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Abstract: We investigate an intermittent process obtained from the combination of a nonlinear
diffusion equation and pauses. We consider the porous media equation with reaction terms related to
the rate of switching the particles from the diffusive mode to the resting mode or switching them from
the resting to the movement. The results show that in the asymptotic limit of small and long times,
the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for
intermediate times depends on the rates present in the reaction terms. In this scenario, we show that,
in the asymptotic limits, the distributions for this process are given by in terms of power laws which
may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a
situation characterized by different diffusive regimes, which emerges when the diffusive term is a
mixing of linear and nonlinear terms.
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1. Introduction

Nowadays, anomalous diffusion plays an important role in the understanding of several
phenomena, e.g., in biology [1–4], engineering [5,6], and physics [7–9]. Among them, we have the
transport through the porous media [10,11], dynamic processes in protein folding [12], infiltration [13],
single particle tracking [14], electrical response [15,16], and diffusion on fractals [17]. One of the main
features present in these contexts is the nonlinear time dependence manifested by the second moment,
e.g., 〈x2〉 ∼ tα (where α < 1 and α > 1 are related to subdiffusion and superdiffusion, respectively)
usually related to non-Markovian processes. It is also interesting to point out that systems characterized
by long tailed distributions, i.e., Lévy distributions [8,9], also exhibit anomalous diffusion.

These situations related to anomalous diffusion have been investigated by taking into account,
for example, fractional diffusion equations [18–21], generalized Langevin equations [22,23], master
equations [24,25], random walks [26], and nonlinear diffusion equations [27–37]. It is worth
emphasizing that the nonlinear diffusion equations may be related to a thermodynamic [38]
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characterized by power–law distributions with a compact or a long-tailed behavior, which, in a
suitable limit, can be connected with the Lévy distributions. They can also be related with other
approaches such as Langevin equations [22,23] and random walks, and have also been analyzed by
considering the presence of reaction terms [34]. Towards this, they lead us to an extension of the
Fisher equation widely used to model population biology [39] and provide a simple generalization
of the Verhulst logistic equation [40]. Thus, the comprehension of the formal aspects present in these
approaches are an important point to establish a suitable link between the models and the experimental
results. In a sense, our goal is to investigate an intermittent process resulting from the combination
of the diffusion (motion) and pauses. For this, we consider the porous media equation with reaction
terms related to the rate of switching the particles from the diffusive mode to the resting mode or
switching them from the resting to the movement. The results show that, in the asymptotic limit of
small and long times, the spreading of the system is essentially governed by a porous media equation.
The behavior exhibited for intermediate times depends on the reaction terms related to the motion and
pauses. For this process, we also show that, in the asymptotic limits, the distributions can be expressed
in terms of power laws, which may be related to the q – exponential present in the Tsallis statistics.
This analysis is performed in Section 2. Section 3 includes our discussion and conclusions.

2. Diffusion and Pauses

Let us start our discussion regarding the processes characterized by diffusion with pauses by
considering first the standard case, i.e., the usual diffusion for the particles in motion. In this scenario,
we may assume that the diffusion is essentially governed by the Einstein equation [41]:

ρ(x, t + τ) =
∫ ∞

−∞
ρ(x− z, t)Φ(z)dz , (1)

in the absence of pauses. Following the development reported in [41], in order to introduce the reaction
terms related to the motion and pauses, we may consider that, during the period τ, the probability
of not switching from the diffusive to the resting is e−k1τ and for the reverse is e−k2τ . The transition
between these states (diffusion ⇀↽ rest) is typical of a two-level continuous-time discrete Markov
process. Furthermore, we introduce ρ1(x, t) and ρ2(x, t) for describing the density of particle in
moving and in resting, respectively. Thus, Einstein’s equation turns into the system of equations

ρ1(x, t + τ) =
∫ ∞

−∞
e−k1τρ(x− z, t)Φ(z)dz + (1− e−k2τ)ρ2(x, t) , (2)

ρ2(x, t + τ) = (1− e−k1τ)ρ1(x, t)− e−k2τρ2(x, t) . (3)

Equations (2) and (3) in the limit of τ → 0 and z → 0 ( with 〈z2〉/τ ∼ constant, where
〈z2〉 =

∫ ∞
−∞ z2Φ(z)dz ) yields

∂

∂t
ρ1(x, t) = D ∂2

∂x2 ρ1(x, t)− k1ρ1(x, t) + k2ρ2(x, t), and (4)

∂

∂t
ρ2(x, t) = k1ρ1(x, t)− k2ρ2(x, t), (5)

with D = 〈z2〉/(2τ). In Equations (4) and (5), ρ1 and ρ2 represent two different states. The first one
represents the particles (species, or substance) diffusing, i.e., in motion, and the second corresponds to
the particles (species, or substance) that are immobilized. Note that Equation (4) of the previous set of
equations has the diffusive term, i.e., D 6= 0, which promotes the spreading of the system. Equation (5)
has no diffusive term and leads the particles to the rest, in contrast to Equation (4). Consequently, this
system of equations can be related to the following process: diffusion ⇀↽ pauses as expected.
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For these equations, it is possible to obtain exact solutions by using the standard calculus
techniques. In particular, for the boundary conditions ρ1(±∞, t) = 0 and ρ2(±∞, t) = 0 and the
initial conditions ρ1(x, 0) = δ(x) and ρ2(x, 0) = 0, they are given by

ρ1(x, t) =
∫ ∞

−∞
dx′G(x− x′, t)ρ1(x′, 0), (6)

ρ2(x, t) =
∫ t

0
dt′
∫ ∞

−∞
dx′G(x− x′, t− t′)e−k2t′ρ1(x′, 0), (7)

with

G(x, t) = G(1)(x, t) +
∞

∑
n=1

(−1)n
∫ t

0
dtn

∫ ∞

−∞
dxnG(2)(x− xn, t− tn)

×
∫ tn

0
dtn−1

∫ ∞

−∞
dxn−1G(2)(xn − xn−1, tn − tn−1) · · ·

×
∫ t2

0
dt1

∫ ∞

−∞
dx1G(2)(x2 − x1, t2 − t1)G(1)(x1, t1) , (8)

G(2)(x, t) = k1G(1)(x, t) + k1k2

∫ t

0
dt′G(1)(x, t− t′)ek2t′dt′ , (9)

and

G(1)(x, t) =
1√

4πDt
e−x2/(4Dt) . (10)

Figure 1 shows, for this case, the behavior of the mean square displacement(
(∆x)2

1(2) =

〈(
x− 〈x〉1(2)

)2
〉

1(2)

)
. One can observe that, for small times, i.e.,

t << max{1/k1, 1/k2}, the influence of the reaction terms is not pronounced and the spreading
of ρ1(x, t) essentially behaves as in the usual diffusion. A similar feature is verified for the long
times, i.e., t >> max{1/k1, 1/k2} as shown in Figure 1; however, this case is characterized by an
effective diffusion coefficient. For intermediate times, t ∼ max{1/k1, 1/k2}, the reaction terms play
an important role, and we have a pronounced effect of an intermittent process characterized by an
interchange between motion and pauses. This fact is manifested by the mean square displacement,
which, in this time interval, exhibits a subdiffusion instead of the usual one.

The nonlinear case related to the anomalous diffusion and the Tsallis statistics may be obtained
from the previous approach by incorporating, in the dispersal term, a nonlinear dependence on the
distribution, e.g., Ψ(ρ1), and modifying the additional terms related to the probability of diffusing
or resting in order to preserve the linearity of the reaction terms. Thus, the nonlinearity present
in the dispersal term will only appear in the diffusive term, which promotes the spreading of the
particles. This nonlinear dependence on the dispersal term is connected to the feature that the jumping
probability depends explicitly on the distribution ρ1(x, t). In this case, it may describe situations
characterized by distributions with a compact form or a long-tailed distribution that asymptotically
may be connected to the Lévy distributions [42], implying that the diffusion coefficient in any element
of the system depends on the history of the element. For this case, we have that

ρ1(x, t + τ) =
∫ ∞

−∞
e−k1τΨ(ρ1(x− z, t))ρ1(x− z, t)Φ(z)dz + (1− e−k2τ)ρ2(x, t)

+ e−k1τ(ρ1(x, t)−Ψ(ρ1(x, t))ρ1(x, t), (11)

ρ2(x, t + τ) = −e−k2τρ2(x, t) + (1− e−k1τ)ρ1(x, t) , (12)
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Figure 1. Behavior of the mean square displacement obtained from Equations (6) and (7). For simplicity,
we consider k1 = k2 = 102 [T]−1 and D = 1 [L]2[T]−1, where [L] and [T] represent arbitrary unities of
length and time.

By taking into account the limit τ → 0 and z→ 0 in the previous set of equations, we obtain

∂

∂t
ρ1(x, t) =

∂

∂x

(
D(ρ1)

∂

∂x
ρ1(x, t)

)
− k1ρ1(x, t) + k2ρ2(x, t) , (13)

∂

∂t
ρ2(t) = k1ρ1(x, t) + k2ρ2(x, t), (14)

with

D(ρ1) =
〈z2〉
2τ

d
dρ1

(Ψ(ρ1)ρ1) . (15)

Notice that it is also possible to assume that the kernel Φ(z) may depend explicitly on ρ1(x, t);
however, for this case, the definition of diffusion coefficient will be different from the previous one.
Equation (13) is equal to Equation (4) for Ψ(ρ1) = 1, and, consequently, the diffusion process is usual.
For Ψ(ρ1) = ρν−1

1 , we obtain the cases described by the following differential equations:

∂

∂t
ρ1(x, t) = D ∂2

∂x2 ρν
1(x, t)− k1ρ1(x, t) + k2ρ2(x, t) , (16)

∂

∂t
ρ2(x, t) = k1ρ1(x, t)− k2ρ2(x, t) . (17)

The diffusive term present in Equation (16) has a nonlinear dependence on the distribution ρ1(x, t),
characteristic of an anomalous correlated diffusion [38] and enables us a connection with the Tsallis
statistics that is based on the following entropy [38]:

Sq =
k

q− 1

(
1−

∫ ∞

0
dxρq(x, t)

)
, (18)

where the index q represents a degree of nonextensivity of the system [38] and q → 1 recovers the
Boltzmann–Gibbs entropy. It is worth mentioning that Equation (16) in the absence of reaction terms
has been applied in several situations such as percolation of gases through porous media (ν ≥ 2 [43]),
thin saturated regions in porous media (ν = 2 [44]), thin liquid films spreading under gravity
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(ν = 4 [45]), and solid-on-solid model for surface growth (ν = 3 [46]). The solutions for Equation (16)
may have a compact or a long-tailed behavior depending on the choice of ν and, similar to the
linear case, the additional terms promote the transition between the motion and pauses during the
diffusive process.

For the particular case k2(t) = 0, i.e., the particles are only switched from the diffusive mode to
the resting mode, and we may obtain a formal solution for the previous set of equations by considering
the boundary conditions ρ1(±∞, t) = 0 and ρ2(±∞, t) = 0, and the initial conditions ρ1(x, 0) = δ(x)
and ρ2(x, 0) = 0. In particular, for this case, it is possible to show that

ρ1(x, t) = e−k1t expq

[
−β(t)x2

]/
Z(t), and (19)

ρ2(x, t) =
∫ t

0
e−k1t′ expq

[
−β(t′)x2

]/
Z(t′)dt′ , (20)

with ν = 2− q, Z(t)
√

β(t) = I (0)(q),

β(t) = 1

/{
2ν

1 + ν

(1− ν)k1
D
(
I (0)(q)

)q−1 (
ek1(1−ν)t − 1

)} 2
3−q

, (21)

where I (n)(q) =
∫ ∞
−∞ xn expq

[
−x2] dx, and expq[x] are the q-exponential functions present in the

Tsallis statistics, defined as follows:

expq[x] ≡
{

(1 + (1− q)x)1/(1−q) , x > 1/(1− q),
0 , x < 1/(1− q).

(22)

The presence of the q-exponential in Equations (19) and (20) enables us to obtain a short (q < 1) or
a long (q > 1) tailed behavior for the solution depending on the choice of the parameter q. In fact,
Equation (19) has a compact behavior for q less than one due to the “cut-off” manifested by the
q-exponential to retain the probabilistic interpretation associated to ρ1(x, t). Consequently, ρ2(x, t)
exhibits a similar behavior for q less than one. On the other hand, for q greater than one, Equation (19)
has the asymptotic limit governed by a power–law behavior, which may also related to a Lévy
distribution, as shown in [42]. In this case, the solutions obtained for the previous set of equations may
be asymptotically related to the solutions obtained in [47] for fractional diffusion equations, which
asymptotically are governed by power laws. The mean square displacement related to the distribution
ρ1(x, t) is given by

(∆x)2
1 = 〈(x− 〈x〉)2〉1 = e−k1tI (2)(q)/

[
I (0)(q)β(t)

]
, (23)

which, for small times, i.e., t << k1, (∆x)2
1 ∼ t2/(3−q) and, for long times, i.e., t → ∞, yields

〈(∆x)2〉1 ∼ e−k1tt2/(3−q). For ρ2(x, t), we have that

(∆x)2
2 = 〈(x− 〈x〉)2〉2 =

[
I (2)(q)/I (0)(q)

] ∫ t

0

e−k1t′

β(t′)
dt′, (24)

with (∆x)2
2 ∼ t(5−q)/(3−q) for small times and (∆x)2

2 ∼ const for long times, characterizing that, for
long times, all the particles are switched from the diffusive mode to the resting mode.
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For the case k2 6= 0, we have an interplay between diffusion and pauses. In this case, it is
possible to show that

∫ ∞
−∞ dx (ρ1(x, t) + ρ2(x, t)) = const and that the survival probabilities (S1(2)(t) =∫ ∞

−∞ ρ1(2)(x, t)dx) related to ρ1(x, t) and ρ2(x, t) for this case satisfy the following set of equations:

d
dt
S1(t) = k2S2(t)− k1S1(t) , (25)

d
dt
S2(t) = k1S1(t)− k2S2(t) , (26)

and, consequently, the solution is given by

S1(t) = k2/kt + (k1S1(0)− k2S2(0)) e−ktt/kt, and (27)

S2(t) = k1/kt + (k2S2(0)− k1S1(0)) e−ktt/kt, (28)

with kt = k1 + k2. The previous equations show that, for long times, the equilibrium between particles
switched from the motion to the rest (or to the rest to the motion) is reached for S1 → k2/kt and
S2 → k1/kt. An important point about these solutions is the absence of the parameter ν and only the
presence of the rates k1 and k2. In this case, this feature implies that the interchange between the states
of motion and pauses is independent of the diffusion process. Performing some numerical calculations,
it is possible to obtain more information about the behavior of the mean square displacement and
the distributions ρ1(x, t) and ρ2(x, t). In fact, by using the numerical algorithms based on central
differences [48], it is possible to numerically solve Equations (16) and (17) that are coupled by the
reaction terms. Figures 2 and 3 show the behavior of the mean square displacement for ρ1(x, t) and
ρ2(x, t) obtained by solving numerically Equations (16) and (17). The system was defined in the
interval [−5000, 5000] and discretized in increments of dx = 2× 10−2 with dt = 10−6 to perform
numerically the time evolution and obtain the results presented in these figures. These choices for dx
and dt verify the condition Ddt/

(
dx2) < 1/2 required for the stability of the solutions during the time

evolution of the initial condition in order to satisfy the boundary conditions. These considerations
were also applied in the numerical calculations performed to obtain the other figures. The initial
behavior, i.e., t << max{1/k1, 1/k2}, manifested by ρ1(x, t) is characterized by the porous media
equation in the absence of reaction terms. It may be subdiffusive or superdiffusive depending on the
choice of ν, i.e., ν > 1 or ν < 1. In Figure 2, we have a subdiffusive (ν = 1.5) behavior for small times,
in contrast to Figure 3, where the superdiffusive (ν = 0.8) is obtained. For long times, we also observe
that the system is essentially governed by the porous media equation with an effective diffusion
coefficient as a result of the intermittent motion of the particles which are constantly switching from the
diffusive mode to the resting mode or switching from the resting to the movement. For intermediate
times, we have a different behavior from the one obtained from the porous media equation due to the
interchanges between motion and pauses.

In order to investigate the behavior of the solutions, in the asymptotic limit of long times, we may
analyze the following equation:

∂

∂t
(ρ1(x, t) + ρ2(x, t)) = D ∂2

∂x2 ρν
1(x, t) , (29)

which can obtained from the previous set of equations. For t→ ∞, by taking into account ρ2(x, t) ≈
(k1/k2) ρ1(x, t), this equation can be approximated to

∂

∂t
ρ1(x, t) ≈ k2D

k1 + k2

∂2

∂x2 ρν
1(x, t) , (30)

which also has the solutions given in terms of the q-exponential functions.
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Figure 2. Behavior of the mean square displacement obtained from Equations (16) and (17) for ν = 1.5.
For simplicity, we consider ρ1(x, 0) = δ(x), ρ2(x, 0) = 0, k1 = k2 = 102 [T]−1 and D = 1 [L]1+ν[T]−1,
where [L] and [T] represent arbitrary units of length and time.
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Figure 3. Behavior of the mean square displacement obtained from Equations (16) and (17) for ν = 0.8.
For simplicity, we consider k1 = k2 = 102 [T]−1 and D = 1 [L]2[T]−1, where [L] and [T] represent
arbitrary units of length and time.

In fact, after performing some calculations, it is possible to show that

ρ1(x, t) ≈ expq

[
−β(t)x2

]/
Z̄(t), (31)

with ν = 2− q, Z̄(t)
√

β(t) = Ī (0)(q) = [(k2 + k1)/k2]I (0)(q),

β(t) = 1

/{
2ν(1 + ν)

k2D
k1 + k2

(
Ī (0)(q)

)q−1
t
} 2

3−q
. (32)
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Figure 4 illustrates the solution obtained numerically and the approximated one obtained above for
long times in order to show that, for long times, we have a complete agreement between them.

-1 0 1
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1
(x,t)
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t = 0.2

t = 1.0

t = 1.0

Figure 4. This figure illustrates the behavior of ρ1(x, t) and ρ2(x, t) obtained numerically from
the Equations (16) and (17) and approximated ones obtained from Equation (31) and ρ2(x, t) ≈
(k1/k2) ρ1(x, t) by considering without loss of generality ν = 1.5. For simplicity, we also consider
ρ1(x, 0) = δ(x), ρ2(x, 0) = 0, k1 = 4× 102 [T]−1, k2 = 102 [T]−1 and D = 1 [L]2[T]−1, where [L] and
[T] represent arbitrary units of length and time.

Other choices for Ψ(ρ1) are also possible—in particular, Ψ(ρ1) = 1 +
(
D/D

)
ρν−1

1 , which may be
related to different diffusive behavior, one characterized by an usual diffusion and the other by an
anomalous one. A particular application of this choice is found in the spatial distribution of dispersing
animals [49]. Figures 5 and 6 illustrate the behavior of the mean square displacement for this case
by considering the boundary conditions ρ1(±∞, t) = 0 and ρ2(±∞, t) = 0 and the initial conditions
ρ1(x, 0) = δ(x) and ρ2(x, 0) = 0.
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Figure 5. Behavior of the mean square displacement obtained from Equations (13) and (14) for Ψ(ρ1) =

1 +
(
D/D

)
ρν−1

1 with ν = 1.5. For simplicity, we consider k1 = k2 = 102 [T]−1, D = 10−1 [L]1+ν[T]−1,
and D = 1 [L]2[T]−1, where [L] and [T] represent arbitrary units of length and time.
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One can observe that the behavior for small times is governed by a subdiffusion if ν > 1 and
by the usual one if ν < 1. For long times, we have an usual diffusion if ν > 1 and a superdiffusion
if ν < 1. It is important to note that, for these cases, we have different diffusive regimes present in
these systems due to the mixing between the linear and nonlinear diffusive terms, and, as pointed out
in [50], they are characterized by crossover times.
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Figure 6. Behavior of the mean square displacement obtained from Equations (13) and (14) for
Ψ(ρ1) = 1 +

(
D/D

)
ρν−1

1 with ν = 0.8. For simplicity, we consider ρ1(x, 0) = δ(x), ρ2(x, 0) = 0,
k1 = k2 = 102 [T]−1 and D = 1 [L]1+ν[T]−1, and D = 10−1 [L]2[T]−1, where [L] and [T] represent
arbitrary units of length and time.

3. Discussion and Conclusions

We have analyzed an intermittent process governed by a nonlinear diffusion equation. We have
first considered the case k1 6= 0 with k2 = 0, for which the particles are switched to the motion
state to the rest. For this case, we have obtained exact solutions in terms of the q-exponentials of the
Tsallis statistics. We have also verified for this case that, depending on the choice of the parameter ν,
the solution may exhibit a compact or a long-tailed behavior, which may be connected to a subdiffusion
or superdiffusion process. For the case k1 6= 0 with k2 6= 0, which implies in an interchange between
two states, motion and rest, we have performed a numerical analysis and verified that, for small and
long times, the behavior of ρ1(x, t) is essentially characterized by a diffusive behavior. For intermediate
times, i.e., t ∼ 1/k1, the reaction terms that characterize the motion and pauses play an important role,
and the system exhibits a different diffusive regime from the initial. For ρ2(x, t), we observe an initial
behavior characterized by a fast diffusion and asymptotically governed by a behavior of the diffusive
term present in Equation (16). In this case, the distributions are given in terms of q-exponentials
and the asymptotic behavior, compact or long-tailed, depending on the value of ν. Furthermore, we
have considered a situation characterized by the presence of different regimes, and it showed that the
asymptotic regime is faster than the first one exhibited by the system.
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