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Abstract: Over the past two decades, the Bootstrap AGGregatING (bagging) method has been
widely used for improving simulation. The computational cost of this method scales with the size
of the ensemble, but excessively reducing the ensemble size comes at the cost of reduced predictive
performance. The novel procedure proposed in this study is the Entropy Ensemble Filter (EEF),
which uses the most informative training data sets in the ensemble rather than all ensemble members
created by the bagging method. The results of this study indicate efficiency of the proposed method
in application to synthetic data simulation on a sinusoidal signal, a sawtooth signal, and a composite
signal. The EEF method can reduce the computational time of simulation by around 50% on average
while maintaining predictive performance at the same level of the conventional method, where all of
the ensemble models are used for simulation. The analysis of the error gradient (root mean square
error of ensemble averages) shows that using the 40% most informative ensemble members of the set
initially defined by the user appears to be most effective.

Keywords: entropy ensemble filter; ensemble model simulation criterion; EEF method; bootstrap
aggregating; bagging; bootstrap neural networks

1. Introduction

Machine learning is one of the key components of computational intelligence and its main
objective is to use computational methods to become more accurate in predicting outcomes without
being explicitly programmed. Machine learning has a wide spectrum of applications in different
science disciplines [1–9]. Advanced computational methods, including artificial neural networks
(ANN), process input data in the context of previous training history on a defined sample database
to produce relevant output [7]. To avoid negative effects of over-fitting, an ensemble of models is
sometimes used in prediction [10]. In machine learning jargon, an ensemble of models is often referred
to as a committee [5]. Bagging (abbreviated from Bootstrap AGGregatING) [11] developed from the
idea of bootstrapping [12,13] in statistics. Under bootstrap resampling, data are drawn randomly from
a dataset to form a new training dataset, which has the same number of data points as the original
dataset. In committee machines, bagging is widely used for its simplicity and efficiency in enhancing
the prediction power of individual models, also called experts [11]. Applications have spanned a wide
range of fields. Zhu et al. [14] applied the bagging method to the forecasting of tropical cyclone tracks
over the South China Sea. Fraz et al. [15] used an ensemble system of bagged and boosted decision
trees to retinal blood vessel segmentation. Brenning [16] investigates the performance of bagging in
spatial prediction models for landslide hazards. Dietterich [17] compared the effectiveness of bagging,
boosting, and randomization methods for constructing ensembles of decision trees. A recurring
question in these previous works was: how to choose the ensemble of training data sets for tuning the
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weights in machine learning? The computational cost of ensemble-based methods scales with the size
of the ensemble, but excessively reducing the ensemble size comes at the cost of reduced predictive
performance. The choice of ensemble size was often based on the size of input data and available
computational power, which can become a limiting factor for larger datasets and models.

This paper presents the Entropy Ensemble Filter (EEF) as a method to reduce ensemble size
without significantly deteriorating prediction performance. Conversely, we show that for small
ensemble sizes, selecting for high entropy training sets can improve performance at the same
computational burden. Entropy can be defined as uncertainty of a random variable or, conversely,
the information that samples of that random variable provide. It is also known as the self-information
of a random variable [18]. In this work, entropy is used as a measure of information content for each
bootstrap resample of the dataset. The method selects high entropy bootstrap samples for ensemble
model training, aiming to maximize information content in the selected ensemble. We applied our
proposed method on a simulation of synthetic data with the ANN machine learning technique.
The performance results of our proposed method are analyzed in comparison with those obtained by
the conventional method when all ensemble members or a random subset are used for training.

2. Methods: Entropy Ensemble Filter

The philosophy of the EEF method is rooted in using self-information of a random variable,
defined by Shannon’s information theory [19] for selection, to provide direction in the inherent
randomness of ensemble models which are created by bootstrapping. In previous work, a weighting
of model-generated ensemble members based on relative entropy was used [20] to reflect additional
information available after ensemble generation. In this work, the focus is on selecting an ensemble
of training datasets before ensemble model tuning (training of the ANNs). It is our hypothesis that
if an ensemble of ANN models or any other machine learning technique uses the most informative
ensemble members for training purpose rather than all bootstrapped ensemble members, it could
reduce the computational time substantially without negatively affecting the performance of simulation.
We discuss the EEF algorithm based on Shannon information theory. Shannon quantifies information
by calculating the smallest possible number of bits, on average, to communicate outcomes of a random
variable, e.g., per symbol in a message (here, symbols represent bins in a probability mass function
which are defined with respect to input data resolution) [18,19,21,22]. The Shannon entropy H, in units
of bits (per symbol), of ensemble member m in the bootstrapped dataset (generated from step 1,
Algorithm 1), is given by:

Hm(Y) = −
K

∑
k=1

pyk log2 pyk , (1)

where pyk is the probability of occurrence, within ensemble member m, with values according to
random variable Y, of the kth possible value of the variable (K is a total number of discrete values Y
can take, i.e., the number of bins in discretization). This equation gives the entropy in the units of
“bits” because it uses a logarithm of base 2. Algorithm 1 illustrates the workflow of the EEF method.
The EEF method can assess and cluster the ensemble members to provide the most informative ones
for training, selected from the initially generated ensemble. Since model training is by far the most
computationally expensive part of the procedure, overall computation time is roughly linear with the
number of retained ensemble members, potentially leading to significant savings.
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Algorithm 1. Entropy Ensemble Filter

Begin Comment

1 Initialize the procedure of bagging
Generate M new training datasets from input
data using bootstrapping (M committee
members)

M: Initially user defines the ensemble size

2 Estimate the entropy of each ensemble member
Hm ← Equation (1)

3
Find the top L ensemble member with
maximum entropy

Determine L based on computational constraints.
Alternative choice is to use 40% of members
based on the analysis of error gradient (L = 0.4M)

Sort the ensemble members and find the L most
informative ones

4
Set up neural networks or other machine
learning techniques
Use the most informative ensemble L members
rather than M ensemble members for training or
calibrating the weights inside the model

5
Use ensemble averages instead of individual
ensemble models
The rationale for using ensemble averages is that
the expected error of the ensemble average is less
than or equal to the average expected error of the
individual models in the ensemble
End

3. Application: Synthetic Data Simulation

In this section, the EEF method is tested by using synthetic data and artificial neural networks.
Le et al. [23] note that “the deep learning community has reported remarkable results taking the
synthetic data to train artificial neural networks”. We use artificial signals that we corrupt with noise
before model training to examine the model’s capability to capture the essence of the signal from
the noisy signal. In this study, a sinusoidal signal, a non-sinusoidal periodic waveform (sawtooth
wave), and a nonperiodic composite signal have been used to create signals that we interpret as a
true underlying process (target signal) we wish to simulate. However, these signals are not directly
observable for model training, but corrupted by noise that represents, e.g., measurement error or
unknown external influences. These target signals are chosen because of the following reasons:

• Sinusoids are ubiquitous in physics because many physical systems that resonate or oscillate
produce quasi-sinusoidal motion.

• The performance of the method for simulation of a non-sinusoidal waveform was tested on a
sawtooth signal, a classical geometric waveform.

• A composite signal has been used to test the performance of the method for simulation of
nonperiodic signals. The signal has been composed of upward steps followed by exponential
decay functions, which resemble typical behaviour for river flow response to rainfall events.

Procedure

First, random noise with a normal distribution was added to the known sinusoidal, sawtooth, and
composite signals (Equations (2)–(4) respectively) to make the noisy signal (Equation (5)) presented in
Figures 1–3. The noisy signal was used as an input in the bagging procedure to generate an ensemble
of input datasets, referred to as ensemble members. Following the steps described in Algorithm 1,
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the chosen members by the EEF method are used for training ANN’s and subsequently generating the
simulation result for each member (Equation (6)).

y(x) = sin(
2π

50
x), (2)

y(x) =
1
2
− 1

π

∞

∑
n=1

[
1
n

sin(
2πnx
0.02

− π

2
)

]
, (3)

y(x) =



0 0 ≤ x < 10

e−(x−10)/90 10 ≤ x < 80

e−(x−10)/90 + 0.5× e−(x−80)/10 80 ≤ x < 120

e−(x−10)/90 + 0.5× e−(x−80)/10 + 0.3× e−(x−120)/50 120 ≤ x ≤ 200

, (4)

yinput = y + ε, f (ε) ∼ N(0, σ), (5)

ypred
t,m = ANN

(
xt,m

)
∀t ∈ {1 . . . T}, (6)

where T is the number of data points in the signal. Subsequently, a prediction is made using the
ensemble average over the selected subset of the ensemble. There are three options for the formation
of the subset used in the analysis in this paper: (1) Mall: all originally generated ensemble members;
(2) Mrand: a randomly selected subset of size L (reduced from original size M); and (3) MEEF: the EEF
subset, formed by selecting the top L highest entropy training data sets generated by bootstrapping.
In Equation (7), the case for option 3 is shown.

yEEF
t =

1
L∑m∈MEEF

(
ypred

t,m

)
, (7)

The RMSE of the ensemble average in Equation (8) shown for the EEF method is calculated with
respect to the original target signals y (Equations (2)–(4)).

RMSE
(

yEEF
t , yt

)
=

√
1
T ∑T

t=1 (y
EEF
t − yt)

2
. (8)

The entropy calculations for each ensemble member are performed in a discretized space,
where the signals are processed using 10 bins of equal bin-size arranged between the signal’s minimum
and maximum values. These bin sizes were chosen to strike a balance between being fine enough
to capture the distribution of the values in the time series, while being coarse enough so that
enough data points are available per bin to have a representative histogram. The entropies of all
training datasets in the ensemble are then calculated by Shannon entropy equation (Equation (1)).
Since entropy is calculated empirically, the method can be applied regardless of the data distribution
type. The index of the highest entropy ensemble member found is used to determine the new
ensemble size (see Appendix A). Then, the ensemble of training data sets are filtered, and only
the top highest entropy training data sets are retained. ANN models were then trained on all
bootstrapped noisy data sets retained in the ensemble, and on all original ensemble members for
reference. In the experiments, the ANN that was used was a feed-forward multilayer perceptron model
(by using a hyperbolic tangent activation function) with one input and output layer (the bootstrapped
datasets), and 10, 50, and 20 hidden neurons. These were fitted to the bootstrapped noisy sinusoidal,
sawtooth, and composite signals, respectively, using the early stopping procedure. For each ensemble,
the predictions of the ANNs were averaged to yield an ensemble prediction. The distribution of the
ensemble predictions is not forced to any parametric form, and, in general, bagging and our proposed
modification are not sensitive to distribution type. The predictions were evaluated by calculating
RMSE against the target signal, i.e., the synthetic data before the corruption by noise. Note that the
true signal was not available for the ANN during training.
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After the most informative ensemble members are chosen to train ANNs and their outputs have
been processed through ensemble averaging, the predictions are plotted in Figures 7–9. For comparison,
the conventional bagging method, based on all ensemble members, is used to train a separate ensemble
of neural networks. The prediction from these ensemble averages is included in the same figures.



Entropy 2017, 19, 520 8 of 16

As illustrated in Figures 7–9, the simulation results of using all ensemble members and the chosen ones
by the EEF method closely resemble each other, which indicates that filtering the ensemble models
could be a reliable method.
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To get insight in the trade-off between ensemble size (i.e., computation time) and accuracy in terms
of RMSE, analysis of the error gradient with growing ensemble size was conducted. In this analysis,
the decrease in error was compared between using the EEF method and conventional bagging with
increasing ensemble size. To filter out some of the inherent randomness from the results, the whole
process was repeated ten times with different realizations of the random noise, and resulting RMSEs
were averaged over these 10 realizations. The error gradient shows the effect of varying the final
ensemble size after selection. However, also, the initial ensemble size plays a role in the prediction
accuracy, since selecting from a larger initial pool of ensemble members means higher entropy values
in the selection. In current practice, the user will decide on how many ensemble models are needed for
training and tuning the weights in machine learning. Therefore, we show the results of error gradient
analysis for 100 and 1000 initial bootstrapping in Figures 10–12 and Figures 13–15, respectively. The
idea of ranking the ensemble by the EEF method and subsequently using it for machine learning shows
its advantages in Figures 10 and 13, for the sinusoidal signal. For the other signals, the advantages
are mostly in the smallest ensemble sizes, visible in Figures 10–15. The results show that using
the 40% most informative ensemble members of the set initially defined by the user appears to be
most effective.

An upwards jump in RMSE, such as seen for the conventional bagging in Figures 10 and 13,
indicates that an ensemble member (training data set) was picked that led to an ANN that does not
perform well in prediction, deteriorating the ensemble average when added to the ensemble. The effect
of adding such an ensemble member will be larger when the selected ensemble is still small in size,
since the relative weight of the new member in the average will be higher. In the entropy-based
ordering of the EEF, those ensemble members would also be picked eventually, but generally later in
the sequence, when the effect on the total ensemble is small enough not to cause an important upward
jump in RMSE. Since the EEF reduces the ensemble size, in many cases some of the poorly performing
members will be eliminated from the ensemble. In the limit of using the full ensemble, the EEF and
the conventional method converge upon each other (as seen at the extreme right of Figures 10–15),
since the full ensembles are identical. The fact that those jumps are not displayed in the EEF results
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indicates that these poorly performing ANNs are not among the ones trained on the top highest
entropy training data sets. These are the ones that would typically be retained by the EEF method.

Furthermore, the EEF method has been tested with a different initial number of committee
members illustrated in Tables A1–A3 (see Appendix A). The results of the sinusoidal signal, sawtooth
wave, and composite signal simulation indicate that the EEF method can improve the simulation error
3% on average for a sinusoidal signal, and relatively maintain error performance at the same level for
sawtooth wave and composite signal. More importantly, empirical testing showed that it can reduce
the simulation time by 54%, 56%, and 45% on average, respectively.

Protection against Overfitting

There are several layers in the procedure that offer protection against overfitting. Firstly, it is
important to note that the entire prediction procedure never sees the original data set that is tested
against, since only the noise-corrupted version of the data is used for training; however, the final
evaluation of performance is against the non-noisy original data set.

Secondly, for both compared methods, the individual ensemble member ANNs are trained on
bootstraps of these noise-corrupted data. For each individual data set in the selected ensemble,
the ANN training uses the standard and well-tested early stopping (also known as stopped training)
procedure to prevent overfitting. In this procedure, the data is divided in training and validation data
and training continues until validation performance starts to deteriorate [5].

Thirdly, the bagging procedure adds another layer of protection against overfitting where the
outcomes of several fitted models are averaged, reducing reliance on one single model. As can
be seen in Figures 10–15, larger ensemble sizes improve prediction up to a certain ensemble size.
Therefore, a trade-off between accuracy and ensemble size exists for smaller ensembles. The EEF
method provides a way to reduce ensemble size (and computational cost) with smaller decrease in
performance, or, conversely, improve performance for fixed small ensemble sizes. In that sense, the EEF
method is a Pareto improvement over the conventional method. The EEF selects ensemble members
before any model is trained and therefore does not have access to the original signal or predictive
performance. Summarizing, the EEF does not increase overfitting issues compared to conventional
bagging, which already has safeguards in place at different levels.
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5. Conclusions

In this article, we introduced a novel procedure to assess and cluster ensemble members for
bootstrap aggregating (bagging). Fundamentally, we assert that the EEF method can reduce the
computational time of simulation very substantially while maintaining error performance at the same
level of the conventional method, where all of the ensemble models used for simulation. The idea of
ranking and selecting the ensemble with the EEF method and subsequently using them for machine
learning shows its advantages in Figures 10 and 13. Figures 10–15 show a clear effect of ensemble size
on prediction quality for the smaller ensemble sizes. The positive effects of using the EEF method
are most pronounced in the smallest ensemble sizes. The EEF method can be useful to meet the
computational power constraints for the continual arrival of new data, which necessitates frequent
model updating in atmospheric science. Peng et al. [24] note that computational expense is one of the
difficulties in air quality forecasting. Although the results of this study indicated the efficiency of the
proposed framework in application to synthetic data simulation, further evaluations of the proposed
framework are still necessary, especially in applications to data assimilation problems with real data
and numerous observations.
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Appendix A. Results of EFF Method for Three Different Signals

Table A1. Sinusoidal signal outputs of the EEF method for different initial committee members.

All
Ensemble

EEF
Ensemble

Run Time EEF
Ensemble (s)

Run Time All
Ensemble (s)

RMSE EEF
Ensemble

RMSE All
Ensemble

Average % of
Saving Time

Average Rate of
Change in Error

100 56 14.7 25.0 0.374 0.361

0.46 0.05

100 94 23.0 24.0 0.372 0.375
100 23 6.0 24.3 0.361 0.400
100 55 14.0 23.7 0.367 0.380
100 86 21.0 24.6 0.340 0.395
100 44 11.0 24.6 0.364 0.397
100 35 8.5 26.3 0.342 0.377
100 21 4.6 25.1 0.362 0.389
100 52 11.8 25.1 0.357 0.380
100 83 19.8 24.9 0.386 0.385

200 151 40.7 57.4 0.349 0.398

0.56 0.04

200 54 13.4 48.8 0.374 0.375
200 103 23.7 47.6 0.340 0.376
200 97 22.3 49.4 0.355 0.371
200 166 39.1 47.7 0.374 0.369
200 61 15.4 52.5 0.401 0.411
200 28 6.9 46.8 0.389 0.387
200 106 23.8 49.3 0.363 0.366
200 69 16.0 47.6 0.383 0.394
200 86 19.4 48.1 0.381 0.404

1000 246 62.1 250.4 0.379 0.383

0.62 0.01

1000 647 161.7 257.1 0.371 0.368
1000 373 91.2 246.7 0.369 0.388
1000 413 100.9 251.3 0.363 0.374
1000 395 98.0 248.7 0.391 0.388
1000 624 156.0 251.1 0.381 0.382
1000 91 21.8 248.8 0.378 0.382
1000 6 1.4 250.2 0.378 0.384
1000 627 153.7 249.2 0.373 0.379

Table A2. Sawtooth wave outputs of the EEF method for different initial committee members.

All
Ensemble

EEF
Ensemble

Run Time EEF
Ensemble

Run Time All
Ensemble

RMSE EEF
Ensemble

RMSE All
Ensemble

Average % of
Saving Time

Average Rate of
Change in Error

100 40 15.9 34.9 0.371 0.343

0.62 −0.012

100 38 13.1 35.9 0.340 0.353
100 43 15.3 33.1 0.351 0.358
100 61 21.3 33.3 0.354 0.341
100 93 29.7 30.2 0.342 0.351
100 9 3.1 31.1 0.338 0.354
100 14 4.6 34.1 0.341 0.348
100 37 11.8 33.0 0.340 0.349
100 16 4.8 32.5 0.337 0.349
100 16 5.7 34.2 0.342 0.353

200 144 49.1 64.0 0.351 0.349

0.57 −0.001

200 125 42.0 67.0 0.347 0.357
200 60 18.2 64.5 0.347 0.341
200 68 20.6 69.0 0.353 0.349
200 64 20.3 70.8 0.352 0.349
200 84 27.9 69.2 0.351 0.350
200 109 37.3 66.8 0.343 0.351
200 6 2.4 73.7 0.341 0.344
200 73 25.3 69.4 0.349 0.348
200 148 47.9 70.4 0.345 0.344

1000 861 278.5 312.6 0.346 0.342

0.50 −0.004

1000 409 122.1 308.2 0.347 0.346
1000 142 41.0 313.3 0.344 0.345
1000 285 88.0 320.7 0.348 0.347
1000 511 154.8 313.4 0.347 0.343
1000 282 89.0 310.2 0.347 0.343
1000 743 222.5 311.5 0.343 0.343
1000 689 214.4 316.1 0.344 0.346
1000 948 306.1 320.5 0.346 0.344
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Table A3. Composite signal outputs of the EEF method for different initial committee members.

All
Ensemble

EEF
Ensemble

Run Time EEF
Ensemble

Run Time All
Ensemble

RMSE EEF
Ensemble

RMSE All
Ensemble

Average % of
Saving Time

Average Rate of
Change in Error

100 91 28.6 34.3 0.09 0.089

0.4 −0.019

100 32 10.4 44.1 0.089 0.092
100 78 24.7 37.4 0.091 0.09
100 91 34.5 41.9 0.093 0.09
100 55 18.9 34.7 0.092 0.09
100 72 23.1 34.3 0.09 0.089
100 76 25.6 33.7 0.091 0.089
100 26 9.2 36.5 0.092 0.089
100 83 29.3 36.6 0.095 0.093
100 36 13.7 33.8 0.094 0.089

200 69 22.2 61.9 0.088 0.088

0.48 −0.001

200 76 24.2 64.6 0.092 0.092
200 175 56.5 63.6 0.089 0.089
200 29 10.4 65.9 0.089 0.088
200 189 59.4 65.9 0.092 0.092
200 112 38.5 62.3 0.092 0.09
200 60 19 66 0.091 0.09
200 174 54.6 67.4 0.091 0.091
200 55 16.1 66.7 0.09 0.09
200 115 36.7 68.4 0.089 0.091

1000 861 264.4 293.4 0.089 0.09

0.48 0.011

1000 317 93.7 291.6 0.089 0.09
1000 194 57.5 290 0.089 0.09
1000 71 19.7 294.7 0.089 0.092
1000 489 141.8 293.6 0.089 0.091
1000 534 155.3 290.7 0.09 0.09
1000 655 188.2 286.6 0.089 0.09
1000 673 196.5 288.3 0.089 0.091
1000 878 252.4 293.8 0.09 0.09
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