = inf
P∗(Z,N,ε)

∞

∑
i=1

exp(−αni + sup
x∈Bni (xi ,δ)

Sni ϕ(x)),

where P∗(Z, N, ε) denotes the finite or countable disjoint set family {Bni (xi, δ)} with xi ∈ Z, ni ≥ N. Clearly,
M(Z, α, ϕ, δ, N) is monotone increasing function about N. let

m∗(Z, α, ϕ, δ) = lim
N→∞

M(Z, α, ϕ, δ, N).

Moreover, let

m∗∗(Z, α, ϕ, δ) = inf

{
∞

∑
i=1

m∗(Zi, α, ϕ, δ) :
∞⋃

i=1

Zi ⊃ Z

}
.

Then
Ppack(T, ϕ, Z, δ) = inf{α : m∗∗(Z, α, ϕ, δ) = 0} = sup{α : m∗∗(Z, α, ϕ, δ) = +∞}.

Finally, we define the packing topological pressure Ppack(T, ϕ, Z) := lim
δ→0

Ppack(T, ϕ, Z, δ). The packing

entropy of Z is written as hpack(T, Z) as ϕ = 0.

Let (X, T) and (Y, S) be two TDSs with (X, d) and (Y, ρ) be compact metric spaces, respectively.
A continuous surjective map π : X → Y satisfying π ◦ T = S ◦ π means that (Y, S) is a factor of (X, T).
Now, we state our main result as follows.
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Theorem 1. Let π : (X, T)→ (Y, S) be a factor map and ϕ ∈ C(Y). Then for any set E ⊂ X,

(1) Ppack(S, ϕ, π(E)) ≤ Ppack(T, ϕ ◦ π, E) ≤ hpack(S, π(E)) + sup
y∈Y

P(T, ϕ ◦ π, π−1{y}).

(2) Ppack(S, ϕ, π(E)) ≤ Ppack(T, ϕ ◦ π, E) ≤ Ppack(S, ϕ, π(E)) + sup
y∈Y

h(T, π−1{y}).

3. Proof of Theorem 1

In this section, we are going to prove the main result of this paper. In the following, for any c > 0
and ϕ ∈ C(Y), we set

Var(ϕ, c) = sup
x,y∈Y

|{ϕ(x)− ϕ(y)| : ρ(x, y) ≤ c}.

To prove the main result, we need the following lemma. The original idea follows from Bowen [1],
which compared the entropy of two topological semi-conjugacy systems. Later, Fang, Huang, Yi and
Zhang [5] and Oprocha and Zhang [6] extended it to comparing the Bowen entropy of the subset under
a factor map. And Li, Chen and Zhou [7] generalized it to Pesin topological pressure. The lemma here
is devoted to the study of the upper capacity pressure. Since the proof is standard and similar to the
above references, we only present the sketch of the proof.

Lemma 1. Let π : (X, T)→ (Y, S) be a factor map and ϕ ∈ C(Y). Then for any set E ⊂ X,

(1) P(S, ϕ, π(E)) ≤ P(T, ϕ ◦ π, E) ≤ h(S, π(E)) + sup
y∈Y

P(T, ϕ ◦ π, π−1{y}).

(2) P(S, ϕ, π(E)) ≤ P(T, ϕ ◦ π, E) ≤ P(S, ϕ, π(E)) + sup
y∈Y

h(T, π−1{y}).

Proof. (1) Clearly, we have P(S, ϕ, π(E)) ≤ P(T, ϕ ◦ π, E). We only need prove the second inequality.
Assume that b := supy∈Y P(T, ϕ ◦ π, π−1(y)) < ∞, since b = ∞, the proof is clear. Fix ε > 0 and τ > 0.
For any y ∈ Y choose m(y) ∈ N large enough such that there exists an (m(y), ε)-spanning set Ey of
π−1(y) and

∑
x∈Ey

exp(Sm(y)ϕ ◦ π(x)) ≤ exp((b + τ)m(y)).

Following from the proof of Theorem 2.1(ii) in [7], and choosing δ > 0 small enough, for any y ∈ Y,
we can choose t0, · · · , tq and ∆y(t0(y)), ∆y(t1(y)) · · · , ∆y(tq(y)(y)) ∈ Y depending on y recursively
such that t0(y) = 0 and ts+1(y) = ts(y) + m(∆y(ts(y))) until tq+1(y) ≥ n. For any z0 ∈ E∆y(t0(y)), z1 ∈
E∆y(t1(y)) · · · , zq(y) ∈ E∆y(tq(y)(y)) we consider the following set

V(y; z0, · · · , zq(y)) =
{

x ∈ X : d(Tt+ts(y)(x), Tt(xs)) < 2ε for all 0 ≤ t < m(∆ts(y)) and 0 ≤ s ≤ q(y)
}

.

Then we have

• {V(y; z0, · · · , zq(y)) : z0 ∈ E∆y(t0(y)), z1 ∈ E∆y(t1(y)) · · · , zq(y) ∈ E∆y(tq(y)(y))} ⊃ π−1(Bn(y, δ)).

• ∑z0∈E∆y(t0(y))
,z1∈E∆y(t1(y))

··· ,zq(y)∈E∆y(tq(y)(y))
exp(Sn ϕ ◦ π(v(z0, · · · , zq(y)))) ≤ exp((b + τ + Var(ϕ ◦

π, 2ε))n) exp((|b|+ τ)M + M‖ϕ‖).

For any n ∈ N and sufficiently small δ > 0, we let Wn be an (n, δ) spanning set of π(E) with

#Wn ≤ exp(n(h(S, π(E)) + τ)). (1)
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And Hn := {v(z0, · · · , zq(w)) : w ∈ Wn, z0 ∈ E∆w(t0(w)), z1 ∈ E∆w(t1(w)) · · · , zq(w) ∈ E∆w(tq(w)(w))} is an
(n, 4ε)-spanning set of E. Since w ∈Wn, we have

∑
z0∈E∆w(t0(w)),z1∈E∆w(t1(w)) ··· ,zq(w)∈E∆w(tq(w)(w))

exp(Sn ϕ ◦ π(v(z0, · · · , zq(w))))

≤ exp((b + τ + Var(ϕ ◦ π, 2ε))n) exp((|b|+ τ)M + M‖ϕ‖).

Combing with Equation (1), we have

Pn(ϕ ◦ π, E, 4ε) ≤ ∑
v∈Hn

exp(Sn ϕ ◦ π(v))

≤ #Wn exp((b + τ + Var(ϕ ◦ π, 2ε))n) exp((|b|+ τ)M + M‖ϕ‖).

Moreover,

log Pn(ϕ ◦ π, E, 4ε)

n
≤ h(S, π(E)) + τ + b + τ + Var(ϕ ◦ π, 2ε) +

(|b|+ τ)M + M‖ϕ‖
n

.

Letting n→ ∞, ε→ 0 and τ → 0, we finish the proof.
(2) We can assume that a = sup

y∈Y
h(T, π−1(y)) < ∞, since if a = ∞, the proof is finished. Fix ε > 0

and τ > 0. Use the same techniques as the proof in [5] (Theorem 3.3) or [7] (Theorem 2.1 (i)) there
exists l(y) > 0 and v1(y), v2(y), · · · , vl(y)(y) ∈ X such that

• l(y) ≤ exp((a + τ)(n + M));

• ∪l(y)
i=1 Bn(vi(y), 4ε) ⊃ π−1Bn(y, δ);

• πBn(vi(y), 4ε) ∩ Bn(y, δ) 6= ∅ for any 1 ≤ i ≤ l(y).

For any n ∈ N and sufficiently small δ > 0, let Wn be an (n, δ) spanning set of π(E) with

∑
w∈Wn

exp(Sn ϕ(x)) ≤ exp(n(P(S, ϕ, π(E)) + τ)). (2)

For each w ∈Wn, Bn(w, δ), we have

• l(w) ≤ exp((a + τ)(n + M));

• ∪l(w)
i=1 Bn(vi(w), 4ε) ⊃ π−1Bn(w, δ)

• πBn(vi(w), 4ε) ∩ Bn(w, δ) 6= ∅ for any 1 ≤ i ≤ l(w).

Furthermore,

∪w∈Wn ∪
l(w)
i=1 Bn(vi(w), 4ε) ⊃ ∪w∈Wn π−1Bn(w, δ) ⊃ π−1(π(E)) ⊃ E.

This means that H′n := {vi(w), w ∈Wn, 1 ≤ i ≤ l(w)} is an (n, 4ε)-spanning set of E. Then we have

Pn(ϕ ◦ π, E, 4ε) ≤ ∑
v∈H′n

exp(Sn ϕ ◦ π(v))

≤ ∑
w∈Wn

l(w)

∑
i=1

exp Sn ϕ ◦ π(vi(w)))

≤ ∑
w∈Wn

l(w) exp(Sn ϕ(w) + n Var(ϕ, δ) + nVar(ϕ ◦ π, 4ε))

≤ exp((a + τ)n) ∑
w∈Wn

exp(Sn ϕ(w))
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Following from Equation (2), we have

log Pn(ϕ ◦ π, E, 4ε)

n
≤ a + τ + P(S, ϕ, π(E)) + τ.

Letting ε→, τ → 0, we finish the proof.

We introduce the following lemma, which is similar to the packing dimension.

Lemma 2. For any subset Z ⊂ X, we have

Ppack(T, ϕ, Z) = inf{sup
i

P(T, ϕ, Zi) : ∪∞
i=1Zi = Z}.

Proof. Fix any a > Ppack(T, ϕ, Z) = lim
δ→0

Ppack(T, ϕ, Z, δ). There exists some δ > 0 such that

Ppack(T, ϕ, Z, δ) < a, so m∗∗(Z, a, ϕ, δ) = 0. We can choose {Zi}∞
i=1 such that

⋃∞
i=1 Zi ⊃ Z and

∑∞
i=1 m∗(Zi, a, ϕ, δ) < 1. So for each i, N large enough, we have M(Zi, a, ϕ, δ, N) < 1. Next, we will

prove for any i,
P(T, ϕ, Zi) ≤ a.

For any (N, 3δ) separated set Ei of Zi, we can choose disjoint set family {BN(xi, δ)} with xi ∈
Ei ⊂ Zi. Furthermore,

∑
x∈Ei

e−Na+SN ϕ(x) ≤ M(Zi, a, ϕ, δ, N) < 1.

Then

∑
x∈Ei

eSN ϕ(x) ≤ eNa.

Moreover,
P(T, ϕ, Zi, 3δ) ≤ a + Var(ϕ, 3δ).

Let δ→ 0, we finish the proof.
Now we show the converse inequality. Fix any 0 < t < s < Ppack(T, ϕ, Z) and any ∪∞

i=1Zi = Z,
we only need to prove that there exists some i ≥ 1 such that P(T, ϕ, Zi) > t. Since s < Ppack(T, ϕ, Z),
we can choose δ > 0 such that m∗∗(Z, s, ϕ, δ) > 0, moreover, there exists α > 0 and some Zi such that
m∗(Zi, s, ϕ, δ) > α. Furthermore, we can choose N > 0 and a family of disjoint set family {Bnj(xj, δ)}
with xj ∈ Zi, j ≥ 1, nj ≥ N such that

∞

∑
j=1

exp(−snj + sup
x∈Bnj (xj ,δ)

Snj ϕ(x)) ≥ α

2
.

Let Ek = {xj : nj = k}, then

∑
k

∑
x∈Ek

exp(−sk + sup
x∈Bk(x,δ)

Sk ϕ(x)) ≥ α

2
.

There exists k ≥ N such that

∑
x∈Ek

exp( sup
x∈Bk(x,δ)

Sk ϕ(x)) ≥ ekt(1− et−s)α

2
.

since otherwise

∑
k

∑
x∈Ek

exp(−sk + sup
x∈Bk(x,δ)

Sk ϕ(x)) ≤∑
k

e−skekt(1− et−s)α

2
≤ α

2
.
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Hence, Ek is an (k, ε) separated set of Zi, one obtain

Qk(ϕ, Zi, ε) = sup
{

∑
x∈F

eSn ϕ(x) : F is an (k, ε) separated set of Zi

}
≥ ekt(1− et−s)α

2
.

Then we have P(T, ϕ, Zi) > t.

Proof. Proof of Theorem 1
(1) By Lemma 2,

Ppack(S, ϕ, π(E)) = inf{sup
i

P(S, ϕ, Zi) : ∪∞
i=1Zi = π(E)}.

Consider the set π(E) = ∪∞
i=1Zi, one obtain E ⊂ π−1(∪∞

i=1Zi) = ∪∞
i=1π−1(Zi). So E =

∪∞
i=1π−1(Zi) ∩ E, hence, we have

Ppack(T, ϕ ◦ π, E) ≤ inf{sup
i

P(T, ϕ ◦ π, π−1Zi ∩ E) : ∪∞
i=1Zi = π(E)}

≤ inf{sup
i

P(T, ϕ ◦ π, π−1Zi) : ∪∞
i=1Zi = π(E)}.

(3)

It follows from Lemma 1 that

P(T, ϕ ◦ π, π−1Zi) ≤ P(S, ϕ, Zi) + sup
y∈Y

h(T, π−1{y}).

Then we have

Ppack(T, ϕ ◦ π, E) ≤ inf{sup
i

P(T, ϕ ◦ π, π−1Zi) : ∪∞
i=1Zi = π(E)}

≤ inf{sup
i

P(S, ϕ, Zi) : ∪∞
i=1Zi = π(E)}+ sup

y∈Y
h(T, π−1{y})

= Ppack(S, ϕ, Z) + sup
y∈Y

h(T, π−1{y}).

(2) Following from Lemma 1, and the above Equation (3), we have

P(T, ϕ ◦ π, π−1Zi) ≤ h(S, Zi) + sup
y∈Y

P(T, ϕ ◦ π, π−1{y}).

Hence,

Ppack(T, ϕ ◦ π, E) ≤ inf{sup
i

h(S, Zi) : ∪∞
i=1Zi = π(E)}+ sup

y∈Y
P(T, ϕ ◦ π, π−1{y})

= hpack(S, π(E)) + sup
y∈Y

P(T, ϕ ◦ π, π−1{y}).

So we finish the proof.

4. Applications

Let f : M → M be a C1+α map of smooth manifold, and J an f -invariant compact subset of M.
We say that f is expanding on J and J is repeller of f , if there are constants c > 0 and β = λ−1 > 1
such that ‖dx f nu‖ ≥ cβn‖u‖ for any x ∈ M, u ∈ Tx M and n ≥ 1. If in addition the derivative of f is a
scalar multiple of an isometry at any point of J we call J a conformal repeller.

In the case of the symbolic dynamical system (Σ+
A , σ) we can consider a coding map χ : Σ+

A → J
for the repeller, which is Hölder continuous, onto, and satisfies f ◦ χ = χ ◦ σ and sup{#(χ−1(x)) : x ∈
J} < ∞ (see, for example, Reference [17] for details). Therefore, we apply Theorem 1 to obtain the
below result.
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Proposition 1. Let f : J → J be conformal expanding on J, χ : Σ+
A → J a coding map and ϕ : J → R be a

continuous function. Then for each set E ⊂ Σ+
A , we have

Ppack(σ, ϕ ◦ χ, E) = Ppack( f , ϕ, χ(E)).

Following from the definition of the BS packing dimension introduced by Wang and Chen [14]
and the Proposition 1, we have the following corollary.

Corollary 1. Let f : J → J be conformal expanding on J, χ : Σ+
A → J a coding map. Then for each set E ⊂ Σ+

A ,
we have

dimPE = dimP(χ(E)).

Example: (Sierpiński triangle) Consider a special IFS (see Figure 1) as:

S1

(
x
y

)
=

(
1
2 0
0 1

2

)(
x
y

)
,

S2

(
x
y

)
=

(
− 1

4 −
√

3
4√

3
4

1
4

)(
x
y

)
+

(
1
4√
3

4

)
,

S3

(
x
y

)
=

(
− 1

4

√
3

4

−
√

3
4 − 1

4

)(
x
y

)
+

(
3
4√
3

4

)
.

S1S1

S2

S3

O x

y

Figure 1. Sierpiński triangle.

Let E be the Sierpiński gasket generated by Si, i = 1, 2, 3. We define F : E→ E by

F(x) = S−1
j x, x ∈ Sj(E).

Let Σ = {1, 2, 3}N. Then for any ω = (ω1, ω2 · · · ) ∈ Σ+, we can define

χ(ω) =
⋂

n≥1

Sωn · · · ◦ Sω2 ◦ Sω1(E).

Then F : E→ E is conformal expanding on E, χ : Σ→ E a coding map. Then (E, F) satisfies the
condition of Proposition 1. Hence, we have for any K ⊂ Σ,

Ppack(σ, ϕ ◦ χ, K) = Ppack(F, ϕ, χ(K)).

Acknowledgments: The authors thank the anonymous referees for their valuable suggestions to improve the
quality of this article. The fourth author was supported by NNSF of China (11601235), NSF of Jiangsu Province



Entropy 2017, 19, 526 9 of 9

(BK20161014), NSF of the Jiangsu Higher Education Institutions of China (16KJD110003), China Postdoctoral
Science Foundation (2016M591873) and China Postdoctoral Science Special Foundation (2017T100384). The second
author was supported by NNSF of China (11671208, 11431012). The work was also funded by the Priority
Academic Program Development of Jiangsu Higher Education Institutions.

Author Contributions: Ercai Chen and Xiaoyao Zhou conceived the idea; Xiucheng Hong analyzed the data;
Cao Zhao wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bowen, R. Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 1971, 153,
401–414.

2. Ruelle, D. Statistical mechanics on a compact set with Zm action satisfying expansiveness and specification.
Trans. Am. Math. Soc. 1973, 185, 79–122.

3. Bowen, R. Topological entropy for non-compact sets. Trans. Am. Math. Soc. 1973, 184, 125–136.
4. Pesin, Y.; Pitskel, B. Topological pressure and the variational principle principle for non-compact sets.

Func. Anal. Appl. 1984, 18, 307–318.
5. Fang, C.; Huang, W.; Yi, Y.; Zhang, P. Dimensions of stable sets and scrambled sets in positive finite entropy

systems. Ergod. Theory Dyn. Syst. 2012, 32, 599–628.
6. Oprocha, P.; Zhang, G. Dimensional entropy over sets and fibres. Nonlinearity 2011, 24, 2325–2346.
7. Li, Q.; Chen, E.; Zhou, X. Corrigendum to: “A note of topological pressure for non-compact sets of a factor

map”. Chaos Solitions Fractal 2013, 53, 75–77.
8. Baek, I.; Olsen, L.; Snigireva, N. Divergence points of self-similar measures and packing dimension.

Adv. Math. 2007, 214, 267–287.
9. Olsen, L. Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV.

Divergence points and packing dimension. Bull. Sci. Math. 2008, 132, 650–678.
10. Feng, D.; Huang, W. Variational principles for topological entropies of subsets. J. Func. Anal. 2012, 263,

2228–2254.
11. Zhou, X.; Chen, E.; Cheng, W.C. Packing entropy and divergence points. Dyn. Syst. 2012, 27, 387–402.
12. Pesin, Y. Dimension Theory in Dynamical Systems: Contemporary Views and Applications; University of Chicago

Press: Chicago, IL, USA, 1997.
13. Barreira, L.; Schmeling, J. Sets of non-typical points have full topological entropy and full Hausdorff

dimension. Isr. J. Math. 2000, 116, 29–70.
14. Wang, C.; Chen, E. Variational principles for BS dimension of subsets. Dyn. Syst. 2012, 27, 359–385.
15. Shi, Q. Bowen’s Equation of the Packing Dimension in Dynamical Systems. Mater’s Dissertation, Research

Paper, 2012. (in Chinese)
16. Walters, P. An Introduction to Ergodic Theory; Springer-Verlag: Berlin, Germany, 1982.
17. Schmeling, J. Entropy preservation under Markov coding. J. Stat. Phys. 2001, 104, 799–815.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries and Main Result 
	Proof of Theorem 1
	Applications

