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Abstract: A soft parameter function penalized normalized maximum correntropy criterion (SPF-NMCC)
algorithm is proposed for sparse system identification. The proposed SPF-NMCC algorithm is
derived on the basis of the normalized adaptive filter theory, the maximum correntropy criterion
(MCC) algorithm and zero-attracting techniques. A soft parameter function is incorporated into
the cost function of the traditional normalized MCC (NMCC) algorithm to exploit the sparsity
properties of the sparse signals. The proposed SPF-NMCC algorithm is mathematically derived
in detail. As a result, the proposed SPF-NMCC algorithm can provide an efficient zero attractor
term to effectively attract the zero taps and near-zero coefficients to zero, and, hence, it can speed
up the convergence. Furthermore, the estimation behaviors are obtained by estimating a sparse
system and a sparse acoustic echo channel. Computer simulation results indicate that the proposed
SPF-NMCC algorithm can achieve a better performance in comparison with the MCC, NMCC, LMS
(least mean square) algorithms and their zero attraction forms in terms of both convergence speed
and steady-state performance.

Keywords: adaptive filters; maximum correntropy criterion; kernel framework; sparse adaptive
filtering; soft parameter function; zero attracting algorithm

1. Introduction

In nature, the impulse response of most unknown systems can be regarded as sparse, which
consists of only a few dominant coefficients [1–4]. The prior known sparse information can be
used for improving the estimation performance in signal processing. Thus, sparse signal processing
has been garnering significant attention in recent decades [1–5]. In particular, the developed
sparse signal processing techniques have been used in wireless communications, speech signal
processing and imaging processing, which include compressed sensing (CS) [6–8] and sparse adaptive
filtering [9–30]. Although compressed sensing algorithms are useful for dealing with sparse signals,
they need to construct measurement matrices with the limitation of restricted isometry property
(RIP) [31]. Thus, the computational complexity might be higher in comparison with sparse adaptive
filtering algorithms [21–23].

Fueled by the demand of sparse signal processing, sparse adaptive filter algorithms have been
widely studied for sparse system identification, echo cancellation and channel estimation [9–30].
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These proposed sparse adaptive filtering algorithms can be mainly categorized into two groups:
proportionate-type adaptive filters [17–20] and zero-attracting adaptive filters [9–16,21–30]. As we
know, the proportionate-type adaptive filter algorithms assign proportional step sizes to different
coefficients on the basis of their magnitudes, such as proportionate normalized least mean square
(PNLMS) [17–19], proportionate affine projection algorithms (PAPA) [32] and their variants [19].
Other effective sparse adaptive filters have been reported as motivated by the least absolute
shrinkage and selection operator (LASSO) [6] and compressed sensing [7,8], which are known as
zero attracting adaptive filters. Firstly, an l1-norm penalty has been incorporated into the cost
function of the traditional least mean square (LMS) to form the zero-attracting LMS (ZA-LMS)
algorithm [9]. As a result, the ZA-LMS algorithm can produce an additional term which acts as
a zero attractor to make the ZA-LMS algorithm converge quickly. However, the shrinkage of the
ZA-LMS algorithm cannot distinguish between the zero coefficients and non-zero coefficients [9].
Furthermore, the ZA-LMS algorithm gives a penalty to all the coefficients uniformly, and, hence, its
performance may be deteriorated for less sparse systems. Then, a reweighted ZA-LMS (RZA-LMS)
algorithm is presented by introducing a log-sum function into the cost function of the conventional
LMS algorithm [9]. By using this log-sum function, the zero attractor in the RZA-LMS algorithm
can provide a selective shrink according to the magnitudes of the coefficients [9]. However, these
sparse LMS algorithms are sensitive to the scaling of the input training signal because of the
drawback of the LMS algorithm. Recently, the proposed zero attracting techniques have been
expanded to high-order-moment (HOM) algorithms to reduce the effects of the scaling of input signal,
which include least mean fourth (LMF) algorithm [12,13,23,33], least mean square/fourth (LMS/F)
algorithm [24–26,34], least-mean mixture-norm (LMMN) algorithm [35–37] and affine projection
(AP) algorithms [14–16,38,39]. However, some of these sparse algorithms have high computational
complexity. New sparse adaptive filtering algorithms should provide a balance parameter to give a
trade-off between the convergence and steady-state performance. Another effective method to reduce
the effect of the scaling of the input training signal is to utilize a normalized factor to form sparse
normalized LMS (NLMS) algorithms [40,41]. In [42], the sparse NLMS algorithm has been used for
sparse channel estimation to achieve a better performance. In essence, these adaptive filter algorithms
estimate the unknown system by minimizing the instantaneous error which is the difference between
the desired signal and the output of the filters.

Recently, information theoretic quantities have been used as cost function to construct adaptive
systems. An entropy estimator has been proposed to make the computation of the quantities reliable.
After that, a great number of adaptive filtering algorithms have been proposed on the basis of the
minimum error entropy (MEE) [43]. By using entropy as a cost function, the signal structure can be
well justified. The MEE cost function can provide robustness when dealing with non-Gaussian and
impulsive noise signals, but its complexity is higher in comparison with the LMS-like algorithms. High
complexity (O(NL)), where L is the length of a batch of error samples, is not suitable for practical
engineering application such as noise cancellation. Then, a maximum correntropy criterion (MCC)
algorithm has been proposed by using localized similarity as a cost function [2,44,45]. As a result,
the computational complexity (O(N)) of the MCC is comparable to the LMS algorithm, while its
robustness is similar to the MEE algorithm in terms of convergence and estimation behavior in
impulsive noise environment [2,44–48]. Thus, the MCC is more suitable for practical engineering
applications such as noise cancellation in speech data [2,44,45]. However, the MCC algorithm cannot
exploit the sparse structure of in-nature systems such as multi-path channels and network echo
channels because it indiscriminately handles all the filter coefficients. Inspired by the ZA-LMS
and RZA-LMS algorithms, the zero-attracting techniques have been introduced into the traditional
MCC algorithm to construct zero-attracting MCC (ZA-MCC) and reweighted ZA-MCC (RZA-MCC)
algorithms to exploit the sparsity of the in-nature systems [49].

In this paper, a soft parameter function penalized normalized maximum correntropy criterion
(SPF-NMCC) algorithm is proposed based on the normalized adaptive filtering theory, MCC algorithm
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and zero attracting techniques. The proposed SPF-NMCC algorithm is realized by normalizing the
MCC algorithm to form a normalized MCC (NMCC) algorithm that is similar to the NLMS algorithm.
Then, a soft parameter function is included into the cost function of the NMCC algorithm to give
a desired zero attractor term in the update equation of the SPF-NMCC algorithm. The proposed
SPF-NMCC algorithm is derived in detail based on the Lagrange multiplier method, and its
performance is investigated for estimating a sparse system and an echo channel. The results obtained
from the computer simulations show that the proposed SPF-NMCC algorithm is better than the
traditional MCC, ZA-MCC, and RZA-MCC algorithms in terms of the convergence speed rate and the
steady-state performance.

The rest of this paper is structured as follows. In Section 2, the traditional MCC algorithm and its
sparse forms are reviewed and discussed within the system identification framework. In Section 3,
the proposed SPF-NMCC algorithm is described mathematically in the framework of sparse system
identification, which is based on the normalized adaptive filtering theory, MCC algorithm and zero
attracting theories. In Section 4, the estimation behaviors of the proposed SPF-NMCC algorithm are
well investigated in the context of sparse system identifications. Finally, a conclusion of this work is
given in Section 5.

2. Traditional MCC Algorithm and ZA Techniques

2.1. Traditional MCC Algorithm

We review the traditional MCC algorithm in the context of sparse system identification. Herein,
we are interested in the adaptive estimation vector ŵ(n) ∈ RN , which should be similar to the
unknown system wo(n) ∈ RN , by reducing the difference between the desired signal d(n) and the
estimation output y(n). Here,

y(n) = ŵT(n)x(n), (1)

and
d(n) = wT

o (n)x(n) + v(n), (2)

where x(n) = [x(n), x(n− 1), · · · , x(n− N− 1)]T is the training input signal, wo(n) =

[w0, w1, · · · , wN−1]
T, and v(n) is an additional Gaussian white noise signal. In general, the instantaneous

estimation error can be written as
e(n) = d(n)− y(n), (3)

where e(n) is the difference between the reference signal and the adaptive filter output. In practical
engineering, wo(n) may be a sparse multi-path channel, an acoustic channel of a room, an underwater
communication channel or a network echo channel, which should be identified by obtaining the echo
cancellation. Similarly to the NLMS algorithm [40], the minimization of the difference of the least
Euclidian norm is used to get the update equation of the MCC algorithm [2,44,45] under a constraint.
Here, the least Euclidian norm of the difference is

ŵ(n + 1)− ŵ(n) = αŵ(n + 1), (4)

where α is a very small constant. Then, we minimize

‖αŵ(n + 1)‖2 =
N−1

∑
k=0

(wk(n + 1)−wk(n))2 = ‖ŵ(n + 1)− ŵ(n)‖2 (5)

under a constraint
d(n)− ŵT(n + 1)x(n) = 0. (6)
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According to the previous studies, we consider the update Equations in [2,44,45]. Then, we have

ē(n) = d(n)− ŵT(n + 1)x(n)

= d(n)− ŵT(n)x(n)− η exp(− e2(n)
2σ2 )e(n)xT(n)x(n)

= e(n)− ξ exp(− e2(n)
2σ2 )e(n)

=
[
1− ξ exp(− e2(n)

2σ2 )
]

e(n).

(7)

Thus, the MCC algorithm is to solve the following problem [2,44,45]

min 1
2 ‖ŵ(n + 1)− ŵ(n)‖2 ,

subject to ē(n) =
[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n),

(8)

where ē(n) = d(n)− ŵT(n + 1)x(n), ‖·‖2 is the Euclidean norm of a vector, and ξ = χ ‖x(n)‖2. Here, χ

acts as a step-size.
In this paper, we use the Lagrange multiplier method to find the solution of Equation (8). Thus,

the cost function of the MCC algorithm can be written as [44]

JMCC(n) =
1
2
‖ŵ(n + 1)− ŵ(n)‖2 + λ

(
ē(n)−

[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n)

)
, (9)

where λ denotes the Lagrange multiplier. In order to minimize Equation (9), we calculate its gradient
with respect to ŵ(n + 1). Then, we have

∂JMCC(n)
∂w̃(n + 1)

= 0 and
∂JMCC(n)

∂λ
= 0. (10)

From Equation (10), we have
ŵ(n + 1) = ŵ(n) + λx(n), (11)

and we can get Lagrange multiplier, which is written as

λ = ξ
exp

(
− e2(n)

2σ2

)
e(n)

‖x(n)‖2 . (12)

By substituting Equation (12) into Equation (11), we have

ŵ(n + 1) = ŵ(n) + χ exp
(
− e2(n)

2σ2

)
e(n)x(n). (13)

We can see that the MCC algorithm employs an exponential term to eliminate the large errors, rendering
it robust against impulsive-like noises.

2.2. Zero Attracting Techniques

As we know, the zero attracting technique has been used to make use of the sparse property of
in-nature signals such as wireless multi-path channels and echo channels [9]. Recently, zero attracting
methods have been used for exploiting the sparse MCC algorithms [49], resulting in two sparse
MCC algorithms named as zero attracting MCC (ZA-MCC) and reweighted ZA-MCC (RZA-MCC)
algorithms. The ZA-MCC algorithm is realized by using an l1-norm to modify the cost function of the
traditional MCC algorithm, and, hence, the ZA-MCC algorithm is to solve the following problem [49]

min 1
2 ‖ŵ(n + 1)− ŵ(n)‖2 + γZA ‖ŵ(n + 1)‖1 ,

subject to ē(n) =
[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n).

(14)
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By using the Lagrange multiplier method to find the solution of Equation (14), we write the cost
function as [49]

JZA(n) = 1
2 ‖ŵ(n + 1)− ŵ(n)‖2 + γZA ‖ŵ(n + 1)‖1 + λ

(
ē(n)−

[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n)

)
, (15)

where γZA is a regularization parameter which is greater than zero, and ‖·‖1 represents the l1-norm.
Then, the updated equation of the ZA-MCC algorithm can be expressed as

ŵ(n + 1) = ŵ(n) + χ exp
(
− e2(n)

2σ2

)
e(n)x(n)− ρZAsgn [ŵ(n)] , (16)

where ρZA is a zero attracting controlling parameter that is used for balancing the zero attraction ability,
and sgn [x] is an element-wise sign operator, which is defined as

sgn[x] =

{
x
|x| , x 6= 0,

0, x = 0.
(17)

Comparing with the MCC algorithm, it is found that there is an additional term −ρZAsgn [ŵ(n)]
which is used to provide a zero attracting effect to make the ZA-MCC algorithm converge
more quickly [9,49]. Here, −ρZAsgn [ŵ(n)] is also defined as a zero attractor in the ZA
algorithms [9,22,49]. Similar to the previously proposed zero-attracting-based sparse LMS algorithms,
the ZA-MCC algorithm can be used for dealing with sparse system identification. After that,
the RZA-MCC algorithm has been proposed by using a sum-log function instead of the l1-norm
to further enhance the ZA-MCC algorithm for handling less sparse systems [49]. The RZA-MCC
provides a reweighting step-size in its zero attractor to selectively give penalties on the zero taps rather
than uniformly exert penalties on all the taps.

3. Proposed Sparse SPF-NMCC Algorithm

Although the ZA-MCC and RZA-MCC algorithms can well utilize the sparse property of the
in-nature systems, they might be affected by scaling of the input signals. As is known to us, normalized
adaptive filtering can give resistance to the effects on this scaling, and the zero attracting technique
is an effective method to estimate sparse systems. Motivated by the advantages of the normalized
adaptive filters and zero attracting techniques, we propose a SPF-NMCC algorithm to further exploit
sparseness characteristics for sparse system identification.

Similar to the sparse MCC algorithms, a soft parameter function is used to exploit the sparsity
characteristics of these systems, which is defined as

Sβ(ŵ(n)) = (1+ β−1)(1− e−β|ŵ(n)|), (18)

where β > 0. The performance of the soft parameter function is shown in Figure 1. It can be seen
that the soft parameter function is close to l0-norm when β is very large, while it can be regarded as a
l1-norm for small β. We can choose a large β to approximately implement the l0-norm penalty, and we
can use small β to construct l1-norm penalty to exploit the sparsity of existing sparse systems.
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Figure 1. Performance of the soft parameter function with varying β.

Then, we integrate this soft parameter function into the cost function of an NMCC algorithm
to exploit the sparse characteristics of in-nature systems such as echo channels. Thus, the proposed
SPF-NMCC algorithm is to find out a solution of the following problem

min
1
2
‖ŵ(n + 1)− ŵ(n)‖2 + γSPFSβ(ŵ(n + 1)),

subject to ē(n) =
[

1− ξ exp
(
− e2(n)

2σ2

)]
e(n),

(19)

where γSPF is a regularization parameter that can be tuned to give a tradeoff between sparsity and
estimation performance. Then, the cost function of the SPF-NMCC algorithm can be written as

JSPF(n) =
1
2
‖ŵ(n + 1)− ŵ(n)‖2 + γSPFSβ(ŵ(n + 1)) + λ

(
ē(n)−

[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n)

)
. (20)

By using Lagrange multiplier method on Equation (20), we have

∂JSPF(n)
∂ŵ(n + 1)

= 0, (21)

and
∂JSPF(n)

∂λ
= 0. (22)

Then, we have
ŵ(n + 1)− ŵ(n) + γSPFS′β(ŵ(n + 1))− λx(n) = 0, (23)

and

ē(n)−
[

1− ξ exp
(
− e2(n)

2σ2

)]
e(n) = 0, (24)

where
s′i,β(ŵi(n + 1)) = (β + 1)e(−β|ŵi(n+1)|)sgn(wi(n + 1)), (25)

and its vector form is

S′β(ŵ(n + 1)) = (β + 1)e(−β|ŵ(n+1)|)sgn(ŵ(n + 1)). (26)

Left multiplying by xT (n) on the Equation (23) and moving ŵ(n + 1) to the left side, we can obtain

xT (n) ŵ (n + 1) = xT (n) ŵ (n)− γSPFxT (n) S′β (ŵ (n + 1)) + λxT (n) x (n) . (27)
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Combining with Equations (24) and (27),

λ = ξ
e

(
− e2(n)

2σ2

)
e (n)

‖x (n)‖2 + γSPF
xT (n) S′β (ŵ (n + 1))

‖x (n)‖2 . (28)

If we take Equations (23) and (28) into consideration and consider ŵ(n + 1) = ŵ(n) when the iteration
is stable, we can obtain

ŵ(n + 1) = ŵ(n) + ξ
e

(
− e2(n)

2σ2

)
e(n)x(n)

‖x(n)‖2 − γSPFS′β(ŵ(n)) + γSPF
xT(n)S′β(ŵ(n))x(n)

‖x(n)‖2 . (29)

Discarding the term γSPF
xT(n)S′β(ŵ(n))x(n)

‖x(n)‖2 since it is very small, we can get the update equation of the

SPF-NMCC algorithm, which is given by

ŵ(n + 1) = ŵ(n) +

A1︷ ︸︸ ︷
µSPF

e

(
− e2(n)

2σ2

)
e(n)x(n)

‖x(n)‖2︸ ︷︷ ︸
NMCC algorithm

A2︷ ︸︸ ︷
−γSPFS′β(ŵ(n))

︸ ︷︷ ︸
SPF−NMCC algorithm

, (30)

where µSPF = ξ acts as a step-size. It is observed that Equation (30) represents a unified form of the
sparse MCC algorithm. The previously reported sparse MCC can be regarded as special cases of the
proposed SPF-NMCC algorithm. If γSPF 6= 0 and ξ = χ ‖x(n)‖2, the proposed SPF-NMCC algorithm
is a soft function parameter penalized MCC algorithm. In addition, we can choose different β to
control the SPF-NMCC algorithm. From the derivation of the SPF-NMCC algorithm, we can see that
the proposed SPF-NMCC algorithm is a zero attracting algorithm, whose zero attracting ability can be
controlled by the regularization parameter γSPF. In the update Equation (30), −γSPFS′β(ŵ(n)) is a zero
attractor, which is used to speed up the convergence of the SPF-NMCC algorithm.

To better understand the optimization problem given in Equation (19), we present an intuitive
geometric explanation of the updated equation in Equation (30), which is illustrated in Figure 2. It is
found that ŵ(n) converges to the hyperplane II that is defined by ē(n) = 0 through paths A1 and A2.
Additionally, path A1 is orthogonal to the hyperplane. Path A2 is the zero-attracting path, which forces

the zero or near-zero coefficients of ŵ(n) in the direction to zero. We can also see that the exp
(
− e2(n)

2σ2

)
approximates to ŵ(n + 1) for large e(n), which helps to reduce the update magnitude to render the
proposed algorithm robust in dealing with impulsive noise.
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Figure 2. Updating process interpretation for the proposed SPF-NMCC algorithm.
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4. Performance of the SPF-NMCC Algorithm

In this section, we will investigate the estimation performance of the proposed SPF-NMCC
algorithm in the context of sparse system identification. The key parameters of the proposed
SPF-NMCC algorithm are discussed and the performance of the SPF-NMCC algorithm is evaluated
with different sparsity levels. Furthermore, the convergence of the proposed SPF-NMCC algorithm is
given and is compared with LMS, MCC, ZA-MCC and RZA-MCC algorithms. In all the simulations,
500 Monte Carlo runs are used to get each point for all the mentioned adaptive filtering algorithms.
Herein, the sparsity level K is defined as the number of non-zero coefficients and these K dominant
coefficients are randomly distributed within the length of the sparse system. In addition, the FIR
system with a length of N = 16 and the sparsity levels of K = 2, K = 4 and K = 8 are considered
to investigate the performance of the proposed SPF-NMCC algorithm. Since the MCC algorithms
perform well in an impulsive noise environment, we employ an impulsive noise v(n) model, which is
given as follows

(1− θ)N(ι1, ν2
1) + θN(ι2, ν2

2), (31)

where N(ιi, ν2
i )(i = 1, 2) are the Gaussian distributions whose means are ιi and variances are ν2

i , and θ

is a mixture parameter used for controlling the mixture of the two noises. In addition, we assume the
mixed Gaussian noise is independent of x(n). In all of the simulations, the mixed impulsive noise
(ιi, ν2

i , ι2, ν2
2 , θ) is set to be (0, 0.05, 0, 20, 0.05). The sparse system estimation performance is given by

mean square deviation (MSD) whose definition is

MSD(ŵ(n)) = E[‖wo(n)− ŵ(n)‖2]. (32)

Firstly, the effects of parameters β, µSPF, and γSPF are investigated in detail. The effects of β on
the proposed SPF-NMCC algorithm are shown in Figure 3. It is found that the steady-state error floor
is reduced with an increment of β because large β can well approximate l0-norm. The steady-state
behavior of the proposed SPF-NMCC algorithm with various µSPF is demonstrated in Figure 4. It is
noted that the convergence of the proposed SPF-NMCC algorithm becomes faster when µSPF increases
from 0.2 to 0.9, which is similar to the MCC algorithm. Thus, parameters γSPF, β and µSPF of the
proposed SPF-NMCC algorithm should be properly selected to achieve a good performance. The effects
of the regularization parameter γSPF is investigated to evaluate the steady-state performance of the
proposed SPF-NMCC algorithm. In this experiment, the simulation parameters are σ = 1000, β = 6
and ξ = 0.2. The simulated results of the parameter γSPF are shown in Figure 5. It can be seen that the
regularization parameter γSPF has an important effect on the steady-state performance of the proposed
SPF-NMCC algorithm. When γSPF decreases from 8× 10−4 to 5× 10−5, the steady-state error floor is
reduced. If we continue to decrease the value of γSPF, the steady-state error floor is deteriorated and is
rebounded to an opposite direction. This is because the large γSPF can provide a strong zero attraction
to attract the zero or near zero coefficients to zero quickly, while the small γSPF exerts a weak zero
attraction on the zero or near zero coefficients [26,28]. Thus, the regularization parameter γSPF can well
control the zero attracting ability to provide an excellent performance for sparse system identification.



Entropy 2017, 1, 45 9 of 16

0 500 1000 1500 2000

Iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
S

D

  = 0.001

  = 1

  = 5

  = 10

  = 30

  = 100

β

β

β

β

β

β

Figure 3. β effects on the steady-state performance.

0 500 1000 1500 2000

Iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
S

D

 SPF
=0.2

 SPF
=0.3

 SPF
=0.4

 SPF
=0.6

 SPF
=0.7

 SPF
=0.9

µ

µ

µ

µ

µ

µ

Figure 4. µSPF effects on the steady-state performance.

0 500 1000 1500 2000

Iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
S

D

  = 8 ×  10
 - 4

  = 5 ×  10
 - 4

  = 5 ×  10
 - 5

  = 1 ×  10
 - 5

  = 5 ×  10
 - 6

  = 5 ×  10
 - 7

SPF
γ

SPF
γ

SPF
γ

SPF
γ

SPF
γ

SPF
γ

Figure 5. γSPF effects on the steady-state performance.

Secondly, we perform an experiment to investigate the convergence speed of the proposed
SPF-NMCC algorithm. The convergence of the SPF-NMCC algorithm is illustrated in Figure 6 and
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its convergence is also compared with the existing LMS, MCC, NLMS, NMCC, ZA-LMS, ZA-MCC,
RZA-LMS, and RZA-MCC algorithms. Here, the simulation parameters are µLMS = 0.005, χ = 0.0052,
µNLMS = 0.082, χNMCC = 0.087, µZALMS = 0.008, ρZALMS = 9× 10−6, ξZA = 0.008, ρZA = 3× 10−5,
µRZALMS = 0.013, ρRZALMS = 5×10−5, ξRZA = 0.018, ρRZA = 7×10−5, µSPF = 0.3, and γSPF = 2.5×10−5,
which result in nearly the same steady-state error floor. Here, µLMS, µNLMS, µZALMS and µRZALMS
represent the step-sizes of the LMS, NLMS, ZA-LMS and RZA-LMS algorithms, while ρZALMS and
ρRZALMS are the regularization parameters of the ZA-LMS and RZA-LMS algorithms. It is observed
that our proposed SPF-NMCC algorithm achieves the fastest convergence speed rate. It is worth noting
that the NMCC algorithm also converges faster than the MCC algorithm. Another interesting result of
this figure is that zero attracting algorithms increase convergence speed, and further increments on
it can be obtained by reweighing the coefficients. It is also worth noting that algorithms using MCC
converge faster than those using LMS criterion. Furthermore, the proposed SPF scheme can provide
a flexible zero attraction to switch the norm penalties between l0-norm and l1-norm, resulting in the
fastest convergence.

Thirdly, our proposed SPF-NMCC algorithm is analyzed under different sparsity level K, namely,
K = 2, K = 4 and K = 8. In this experiment, the related parameters are set as µLMS = µZALMS =

µRZALMS = 0.06, χ = 0.05, µNLMS = 0.6, χNMCC = 0.5, ρZALMS = 8× 10−5, ξZA = ξRZA = 0.05,
ρZA = 5× 10−5, ρRZALMS = ρRZA = 8× 10−4, µSPF = 0.45, and γSPF = 8× 10−5. The system estimation
behaviors of the SPF-NMCC algorithm for K = 2, K = 4 and K = 8 are demonstrated in Figures 7–9,
respectively. It is found that our proposed SPF-NMCC algorithm has the lowest steady-state error
floor for K = 2. In addition, the proposed NMCC algorithm with the same initial convergence is
better than the MCC algorithm in terms of the steady-state behavior. When K increases from 2 to 8,
the steady-state error floor increases. However, our proposed SPF-NMCC algorithm outperforms
the previously presented algorithms with respect to the steady-state behavior. From Figures 7–9,
the convergence speed of the proposed SPF-NMCC algorithm is a bit larger than that of the other
mentioned algorithms, which is to obtain a lower steady-state behavior.
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Figure 6. Convergence speed rate of the proposed SPF-NMCC algorithm.
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Figure 7. Steady-state behavior of the proposed SPF-NMCC algorithm for K = 2.
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Figure 8. Steady-state behavior of the proposed SPF-NMCC algorithm for K = 4.

0 500 1000 1500

Iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
S
D

LMS

MCC

NLMS

NMCC

ZA-LMS

ZA-MCC

RZA-LMS

RZA-MCC

SPF-NMCC

Figure 9. Steady-state behavior of the proposed SPF-NMCC algorithm for K = 8.

As we know, adaptive filtering algorithms have been widely used for echo cancellation. Therefore,
we also construct an experiment to discuss the steady-state behavior of the proposed algorithm over
an acoustic echo channel. Here, we define the measurement of the sparseness of the used acoustic
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echo channel as ζ12(wo) =
N

N−
√

N

(
1− ‖wo‖1√

N‖wo‖2

)
. Figure 10 gives a typical acoustic echo channel

whose length is 256, and there are 16 dominant coefficients. In order to better understand the effects of
the sparsity, ζ12(wo) = 0.8222 and ζ12(wo) = 0.7362 are employed to evaluate the tracking behavior
of the proposed SPF-NMCC algorithm. The parameters are χ = 0.0045, µNLMS = 1, χNMCC = 0.9,
µZALMS = µRZALMS = 0.005, ρZALMS = ρRZALMS = 2× 10−5, ξZA = 0.0035, ρZA = ρRZA = 5× 10−6,
ξRZA = 0.003, µSPF = 0.9, and γSPF = 3× 10−6. The simulation results for tracking the acoustic echo
channel are shown in Figure 11. It can be seen that our proposed SPF-NMCC algorithm outperforms
the conventional LMS and MCC algorithms and their related sparse forms in terms of both the
convergence speed rate and steady-state behavior. Even for a reduced sparsity of ζ12(wo) = 0.7362,
our proposed SPF-NMCC algorithm still has the best steady-state performance. Thus, we can say
that the proposed SPF-NMCC algorithm shows little dependence on the sparsity of the unknown
system wo in comparison with the mentioned previously presented adaptive filtering algorithms. Thus,
the proposed SPF-NMCC algorithm is more effective for dealing with sparse system identification.
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Figure 10. A typical acoustic echo channel.
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Figure 11. Tracking behavior of the proposed SPF-NMCC algorithm over an acoustic echo channel.

At last, we give the complexity of the SPF-NMCC algorithm and compare it with the mentioned
algorithms above in Table 1. We use the additions, multiplications, divisions and exponential
calculation to give a comparison of the computational complexity. The comparisons of the related
computational complexity are given in Table 1. We can see that our SPF-NMCC algorithm has
(N + 4K + 1) additions, (N + 5K) multiplications, (N) divisions and (N + 1) exponential calculations,
which provides a moderate computational complexity for sparse system identification.
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Table 1. Computational complexity.

Algorithms Additions Multiplications Divisions Exponential Calculation

LMS 2N + 1 2N + 1 - -
MCC 2N + 1 2N + 2 - 1

NLMS 3N 3N + 1 1 -
NMCC 3N 3N + 2 1 1

ZA-LMS N + 3K N + 3K + 1 - -
ZA-MCC N + 3K N + 3K + 2 - 1
RZA-LMS N + 4K N + 4K + 1 N -
RZA-MCC N + 4K N + 4K + 2 N 1
SPF-NMCC N + 4K + 1 N + 5K N N + 1

On the basis of the discussions and analysis aforementioned, we can give a short summary
about our proposed SPF-NMCC algorithm for handling sparse system identification. It is found that
our proposed SPF-NMCC algorithm has the fastest convergence speed rate for achieving the same
steady-state error floor. Moreover, it can also provide the smallest system estimation misalignment in
comparison with the LMS and MCC algorithm and their related zero attracting forms. This is because
the proposed SPF-NMCC algorithm employs the SPF function to form a desired zero attractor to
exploit the sparseness of the systems, and it uses the normalization to give a resistance to the scaling
of the input. In addition, the zero attracting abilities of the proposed SPF-NMCC algorithm can be
controlled by γSPF. Our SPF-NMCC algorithm introduced two extra parameters to exploit the sparsity
of the traditional MCC algorithm by introducing a zero attractor. Although two extra parameters have
been added, which slightly increases the computational complexity, the performance of the SPF-NMCC
algorithm is better than the MCC and NMCC algorithms. Even compared with the previously reported
ZA-MCC and RZA-MCC algorithms, the SPF-NMCC algorithm has the fastest convergence and lowest
estimation error in terms of MSD. However, the proposed SPF-NMCC algorithm has a cost of selecting
the proper hyper-parameter values in practical engineering applications because it requires more time
and data to select the parameters β and ρSPF in comparison with the MCC algorithm. Compared with
the ZA-MCC and RZA-MCC algorithms, the proposed SPF-NMCC algorithm needs to find a proper β.

5. Conclusions

A sparse SPF-NMCC algorithm has been proposed for sparse system identification applications.
The proposed SPF-NMCC algorithm was realized by using a soft parameter function as a penalty
to construct the desired zero attractor in its iterations. Typical sparse systems were used to evaluate
the performance of the SPF-NMCC algorithm in terms of both convergence speed and steady-state
behaviors. In addition, the key parameters were also investigated to give a clear explanation of
the SPF-NMCC algorithm. Simulation results show that the proposed SPF-NMCC algorithm can
achieve the fastest convergence speed and smallest steady-state misalignment. However, the proposed
algorithm requires more time and data to select the hyper parameters. In the future, we will develop
sparse NMCC algorithms with high performance and fewer hyper parameters.
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