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Abstract: Recent developments on the generalizations of two important equations of quantum
physics, namely the Schroedinger and Klein–Gordon equations, are reviewed. These generalizations
present nonlinear terms, characterized by exponents depending on an index q, in such a way that
the standard linear equations are recovered in the limit q→ 1. Interestingly, these equations present
a common, soliton-like, traveling solution, which is written in terms of the q-exponential function
that naturally emerges within nonextensive statistical mechanics. In both cases, the corresponding
well-known Einstein energy-momentum relations, as well as the Planck and the de Broglie ones,
are preserved for arbitrary values of q. In order to deal appropriately with the continuity equation,
a classical field theory has been developed, where besides the usual Ψ(~x, t), a new field Φ(~x, t) must
be introduced; this latter field becomes Ψ∗(~x, t) only when q→ 1. A class of linear nonhomogeneous
Schroedinger equations, characterized by position-dependent masses, for which the extra field Φ(~x, t)
becomes necessary, is also investigated. In this case, an appropriate transformation connecting Ψ(~x, t)
and Φ(~x, t) is proposed, opening the possibility for finding a connection between these fields in the
nonlinear cases. The solutions presented herein are potential candidates for applications to nonlinear
excitations in plasma physics, nonlinear optics, in structures, such as those of graphene, as well as in
shallow and deep water waves.

Keywords: nonlinear Schroedinger equation; nonhomogeneous Schroedinger equation; nonadditive
entropies; nonextensive thermostatistics

1. Introduction

Quantum mechanics [1,2] and statistical mechanics [3,4] have, along one century, cross-fertilized
their remarkable achievements. A well-known example concerns quantum-statistical mechanics,
consisting of the association of these two theories, providing a successful description of a large variety
of physical systems at low temperatures [3,4]. This framework is based on Boltzmann–Gibbs (BG)
statistical mechanics, directly associated with the entropic form,

SBG({pi}) ≡ −kB

W

∑
i=1

pi ln pi, (1)

where kB stands for the Boltzmann constant and W represents the total number of microstates of
a given system. By extremizing the entropy above, under simple physical constraints [3], one obtains
the well-known Boltzmann factor,
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peq
i ∝ exp(−βεi), (2)

which represents the probability for finding the system in an equilibrium state i, with an energy εi,
where β appears as a Lagrange multiplier, identified with the inverse of the temperature.

A few years ago, in order to generalize the BG statistical mechanics, the BG entropic form was
generalized, through the introduction of a parameter q, by means of the following proposal [5],

Sq({pi}) ≡
kB

q− 1

(
1−

W

∑
i=1

pq
i

)
(q ∈ <), (3)

from which one obtains in the limit q → 1, S1 = SBG. An extremization procedure, similar to the
one carried out for the entropy SBG({pi}), may be applied to Sq({pi}), leading to the equilibrium
distribution,

peq
i ∝ expq(−βεi) ≡ [1− (1− q)β εi]

1
1−q , (4)

where we have introduced the q-exponential function,

expq(x) ≡ [1− (1− q)x]
1

1−q [exp1(x) = exp(x)]. (5)

Due to a substantial amount of research along the recent years, the entropic form of Equation (3)
has led to the theory of q-statistics (also referred to in the literature as nonextensive statistical
mechanics) [6–10]. This q-generalized thermostatistical theory has been useful in the study of
a considerable number of physical systems, including long-range-interacting many-body Hamiltonian
systems [11–14], low-dimensional dynamical systems [15–19], cold atoms [20–22], plasmas [23,24],
trapped atoms [25], spin-glasses [26], power-law anomalous diffusion [27,28] and granular
matter [29], high-energy particle collisions [30–33], black holes and cosmology [34,35], chemistry [36],
economics [37–39], earthquakes [40], biology [41,42], solar wind [43,44], anomalous diffusion and
central limit theorems [45–53], quantum entangled and non-entangled systems [54,55], quantum
chaos [56], astronomical systems [57,58], signal and image processing [59,60], mathematical
structures [61–64] and scale-free networks [65,66], among others.

A recent example where quantum mechanics and statistical mechanics have cross-fertilized
emerged between q-statistics and nonlinear (NL) quantum mechanics. Indeed, inspired by q-statistics,
a new type of NL quantum equations was proposed in [67]. This set includes the Schroedinger,
Klein–Gordon and Dirac equations for a free particle. The physical solution for this system in standard
quantum equations is the ubiquitous plane-wave, whose wave function is based on exp

[
i(~k ·~x−ωt)

]
.

In a similar way, the free-particle solution for the q-generalized NL quantum equations is based on the
q-plane wave,

Ψ(~x, t) = Ψ0 expq

[
i(~k ·~x−ωt)

]
, (6)

expressed in terms of the q-exponential function of Equation (5), which, for a pure imaginary iu,
is defined as the principal value of:

expq(iu) = [1 + (1− q)iu ]
1

1−q ; exp1(iu) ≡ exp(iu). (7)

Recently, NL equations have attracted much interest in science due to their potential for describing
a wide variety of phenomena, more specifically those within the realm of complex systems [68,69].
In fact, the applicability of linear equations is usually restricted to idealized systems, being valid for
media characterized by specific conditions, like homogeneity, isotropy and translational invariance,
with particles interacting through short-range forces and with a dynamical behavior characterized by
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short-time memory. However, many real systems do not fulfil these requirements and usually exhibit
complicated collective behavior associated with NL phenomena. Since finding analytical solutions
of NL equations may become a hard task, particularly in the case of NL differential equations [70],
very frequently, one has to make use of numerical procedures, and so, a considerable advance has been
attained lately in this area.

Among the most studied NL differential equations, we mention the Fokker–Planck [71], as well as
two distinct proposals for the Schroedinger one. In the Fokker–Planck case, the nonlinearity was firstly
introduced through a power in the probability of the diffusion term, in such a way as to modify it into a
nonlinear diffusion term [72,73]. Consequently, in the same way that the linear Fokker–Planck equation
is associated to normal diffusion and to the BG entropy, the NL Fokker–Planck proposal of [72,73]
is connected to anomalous-diffusion phenomena and to the nonadditive entropy Sq of Equation (3),
which yields nonextensive statistical mechanics [6,9,10]. Indeed, by means of generalized forms of
the H-theorem, it is possible to connect very general types of NL Fokker–Planck equations to entropic
forms [74–76].

As concerns the Schroedinger equation, there are essentially two most investigated NL proposals
in the literature: (i) a previous one, corresponding to the introduction of an extra term containing a
power in the wave function (usually a cubic one) [68–70,77]; (ii) in a more recent proposal, the same
procedure used for the NL Fokker–Planck of [72,73] was considered, namely by introducing a power
in the wave function of an existing term [67]. In both cases, one has compact traveling solutions,
characterized by a spatial part that does not deform throughout the evolution. An important property
of these types of solutions concerns their square integrability, allowing for an appropriate normalization.
Due to the modulation of the wave function, these solutions are considered to be relevant in diverse
areas of physics, including nonlinear optics, superconductivity, plasma physics and deep water
waves [68,69]. Herein, we will restrict ourselves to this second proposal, analyzing the similarities
and differences with respect to the linear case and reviewing the most recent studies related to this
equation. Moreover, we will also discuss briefly proposals for linear nonhomogeneous Schroedinger
equations, as well as an NL generalization of the Klein–Gordon equation introduced in [67].

Next, we highlight some basic results of the linear Schroedinger equation, which will be useful
for the discussion of the nonlinear case.

2. Linear Schroedinger Equation

The linear Schroedinger equation (LSE) for a particle of mass m in a potential V(~x) is given by [1,2]:

ih̄
∂Ψ(~x, t)

∂t
= − h̄2

2m
∇2Ψ(~x, t) + V(~x)Ψ(~x, t), (8)

where the wave function Ψ(~x, t) (referred also as a classical field), associated with a particle in a
position ~x at time t; herein, we will consider the more general case of a d-dimensional space, where
~x ≡ (x1, x2, · · · , xd). Although the equation for the complex-conjugate field Ψ∗(~x, t) may be obtained
trivially from Equation (8), for reasons that will become clear later, herein, we write it explicitly below,

ih̄
∂Ψ∗(~x, t)

∂t
=

h̄2

2m
∇2Ψ∗(~x, t)−V(~x)Ψ∗(~x, t). (9)

In the absence of a potential (V(~x) = 0), one has a free particle with wave vector~k and frequency
ω, for which the plane-wave solutions apply,

Ψ(~x, t) = Ψ0 exp
[
i(~k ·~x−ωt)

]
,

Ψ∗(~x, t) = Ψ0 exp
[
−i(~k ·~x−ωt)

]
,

(10)
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leading to the well-known de Broglie and Planck relations [1,2],

~p = h̄~k ; E = h̄ω ; E =
p2

2m
=

h̄2k2

2m
. (11)

One should mention that the amplitude Ψ0 does not play an important role in Equations (8)
and (9), since by substituting the plane-wave solutions in these equations, it cancels on both sides of
each equation. This represents a common feature of linear differential equations; however, for the
nonlinear case, to be discussed in the next section, these amplitudes will play an important role.

The probability density, for finding the particle with a position ~x at time t, is defined as [1,2]:

ρ(~x, t) =
Ψ(~x, t)Ψ∗(~x, t)

ΩΨ2
0

, (12)

where Ω stands for a normalization constant. One notices that for a free particle ρ(~x, t) = 1/Ω, leading
to the undesirable result of non-integrability of the plane-wave solution in full space,∫

all space
d~x ρ(~x, t) =

∫
all space

d~x (1/Ω)→ ∞, (13)

where: ∫
all space

d~x A(~x, t) ≡
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 · · ·

∫ ∞

−∞
dxd A(~x, t). (14)

Due to this difficulty, one is obliged to deal with the particle inside a finite volume (e.g., a box);
in this case, to satisfy the boundary conditions, the plane-wave solution gets modified, leading usually
to quantized wave vectors~k j, where j correspond to quantum numbers.

One important result concerning the LSE is the continuity equation,

∂ρ(~x, t)
∂t

+ ~∇ ·~J(~x, t) = 0, (15)

which ensures the conservation of the probability density defined in Equation (12). By manipulating
Equations (8) and (9), one sees that the continuity equation is fulfilled, for a probability current:

~J(~x, t) =
ih̄

2mΩΨ2
0

{
−[~∇Ψ(~x, t)]Ψ∗(~x, t) + [~∇Ψ∗(~x, t)]Ψ(~x, t)

}
. (16)

By integrating both sides of the continuity equation,

∂

∂t

∫
all space

d~x ρ(~x, t) = −
∫

all space
d~x [~∇ ·~J(~x, t)] = 0, (17)

where the last equality follows from the fact that, for square integrable functions, the probability
current ~J(~x, t) vanishes at x1, x2, · · · , xd → ±∞. This ensures the conservation of the norm, i.e.,
the conservation of the probability, for all times; however, for the free-particle plane-wave solution,
the integral on the left-hand side of the equation above diverges (cf. Equation (13)), so that the result
above does not apply.

Another relevant point to be explored in the nonlinear case concerns the fact that the pair
of Equations (8) and (9) can be derived in an elegant manner, from a classical-field theoretical
approach [78–80]. For this, one defines a Lagrangian density,

L ≡ L
(

Ψ, ~∇Ψ, Ψ̇, Ψ∗, ~∇Ψ∗, Ψ̇∗
)

, (18)



Entropy 2017, 19, 39 5 of 25

where, as usual, Ψ̇ and Ψ̇∗ denote partial time derivatives. The following form is proposed [78],

L = A′
{

ih̄
2

Ψ∗(~x, t)Ψ̇(~x, t)− h̄2

2m
[~∇Ψ∗(~x, t)] · [~∇Ψ(~x, t)]

− ih̄
2

Ψ(~x, t)Ψ̇∗(~x, t)−Ψ∗(~x, t)V(~x)Ψ(~x, t)
}

,

(19)

where A′ represents a multiplicative factor. Hence, considering the Euler–Lagrange equation for the
field Ψ(~x, t),

∂L
∂Ψ
− ~∇ ·

[
∂L

∂(~∇Ψ)

]
− ∂

∂t
∂L
∂Ψ̇

= 0, (20)

one obtains the LSE for the field Ψ∗(~x, t) (Equation (9)), whereas from the Euler–Lagrange equation for
the field Ψ∗(~x, t), one gets the LSE for the field Ψ(~x, t) (Equation (8)).

Moreover, one can calculate also the fields canonically conjugate to the ones above,

ΠΨ =
∂L
∂Ψ̇

=
ih̄A′

2
Ψ∗ ; ΠΨ∗ =

∂L
∂Ψ̇∗

= − ih̄A′

2
Ψ ; (21)

in such a way to obtain the Hamiltonian density,

H = ΠΨΨ̇ + ΠΨ∗ Ψ̇∗ −L

= A′
{

h̄2

2m
[~∇Ψ∗(~x, t)] · [~∇Ψ(~x, t)] + Ψ∗(~x, t)V(~x)Ψ(~x, t)

}
, (22)

from which one can calculate important quantities, e.g., the total energy [78].
In the next section, we will present generalizations of the results above following the recent

proposal of [67] for a nonlinear Schroedinger equation.

3. Generalized Nonlinear Schroedinger Equation

3.1. Free Particle and the q-Plane Wave Solution

Recently, a nonlinear Schroedinger equation (NLSE) for a free particle of mass m was
proposed [67],

ih̄
∂

∂t

[
Ψ(~x, t)

Ψ0

]
= − 1

2− q
h̄2

2m
∇2
[

Ψ(~x, t)
Ψ0

]2−q
, (23)

where q is a real number, as defined in Section 1, in such a way to recover the linear one of Equation (8),
for V(~x) = 0, in the particular case q = 1. One sees that the right-hand side of this equation is nonlinear
for any q 6= 1, so that, in contrast to Equation (8), the amplitude Ψ0 does not cancel and should be
considered in these NL cases, guaranteeing the correct physical dimensionalities for all terms.

One should notice that the NLSE of Equation (23) presents the same structure of the NL
Fokker–Planck equation proposed in [72,73] in the absence of an external potential, which appears
in nonextensive statistical mechanics [6,9,10]. Essentially, it represents the analogue of the
porous-medium equation [81], very common in the framework of anomalous-diffusion phenomena,
but with an imaginary time.

Consistently, the energy and momentum operators are generalized as:

Ê = ih̄Dt ; p̂n = −ih̄Dxn ; Du f (u) ≡ [ f (u)]1−qd f (u)/du, (24)

which, when acting on the q-plane wave of Equation (6), yield the relations of Equation (11), namely
those for the energy, E = h̄ω, and momentum, ~p = h̄~k. Now, considering~k→ ~p/h̄ and ω → E/h̄, one
verifies that this new form is a solution of the equation above, with E = p2/2m, for all values of q.
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Due to the peculiar properties of this type of solution, the q-generalized quantum mechanics is
expected to be useful for addressing complex phenomena, such as dark matter, nonlinear quantum
optics and others. In particular, some of the properties of the q-plane wave make it potentially relevant
from the physical point of view, like: (i) it presents an oscillatory behavior; (ii) it is localized for
certain values of q. Indeed, for q 6= 1, the q-exponential expq(iu) is characterized by an amplitude
rq(u) 6= 1 [82],

expq(±iu) = cosq(u)± i sinq(u), (25)

cosq(u) = rq(u) cos
{

1
q− 1

arctan[(q− 1)u]
}

, (26)

sinq(u) = rq(u) sin
{

1
q− 1

arctan[(q− 1)u]
}

, (27)

rq(u) =
[
1 + (1− q)2u2

]1/[2(1−q)]
, (28)

so that rq(u) decreases for increasing arguments, if q > 1. From Equations (25)–(28), one notices
that cosq(u) and sinq(u) cannot be zero simultaneously (even though their moduli do tend to zero
simultaneously as u → ±∞) yielding expq(±iu) 6= 0. In Figure 1, we represent cosq(u) and sinq(u),
respectively, for two different values of q > 1, showing that the amplitude rq(u) produces a modulation
of these functions, which get strongly weakened as |u| → ∞. Such a property makes these types of
solutions appropriate for many types of physical phenomena, which occur in limited intervals of space
and time. Let us stress that, in the particular situation where~k ·~x = ωt, one has Ψ(~x, t) = Ψ0 (∀t), and
consequently, the q-plane wave behaves like a soliton. Indeed, in the one-dimensional case, one has a
soliton propagating with a velocity c = ω/k. This enables the approach of nonlinear excitations that
do not deform in time and should be relevant, e.g., in nonlinear optics and plasma physics.
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Figure 1. Plots of the real and complex parts of expq(iu), i.e., cosq(u) (panel (a)) and sinq(u) (panel (b)),
respectively, for two different values of q > 1 (cf. Equations (25)–(28)). Due to the amplitude

rq(u) =
[
1 + (1− q)2u2]1/[2(1−q)], the oscillatory behavior is strongly depressed for increasing

values of q. All quantities exhibited are dimensionless (from [83]).

Additionally, expq(iu) presents further peculiar properties,

[expq(iu)]
∗ = expq(−iu) = [1− (1− q)iu]

1
1−q , (29)

expq(iu)[expq(iu)]
∗ = [rq(u)]2 =

[
1 + (1− q)2u2

] 1
1−q , (30)

expq(iu1) expq(iu2) = expq[iu1 + iu2 − (1− q)u1u2], (31)
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{
[expq(iu)]

α
}∗

=
{
[expq(iu)]

∗
}α

= [expq(−iu)]α, (32)

for any α real. By integrating Equation (30) from −∞ to +∞, one obtains [84],

Iq =
∫ ∞

−∞
du [rq(u)]2 =

√
π Γ

(
3−q

2(q−1)

)
(q− 1) Γ

(
1

q−1

) , (33)

leading to the physically-important property of square integrability for 1 < q < 3; as some typical
examples, one has I3/2 = I2 = π. One should notice that this integral diverges in both limits q→ 1
and q→ 3. Hence, the q-plane wave of Equation (6) presents a modulation, characteristic of a localized
wave, for 1 < q < 3.

Applying the complex conjugate in Equation (23) and using the property of Equation (32),
one obtains the equation for Ψ∗(~x, t),

ih̄
∂

∂t

[
Ψ∗(~x, t)

Ψ0

]
=

1
2− q

h̄2

2m
∇2
[

Ψ∗(~x, t)
Ψ0

]2−q
. (34)

Next, we will discuss the subject of a probability density and its corresponding continuity
equation, related to the present NLSE. As will be shown, this analysis turns out to be rather nontrivial,
as examined in detail in [85,86].

3.2. Continuity Equation and Classical Field Theory

Let us now address the matter of the continuity equation; we start by following the standard
procedure, i.e., considering the probability density of Equation (12), together with the pair of
Equations (23) and (34). One has:

ih̄
∂ρ(~x, t)

∂t
=

ih̄
ΩΨ2

0

[
∂Ψ(~x, t)

∂t
Ψ∗(~x, t) + Ψ(~x, t)

∂Ψ∗(~x, t)
∂t

]
, (35)

so that, using this pair of equations on the right-hand side, one readily sees that the continuity equation
is not fulfilled. Instead, one gets the following balance equation:

∂ρ(~x, t)
∂t

+ ~∇ ·~J(~x, t) = R(~x, t), (36)

where:
~J(~x, t) =

ih̄

2mΩΨ3−q
0

[
−Ψ1−q(~∇Ψ)Ψ∗ + (Ψ∗)1−q(~∇Ψ∗)Ψ

]
, (37)

R(~x, t) =
ih̄

2mΩΨ3−q
0

[
−Ψ1−q(~∇Ψ) · (~∇Ψ∗) + (Ψ∗)1−q(~∇Ψ∗) · (~∇Ψ)

]
. (38)

These results show that the continuity equation of Equations (15) and (16) is recovered for q = 1;
in general, for q 6= 1, one has R(~x, t) 6= 0. Indeed, considering the q-plane wave solution of Equation (6),
one obtains:

R(~x, t) =
(1− q)h̄

mΩ
(~k ·~x−ωt)k2

[
1 + (1− q)2(~k ·~x−ωt)2

]q/(1−q)
, (39)

showing that for q 6= 1, only in the particular case of the soliton, where ~k · ~x = ωt (leading to
Ψ(~x, t) = Ψ0 (∀t)), one has R = 0, so that probability is preserved in time.

Moreover, one may see that by considering a Lagrangian density in the form of Equation (18),
characterized by Ψ(~x, t) and Ψ∗(~x, t), and following a procedure similar to the one carried put in the
linear case [78–80]), one does not obtain Equations (23) and (34). A way to overcome this difficulty
was proposed in [85], where an additional field Φ(~x, t) was introduced. Hence, we will now develop
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an exact classical field theory, through the definition of a Lagrangian density L, which will depend on
the fields Ψ(~x, t) and Φ(~x, t), their complex conjugates, as well as on their spatial and time derivatives,

L ≡ L
(

Ψ, ~∇Ψ, Ψ̇, Φ, ~∇Φ, Φ̇, Ψ∗, ~∇Ψ∗, Ψ̇∗, Φ∗, ~∇Φ∗, Φ̇∗
)

. (40)

Let us then consider the following Lagrangian density,

L =
A

Φ0Ψ0

{
ih̄ Φ(~x, t)Ψ̇(~x, t)− h̄2

2m

[
Ψ(~x, t)

Ψ0

]1−q
[~∇Φ(~x, t)] · [~∇Ψ(~x, t)]

− ih̄ Φ∗(~x, t)Ψ̇∗(~x, t)− h̄2

2m

[
Ψ∗(~x, t)

Ψ0

]1−q
[~∇Φ∗(~x, t)] · [~∇Ψ∗(~x, t)]

}
,

(41)

where A ≡ 1/(2qΩ) is a multiplicative constant and, as before, Ψ0 and Φ0 represent the amplitudes
of the fields Ψ(~x, t) and Φ(~x, t), respectively. One should notice that the Lagrangian density above
recovers the one of Equation (19) in the particular case q = 1.

From the above Lagrangian density, one may construct a classical action, which may be extremized
to yield the Euler–Lagrange equations for each field [78–80]. The Euler–Lagrange equation for
the field Φ,

∂L
∂Φ
− ~∇ ·

[
∂L

∂(~∇Φ)

]
− ∂

∂t
∂L
∂Φ̇

= 0, (42)

leads to:

ih̄
∂Ψ(~x, t)

∂t
+

h̄2

2m
(1− q)[Ψ(~x, t)]−q [∇Ψ(~x, t)]2 +

h̄2

2m
[Ψ(~x, t)]1−q ∇2Ψ(~x, t) = 0, (43)

which corresponds to the NLSE of Equation (23). Carrying out the same procedure for the field Ψ(~x, t),
one obtains,

ih̄
∂Φ(~x, t)

∂t
=

h̄2

2m
[Ψ(~x, t)]1−q ∇2Φ(~x, t), (44)

with similar equations holding for the complex-conjugate fields, Ψ∗(~x, t) and Φ∗(~x, t).
It is important to notice that Equation (44) becomes the complex conjugate of Equation (23)

(i.e., Equation (34)) only for q = 1, in which case Φ(~x, t) = Ψ∗(~x, t). For all q 6= 1, one has that Φ(~x, t)
is distinct from Ψ∗(~x, t), with the fields Φ(~x, t) and Ψ(~x, t) being related by Equation (44).

Now, if one substitutes the q-plane wave solution of Equation (6) in Equation (44), one finds,

Φ(~x, t)
Φ0

=
{

expq

[
i(~k ·~x−ωt)

]}−q
=

[
Ψ(~x, t)

Ψ0

]−q
. (45)

Consistently with the above, we generalize Equation (12) by defining the probability density for
finding a particle at time t, in a given position ~x, as:

ρ(~x, t) =
1

2ΩΨ0Φ0
[Ψ(~x, t)Φ(~x, t) + Ψ∗(~x, t)Φ∗(~x, t)], (46)

for any value of q. Hence, considering the q-plane wave solution for a free particle, one has
ρ(~x, t) = 1/Ω, leading trivially to [∂ρ(~x, t)/∂t] = 0, but yielding the same non-integrability difficulty
of Equation (13), typical of the standard plane-wave solution in full space.
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In fact, the continuity equation is fulfilled for this particular solution, although in general, one has:

ih̄
∂ρ(~x, t)

∂t
=

ih̄
2ΩΨ0Φ0

[
∂Ψ(~x, t)

∂t
Φ(~x, t) + Ψ(~x, t)

∂Φ(~x, t)
∂t

+
∂Ψ∗(~x, t)

∂t
Φ∗(~x, t) + Ψ∗(~x, t)

∂Φ∗(~x, t)
∂t

]
, (47)

and using the equations for the fields Ψ(~x, t) and Φ(~x, t) (Equations (23) and (44)), as well as their
corresponding complex conjugates, one obtains a balance equation in the form of Equation (36), where

~J(~x, t) =
ih̄

4mΩΨ2−q
0 Φ0

[
−Ψ1−q(~∇Ψ)Φ + (Ψ∗)1−q(~∇Ψ∗)Φ∗

+ Ψ2−q(~∇Φ)− (Ψ∗)2−q(~∇Φ∗)
]

, (48)

and

R(~x, t) =
i(1− q)h̄

4mΩΨ2−q
0 Φ0

[
Ψ1−q(~∇Ψ) · (~∇Φ)− (Ψ∗)1−q(~∇Ψ∗) · (~∇Φ∗)

]
. (49)

One should notice that Equations (48) and (49) coincide with Equations (37) and (38), respectively,
through the identifications Φ(~x, t) ↔ Ψ∗(~x, t) and Φ∗(~x, t) ↔ Ψ(~x, t). Therefore, within this later
frame, solutions must satisfy:

[Ψ(~x, t)]1−q[~∇Ψ(~x, t)] · [~∇Φ(~x, t)] ∈ <, (50)

for the preservation of probability. Since herein we are dealing with nonlinear equations, which usually
present more than one solution, some possible solutions may not satisfy the above requirement for
q 6= 1. Now, in contrast to Equation (38), considering the pair of solutions in Equations (6) and (45),
one shows that:

1

Ψ2−q
0 Φ0

[Ψ1−q(~∇Ψ) · (~∇Φ)] =
1

Ψ2−q
0 Φ0

[(Ψ∗)1−q(~∇Ψ∗) · (~∇Φ∗)] = qk2 ⇒ R(~x, t) = 0, (51)

so that the continuity equation is fulfilled for the q-plane wave and its auxiliary solution of Equation (45).
Next, we present other solutions for the pair of Equations (23) and (44); as will be shown, in many
cases, the condition of Equation (50) is not fulfilled trivially.

3.3. Other Free-Particle Solutions and Approaches

3.3.1. Solutions with the Separation of Variables

Solutions characterized by the separation of variables have been worked out in [87,88] for the
pair of Equations (23) and (44), whereas in [89], this kind of solution was developed for Equation (23)
solely; these solutions are described briefly below. For simplicity, herein, we restrict ourselves to
a one-dimensional space; these types of solutions are decomposed into spatial and temporal parts.
Therefore, considering Ψ(x, t) = ψ1(x)ψ2(t) in Equation (23), one has [87–89]:

− h̄2

2m(2− q)
ψ10

ψ1(x)
d2

dx2

[
ψ1(x)

ψ10

]2−q
= ih̄

[
ψ20

ψ2(t)

]2−q d
dt

[
ψ2(t)
ψ20

]
= ε, (52)

where ε is a constant with energy dimensions, whereas ψ10 and ψ20 represent the amplitudes of ψ1(x)
and ψ2(t), respectively. Thus, we can write:

d2

dx2

[
ψ1(x)

ψ10

]2−q
+ ε

2m(2− q)
h̄2

[
ψ1(x)

ψ10

]
= 0, (53)
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and:
d
dt

[
ψ2(t)
ψ20

]
+ i

ε

h̄

[
ψ2(t)
ψ20

]2−q
= 0. (54)

By direct calculus, we find the expressions:

ψ1(x) = ψ10 exp(q+1)/2

[
i

√
4mε

(3− q)h̄2 x

]
, (55)

and:
ψ2(t) = ψ20 exp2−q [−iεt/h̄] . (56)

Now, we take into account Equations (55) and (56) to obtain:

Ψ(x, t) = Ψ0

1 + (1− q)ikx
√

2
3−q − (1− q)2 k2x2

2(3−q)

1− (q− 1) iεt
h̄


1

1−q

. (57)

In particular, we emphasize that, in the limit of q → 1, by keeping only terms of order (q− 1),
the present decomposed solution coincides with the family of solutions given by q-plane waves
Ψ(x, t) = Ψ0 expq[i(kx− wt)], in the same limit.

Following a similar procedure, the extra field can also be decomposed as Φ(x, t) = φ1(x)φ2(t),
so that substituting this solution in Equation (44), we obtain [87,88]:

− h̄2

2m
φ10

φ1(x)

[
ψ1(x)

ψ10

]1−q d2

dx2

[
φ1(x)

φ10

]
= −ih̄

[
ψ20

ψ2(t)

]1−q φ20

φ2(t)
d
dt

[
φ2(t)
φ20

]
= µ, (58)

where µ is a constant with energy dimensions. At this point, one should mention that two different
solutions have been worked out, depending on the choices for the two energy parameters above,
namely ε and µ. The first and simpler choice corresponds to µ = ε [87], which yields:[

φ1(x)
φ10

]
=

[
ψ1(x)

ψ10

]−1

and
[

φ2(t)
φ20

]
=

[
ψ2(t)
ψ20

]−1

, (59)

so that this solution is also characterized by the probability density ρ(x, t) = 1/Ω, for all values of q.
The solution explored in [88] considered the energies ε and µ as distinct, in principle. In this case,

the equivalent to the equalities of Equation (59) is given by:[
φ1(x)

φ10

]
=

[
ψ1(x)

ψ10

]γ/2

and
[

φ2(t)
φ20

]
=

[
ψ2(t)
ψ20

]−µ/ε

, (60)

where γ is a real number, so that the two energies are related through:

γ(γ + q− 1)ε = 2(3− q)µ, (61)

with the case µ = ε, considered in [87], being recovered for γ = −2. Other choices for γ may lead to
nontrivial probability densities ρ(x, t), e.g., the choice γ = q− 3, yielding µ = (2− q)ε, results in a
ρ(x, t) integrable in a finite symmetric interval [88]. One should mention that considering µ 6= ε seems
to be a natural alternative, since these energies come from two distinct equations and may possibly be
associated with two strongly correlated particles.

The extension of these results to the d-dimensional case is straightforward. We remind that the
solutions for the pair of Equations (23) and (44) in d dimensions can also be decomposed into spatial
and temporal parts. However, in contrast to the linear case, the spatial part cannot be decomposed
into d different coordinate components.
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3.3.2. q-Gaussian Wave-Packet Solution

This type of solution was considered in [87,89–93], and it presents the convenience that it
may be applied to both cases of a free particle [87,89–92], as well as for a particle under some
particular potentials [91,93]. Herein, for simplicity, we will describe only the solution for the NLSE of
Equation (23), i.e., a free particle, in a one-dimensional space. Accordingly, the following ansatz was
proposed in [91],

Ψ(x, t) = Ψ0

{
1− (1− q)[a(t)x2 + b(t)x + c(t)]

}1/(1−q)
, (62)

where the time dependence was introduced through the coefficients a(t), b(t), and c(t), which may be
complex, in general. By substituting this solution in Equation (23), one gets:

ih̄
∂

∂t

[
Ψ(~x, t)

Ψ0

]
= −ih̄[ȧ(t)x2 + ḃ(t)x + ċ(t)]

[
Ψ(~x, t)

Ψ0

]q
, (63)

so that ȧ(t), ḃ(t) and ċ(t) follow a set of three coupled ordinary differential equations.
One should notice that such a q-Gaussian wave-packet solution was considered for the pair

of Equations (23) and (44) only in [87]. In this case, under particular conditions for the coefficients
of Equation (62), the corresponding solution for the field Φ(x, t) was shown to be related to Ψ(x, t) by
means of a form similar to the one in Equation (45),

Φ(x, t)
Φ0

=

[
Ψ(x, t)

Ψ0

]−q
, (64)

leading to ρ(x, t) = 1/Ω in Equation (46), so that [∂ρ(~x, t)/∂t] = 0, but with the same difficulty
of Equation (13).

All other approaches analyzed the q-Gaussian wave-packet solution for Equation (23) only [89–93].
In these cases, the norm |Ψ(x, t)|2 is not preserved (see, e.g., the discussion of [91]).

3.3.3. Further Free-Particle Approaches

In the linear case, the pilot-wave theory, also known as the de Broglie–Bohm framework [94,95],
represents an interpretation of great interest in quantum theory. This approach has been extended
recently in [92], by considering Equation (23), as well as the probability density of Equation (12), for
a free particle. In this case, the particle’s motion is governed by a velocity field ~vq(~x, t), determined
by the time-dependent solution of Equation (23). Such a velocity field follows the balance equation
of Equation (36), where~J(~x, t) = ρ(~x, t)~vq(~x, t), so that Equation (37) leads to:

~vq(~x, t) =
ih̄

2mΩΨ1−q
0

[
−Ψ−q(~∇Ψ) + (Ψ∗)−q(~∇Ψ∗)

]
. (65)

The authors of [92] verified that, by considering the q-plane-wave solution of Equation (6), one
finds the balance equation with R(~x, t) given by Equation (39), although the velocity field above yields:

~vq(~x, t) =
h̄~k
m

; k =
√

2mω ; (∀q), (66)

preserving the same expression of the LSE. This remarkable result shows that the velocity field
associated with the q-plane wave solution presents an invariant structure, independent of the
parameter q.
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Further traveling-wave solutions were found recently for the pair of Equations (23) and (44)
in [88]; restricting to the one-dimensional case, for simplicity, such solutions were expressed as:

Ψ(x, t) = f (v) = f (i(kx−ωt)), (67)

Φ(x, t) = g(v) = g(i(kx−ωt)), (68)

so that v = iu = i(kx−ωt). Substituting these solutions in Equations (23) and (44), one obtains two
second-order ordinary differential equations, respectively,

a
d f
dv

=
d

dv

[
f 1−q d f

dv

]
, (69)

a
dg
dv

= − f 1−q d2g
dv2 , (70)

where:
a =

2mω

h̄k2 =
h̄ω

(h̄2k2)/(2m)
. (71)

Integrating Equation (69), the first-order ordinary differential equation appears,

d f
dv

= a f q + b f q−1, (72)

where the integration quantity b is given by:

b =

[
f 1−q(v)

d f (v)
dv
− a f (v)

]
v=0

. (73)

It is important to recall that the dimensionless positive quantity a is given as the ratio of two
important energies of the problem, namely the energy of a quantum of radiation h̄ω (or, equivalently,
the energy quantum of a one-dimensional harmonic oscillator) and the kinetic energy of the particle
under investigation, (h̄2k2)/(2m). Moreover, the dimensionless quantity b depends on a, as well as on
the function f (v) and its derivative at v = 0.

Now, in Equation (72), one notices that the contribution b f q−1 is irrelevant in the limit q = 1,
leading to the well-known plane-wave solution [1]. However, for q 6= 1, this term comes out naturally
from the integration of the NLSE, written in the form of Equation (69). Herein, the q-plane wave
solution is given by f (v) = expq(av) = expq(iau), corresponding to the particular case b = 0 in
Equation (72). This is easily verified, since (d f (v)/dv) = a[expq(av)]q, so that one has f (0) = 1 and
(d f (v)/dv)v=0 = a, yielding b = 0 in Equation (73).

The analysis of the additional contribution b f q−1 in the solution of the NLSE represented one
of the main results of [88], in view of the changes it incurs to the q-plane wave solution. Due to this
additional contribution, finding exact solutions became a hard task, in such a way that the solutions
found in [88] were approximate, e.g., in the form of power series. Particularly, different limits were
considered for the quantity b of Equation (73) in these power series, namely a � |b| (representing
a physical situation of low kinetic energies) and a � |b| (representing a physical situation of high
kinetic energies).

Furthermore, it should be mentioned that recent investigations have associated the q-exponential
with a hypergeometric function, and consequently, the q-exponential should follow the hypergeometric
differential equation [89,90]. In this way, the authors of [89,90] have derived the NLSE of Equation (23)
by introducing transformations in the hypergeometric differential equation. This approach opened
the possibility for the investigation of other differential equations that may be transformed in the
hypergeometric differential equation, for which the q-exponential function appears as a solution.



Entropy 2017, 19, 39 13 of 25

3.4. Nonlinear Schroedinger Equations for a Particle in a Potential

The authors of [96] investigated how the q-plane wave solution of Equation (6) gets transformed
under two basic types of changes in the reference frame, namely a Galilean transformation connecting
two inertial reference frames, as well as the case of a uniformly-accelerated reference frame. In these
transformations, we will restrict ourselves to a one-dimensional space, for simplicity, although the
extension to d dimensions is straightforward. Hence, let us consider a Galilean transformation relating
the original inertial frame (x′, t′) with a second inertial frame (x, t) that moves with respect to the
former one with a uniform velocity v, so that:

t = t′ ; x = x′ − vt′. (74)

In this case, it was shown that the q-plane wave solution, in the second inertial frame (x, t), keeps
the form of Equation (6) by redefining the wave vector and frequency [96],

k̃ = k− mv
h̄

; ω̃ = ω− kv +
mv2

2h̄
. (75)

Furthermore, for a free particle viewed from a uniformly-accelerated reference frame
(with acceleration a), the space-time coordinates are:

t = t′ ; x = x′ − a
2

t′2 = x′ − F
2m

t′2, (76)

where, as before, (x′, t′) represent the variables associated with the inertial frame, and F = ma stands
for the force acting on the particle. Such an analysis suggested that in the corresponding NLSE,
the potential V(x) should couple to [Ψ(x, t)]q, instead of coupling to Ψ(x, t), as happens in the
standard LSE.

Taking into account the results of [96], the Lagrangian density for the free particle was modified
by introducing a d-dimensional potential V(~x) [87],

L ≡ Lfree − A
{

V(~x)
[

Φ(~x, t)
Φ0

] [
Ψ(~x, t)

Ψ0

]q
+ V(~x)

[
Φ∗(~x, t)

Φ0

] [
Ψ∗(~x, t)

Ψ0

]q}
, (77)

where Lfree stands for the free-particle Lagrangian density of Equation (41), with the same constant
factor A. Following the procedure described before [78–80], the Euler–Lagrange equation for the field
Φ(~x, t) yields the NLSE:

ih̄
∂

∂t

[
Ψ(~x, t)

Ψ0

]
= − 1

2− q
h̄2

2m
∇2
[

Ψ(~x, t)
Ψ0

]2−q
+ V(~x)

[
Ψ(~x, t)

Ψ0

]q
, (78)

whereas the Euler–Lagrange equation for the field Ψ(~x, t) leads to the auxiliary equation,

ih̄
∂

∂t

[
Φ(~x, t)

Φ0

]
=

h̄2

2m

[
Ψ(~x, t)

Ψ0

]1−q
∇2
[

Φ(~x, t)
Φ0

]
− qV(~x)

[
Ψ(~x, t)

Ψ0

]q−1[Φ(~x, t)
Φ0

]
. (79)

An interesting feature concerning Equations (78) and (79) is that in the first of them, the potential
V(~x) appears multiplying [Ψ(~x, t)]q, whereas in the second, it couples to [Ψ(~x, t)](q−1)Φ(~x, t).
Considering these terms in the simple case of a constant potential, V(~x) = V0, the q-plane wave
of Equation (6) together with the solution for the second field Φ(~x, t) of Equation (45) satisfy both field
equations, leading to h̄ω = h̄2k2/2m + V0, where k2 = ∑d

n=1 k2
n in d dimensions.

To our knowledge, the first solutions of Equation (78) were presented in [91,97]: (i) the Gaussian
wave-packet solution of Equation (62) was studied in [91] by considering a one-dimensional harmonic
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potential; (ii) solutions for several potentials were analyzed in [97], like the d-dimensional quadratic,
the shifted-attractive delta and the two-dimensional Moshinsky ones. This latter potential is defined as:

V(x, y) =
1
2

ω2
[

x2 + y2 + κ(x− y)2
]
−V0, (80)

and working with the center-of-mass coordinates,

R =
1√
2
(x + y) ; r =

1√
2
(x− y), (81)

the authors of [97] have shown that Equation (78) admits the quasi-stationary solution:

Ψ(R, r) = B
[
1− (1− q)(λ1R2 + λ2r2)

]1/(1−q)
= B expq[λ1R2 + λ2r2], (82)

where the parameters λ1 and λ2 are related to ω, κ and B by means of two coupled nonlinear equations.
The wave function of Equation (82) represents the first case reported in the literature of a solution
of Equation (78) for a system of interacting particles. In the limit q→ 1, the solution above reduces to
the ground-state function associated with the Moshinsky model’s potential.

An extension of the work of [97] was carried for the case where the particles are subjected to a
Moshinsky-like potential with time-dependent coefficients [93]. In this latter work, the authors have
shown that the nonlinearity creates entanglement between the particles, which is not present in the
usual (q = 1) scenario and, so, being potentially relevant for describing physical reality [95].

A common feature in the studies of [91,93,97] is the fact that by studying only Equation (78),
the norm is not preserved, in the sense that the continuity given by Equation (15) is not fulfilled (for a
discussion of the non-preservation of the norm, see, e.g., [91]). A joint study of Equations (78) and (79)
was carried in [87], for a particle in an infinite one-dimensional rectangular potential well,

V(x) =

{
0, 0 < x < a
∞, otherwise.

(83)

Hence, considering the same separation of variables of Subsection 3.3.1, i.e., Ψ(x, t) = ψ1(x)ψ2(t)
and Φ(x, t) = φ1(x)φ2(t), stationary-state solutions were found,

ψ1(x) = ψ10
[
AqSinq(kqx + δ)

] 1
2−q , (84)

and by choosing µ = (2− q)ε,
φ1(x) = [ψ1(x)]2−q. (85)

The stationary-state solutions for this potential were expressed in terms of y = Sinq(x), defined
by means of [87]:

x ≡ Sin−1
q (y) =

∫ y

0

dz√
1− z

3−q
2−q

, (86)

whose period is 4τq, where:

τq =
∫ 1

0

dz√
1− z

3−q
2−q

=
√

π
(2− q)Γ((2− q)/(3− q))
(3− q)Γ((7− 3q)/(6− 2q))

. (87)

The equations above express a generalization of the standard trigonometric function, recovered in
the limit q = 1, i.e., Sin1(x) ≡ sin(x). One should notice that this generalization differs from the sinq(x)
function that is currently used in nonextensive statistics [82]; particularly, one important distinction
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concerns the fact that |Sinq(x)| ≤ 1 for 1 ≤ q < 2 [87]. In this way, the wave vectors in Equation (84)
are given by:

kq ≡
√

2

(
2mε(2− q)2

(3− q)h̄2

) 2−q
3−q

, (88)

and considering the boundary condition ψ1(0) = ψ1(a) = 0, one finds δ = 0 and kqa = 2τqn, where
n = 1, 2, 3, .., so that:

ψ1(x) = ψ1(x, q, n) =
[

Ãq,nSinq

(
2nτqx

a

)] 1
2−q

. (89)

Then, the following expression:

εn(q) =
(3− q)h̄2

2m(2− q)2

(√
2nτq

a

) 3−q
2−q

, (90)

generalizes the energy spectrum of the standard quantum well, εn(1) = (h̄2/2m)(nπ/a)2.
Finally, we can write the probability density of Equation (46) as:

ρ(x) =
Re
{[

Sinq(2nτqx/a)
] 3−q

2−q

}
a
∫ 1

0 dx Re
{[

Sinq(2nτqx/a)
] 3−q

2−q

} , (91)

where Re {s} stands for the real part of s, and we have used the normalization condition for finding
the amplitude Ãn,q. It is important to stress that Re{

[
Sinq(2nτqx/a)

](3−q)/(2−q)} > 0 for 1 < q < 4/3
and that this quantity may be also positive for other values of q outside this interval, e.g., whenever
the parameter q satisfies the inequalities (3/2) + 2k < (3− q)/(2− q) < (5/2) + 2k, with k integer
and k ≥ 1. However, there are values of q in the range 4/3 < q < 2 for which one obtains ρ(x) < 0,
representing situations still not well understood. Such cases may be compared with what happens
to the Wigner function, which may present negative values for some values of its arguments, and so,
it cannot be considered as a simple probability distribution, being often called a quasidistribution
(see, e.g., [98]).

In Figure 2, we present the dimensionless probability density aρ(x), for a particle in an infinite
potential well (cf. Equation (83)) in the cases n = 1 (a) and n = 2 (b) and typical values of q, namely
q = 1, 1.25 and 1.8. For n = 1, one has an argument 0 ≤ (2τqx/a) ≤ 2τq, so that Sinq(2τqx/a) ≥ 0 [87].
From Figure 2a, one notices that q plays an important role for a particle with an energy ε1(q), as
concerns its confinement around the central region of the well: by increasing q in the range 1 < q < 2,
the particle becomes more confined around (x/a) = 1/2. In this context, the present solution with an
index q > 1 may be relevant for systems where one finds a low-energy particle localized in the central
region of a confining potential. In Figure 2b, we show aρ(x) in the case n = 2 and the same values of
q considered in Figure 2a. Now, one has an argument 0 ≤ (4τqx/a) ≤ 4τq, so that Sinq(4τqx/a) may
yield negative values for (x/a) > 1/2 [87]. As mentioned above, in these cases, one has always real
positive probabilities for 1 < q < 4/3, as well as other values of q outside this interval (e.g., q = 1.8).
In these cases, the corresponding probability densities present a symmetry with respect to (x/a) = 1/2,
with maxima at (x/a) = 1/4 and (x/a) = 3/4. Once again, the present solution with an index q > 1
may be relevant for systems where one finds a low-energy particle with the same probability for being
found in two different regions, symmetrically localized around the central region of the well.
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Figure 2. The dimensionless probability density aρ(x) (cf. Equation (91)), for a particle in
a one-dimensional infinite potential well of size a, is represented for typical values of q, namely,
q = 1, 1.25 and 1.8 (from bottom to top), in the cases n = 1 (a) and n = 2 (b). In (a), all probability
densities exhibit a maximum at (x/a) = 1/2. In (b), all probability densities are zero at (x/a) = 1/2,
presenting a symmetry around this point, with maxima at (x/a) = 1/4 and (x/a) = 3/4, respectively
(from [87]).

4. Linear Nonhomogeneous Proposals of the Schroedinger Equation

A linear Schroedinger equation with position-dependent effective masses, the linear nonhomogeneous
Schroedinger equation (LNHSE), has attracted the attention of many workers recently [99–110]. These
research works were motivated by the fact that a wide variety of physical systems are well described
through this type of equation, like semiconductor heterostructures [99,100], polarons [101], quantum
wells and quantum dots [102], among others.

The particular type of dependence of the mass on the position, i.e., the form of the function
m = m(x) (in the one-dimensional case), may change according to the physical interest, and in some
cases, the resulting equation, although linear, is intimately related to the NLSE of the previous section.
Particularly, the additional wave function used to construct a consistent continuity equation of the
NLSE appears to be necessary also for some LNHSEs [105,106,110], introducing an extra difficulty, since
one has an additional equation of motion with which to deal. It is then natural to try to understand
deeply the need for the introduction of this additional wave function (or field) and to search a proper
way to work with it. In general, the LNHSEs are simpler to deal with, becoming appropriate for
a better understanding of the necessity of an additional wave function, which will be discussed next.

In [105,106], it was realized that certain LNHSEs had to be properly approached by the
introduction of an additional wave function, similarly to the NLSE considered previously here.
However, it is important to notice how the construction of a consistent continuity equation for this
latter case leads to a direct clue to connect both fields. Herein, we will follow the general treatment
given in [110], which covers a wide family of position-dependent mass Hamiltonians considered
previously in the literature. Let us start by considering one-dimensional position-dependent mass
Hamiltonians, depending on a real function f [m(x), m′(x)], where the general position-dependent
mass m(x) is an analytical positive function for any value of x, and m′(x) represents its first derivative;
such a Hamiltonian is defined by:

Ĥ =
−h̄2

2m(x)
∂2

∂x2 +
h̄2

2
α f [m(x), m′(x)]

∂

∂x
+ V(x), (92)

where α ∈ R is a dimensionless constant and V(x) stands for a general potential. These class of
Hamiltonians lead to Schroedinger equations, which are not, in general, self-adjoint in the usual
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Hilbert space of their eigenfunctions. In what follows, we show the conditions for Equation (92) to be
self-adjoint.

Let us now introduce a Lagrangian density, which reproduces easily the equation of motion for
the above Hamiltonian,

L =
ih̄
2

Φ(x, t)
∂Ψ(x, t)

∂t
+

h̄2

4m(x)
Φ(x, t)

∂2Ψ(x, t)
∂x2 − h̄2α

4
f (m, m′)Φ(x, t)

∂Ψ(x, t)
∂x

− ih̄
2

Φ∗(x, t)
∂Ψ∗(x, t)

∂t
+

h̄2

4m(x)
Φ∗(x, t)

∂2Ψ∗(x, t)
∂x2 − h̄2α

4
f (m, m′)Φ∗(x, t)

∂Ψ∗(x, t)
∂x

(93)

−1
2

V Φ∗(x, t)Ψ∗(x, t)− 1
2

V(x)Φ(x, t)Ψ(x, t).

Using the usual Euler–Lagrange equations for the fields Φ(x, t) and its conjugate,
one straightforwardly gets the corresponding Schroedinger equations,

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m(x)
∂2Ψ(x, t)

∂x2 +
h̄2

2
α f (m, m′)

dΨ(x, t)
dx

+ V(x)Ψ(x, t) (94)

−ih̄
∂Ψ∗(x, t)

∂t
= − h̄2

2m(x)
∂2Ψ∗(x, t)

∂x2 +
h̄2

2
α f (m, m′)

dΨ∗(x, t)
dx

+ V(x)Ψ∗(x, t) . (95)

In order to obtain the equations for the fields Φ(x, t) and Φ∗(x, t) one must take into account
the Euler–Lagrange equation that includes a second derivative term [111,112], e.g., the one for the
field Ψ(x, t),

∂L
∂Ψ
− ∂

∂x

[
∂L

∂(∂Ψ/∂x)

]
− ∂

∂t

[
∂L

∂(∂Ψ/∂t)

]
+

∂2

∂x2

[
∂L

∂(∂2Ψ/∂x2)

]
= 0, (96)

leading to:

−ih̄
∂Φ(x, t)

∂t
= − h̄2

2
∂2

∂x2

(
Φ(x, t)
m(x)

)
− h̄2α

2
∂

∂x
[ f (m, m′)Φ(x, t)] + V(x)Φ(x, t) (97)

ih̄
∂Φ∗(x, t)

∂t
= − h̄2

2
∂2

∂x2

(
Φ∗(x, t)

m(x)

)
− h̄2α

2
∂

∂x
[ f (m, m′)Φ∗(x, t)] + V(x)Φ∗(x, t) . (98)

Note that in the case of a constant mass, Φ(x, t) = Ψ∗(x, t), and only one field is necessary, so that
Equations (94) and (95) are the same as Equations (98) and (97), respectively; however, in general,
one has Φ(x, t) 6= Ψ∗(x, t).

The Continuity Equation

Similarly to Equation (46), herein one defines the function ρ(x, t) as:

ρ(x, t) =
1

2m0
[Ψ(x, t)Φ(x, t) + Ψ∗(x, t)Φ∗(x, t)] , (99)

where m0 represents a constant with dimensions of mass, and we are restricting ourselves to systems
for which the integral of ρ(x, t) (cf. Equation (13)) over the whole space is finite. Let us then consider
the following ansatz,

Φ(x, t) = g(x)m(x)Ψ∗(x, t) , (100)
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where we require g(x) to be positive definite. Hence, using the Schroedinger Equations (94) and (97),
it is simple to show that the above-defined probability density obeys the one-dimensional continuity
equation (cf. Equation (15)), with the following current density,

J(x, t) =
h̄

2im0
g(x)

[
∂Ψ(x, t)

∂x
Φ∗(x, t)−Ψ(x, t)

∂Ψ∗(x, t)
∂x

]
, (101)

and as a consequence, the function g(x) should satisfy:

dg(x)
dx

= −α f (m, m′)m(x)g(x). (102)

Moreover, inspired by the form that the probability density ρ(x, t) = 1
m0

g(x)m(x)Ψ(x, t)Ψ∗(x, t),
one defines the inner product:

〈Ψ1(x, t), Ψ2(x, t)〉 =
∫

dx g(x)m(x)Ψ∗1(x, t)Ψ2(x, t) , (103)

and averages should be now computed using this form for the inner product. Considering this inner
product, the Hamiltonian given in Equation (92) can be shown to be self-adjoint. One sees that from
the linear nonhomogeneous systems defined in this section, one of the essential consequences of
removing the additional field is a new recipe for computing mean values. In [110], it was also shown
that forms of the operators likewise change, being in general different from the cases with the standard
inner product.

It is important to mention that the NLSE of the previous section is far more complicated than the
LNHSE considered above. Nevertheless, it is possible that in certain nonlinear cases, there may exist
appropriate transformations, like the one of Equation (100), connecting the fields Φ and Ψ. It would be
interesting to investigate the possibility of finding such a transformation for the NLSE of the previous
section and to analyze its consequences.

5. Generalized Nonlinear Klein–Gordon Equation

In [67], besides the NLSE of Section 3, other nonlinear generalized quantum equations were
introduced, like proposals for the Klein–Gordon and Dirac equations. In this section, we will discuss
briefly the nonlinear Klein–Gordon equation (NLKGE) introduced in [67], which for a particle of mass
m in d dimensions is given by:

∇2
[

Ψ(~x, t)
Ψ0

]
=

1
c2

∂2

∂t2

[
Ψ(~x, t)

Ψ0

]
+ q

m2c2

h̄2

[
Ψ(~x, t)

Ψ0

]2q−1

, (104)

recovering the standard linear Klein–Gordon equation in the case q = 1 [78]. One may verify
that the q-plane wave of Equation (6) satisfies the NLKGE above, preserving the corresponding
energy-momentum relation for all q,

E2 = p2c2 + m2c4. (105)

Although Equation (104) and its solution in Equation (6) are valid for a general d-dimensional
position vector ~x, herein, for simplicity, we will restrict ourselves to a three-dimensional vector ~x; let us
then introduce the four-dimensional space-time operators [78–80],

∂µ ≡ ∂

∂xµ
≡
{

∂

∂(ct)
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

}
; ∂µ ≡

∂

∂xµ ≡
{

∂

∂(ct)
,

∂

∂x
,

∂

∂y
,

∂

∂z

}
, (106)
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so that Equation (104) may be rewritten as:

∂µ∂µ

[
Ψ(~x, t)

Ψ0

]
+ q

m2c2

h̄2

[
Ψ(~x, t)

Ψ0

]2q−1

= 0. (107)

Similarly to the NLSE [85], a classical field theory was introduced for the NLKGE in [86].
This approach was also developed in terms of two classical fields, Ψ(~x, t) and Φ(~x, t), by writing
the following Lagrangian density,

L =
Ã

Φ0Ψ0

{
Φ(~x, t)[∂µ∂µΨ(~x, t)] + q

m2c2

h̄2 Φ(~x, t)Ψ(~x, t)
[

Ψ(~x, t)
Ψ0

]2(q−1)

+ Φ∗(~x, t)[∂µ∂µΨ∗(~x, t)] + q
m2c2

h̄2 Φ∗(~x, t)Ψ∗(~x, t)
[

Ψ∗(~x, t)
Ψ0

]2(q−1)
}

,

(108)

with the multiplicative factor, Ã ≡ h̄2c2/[2(1− 3q)EΩ], depending on the total energy E, and as
usual, the fields Ψ(~x, t) and Φ(~x, t) are confined to a finite volume Ω [78]. The Lagrangian above is
equivalent to:

L =
Ã

Φ0Ψ0

{
−[∂µΦ(~x, t)][∂µΨ(~x, t)] + q

m2c2

h̄2 Φ(~x, t)Ψ(~x, t)
[

Ψ(~x, t)
Ψ0

]2(q−1)

+∂µ[Φ(~x, t)∂µΨ(~x, t)]− [∂µΦ∗(~x, t)][∂µΨ∗(~x, t)] + q
m2c2

h̄2 (109)

Φ∗(~x, t)Ψ∗(~x, t)
[

Ψ∗(~x, t)
Ψ0

]2(q−1)

+ ∂µ[Φ∗(~x, t)∂µΨ∗(~x, t)]

}
,

where the total derivative terms are relevant for q 6= 1 (contrary to what happens in the linear case) [86].
One should notice that the above Lagrangian density presents higher-order derivatives, as compared
to the one of Equation (41), i.e., it depends on the fields Ψ(~x, t) and Φ(~x, t), as well as on their first and
second derivatives,

L ≡ L
(
Ψ, ∂µΨ, ∂µ∂νΨ, Φ, ∂µΦ, ∂µ∂νΦ, Ψ∗, ∂µΨ∗, ∂µ∂νΨ∗, Φ∗, ∂µΦ∗, ∂µ∂νΦ∗

)
. (110)

In this case, the Euler–Lagrange equations should take into account higher-order terms, in such
a way that for the field Φ, one has [111,112],

∂L
∂Φ
− ∂µ

[
∂L

∂(∂µΦ)

]
+ ∂µ∂ν

[
∂L

∂(∂µ∂νΦ)

]
= 0. (111)

Substituting the Lagrangian density of Equation (109) in the above Euler–Lagrange equation,
one obtains the NLKGE of Equation (107); carrying out the same procedure in the Euler–Lagrange
equation for the field Ψ,

∂L
∂Ψ
− ∂µ

[
∂L

∂(∂µΨ)

]
+ ∂µ∂ν

[
∂L

∂(∂µ∂νΨ)

]
= 0, (112)

one obtains an additional equation for the field Φ,

∇2Φ(~x, t) =
1
c2

∂2Φ(~x, t)
∂t2 + q(2q− 1)

m2c2

h̄2 Φ(~x, t)
[

Ψ(~x, t)
Ψ0

]2(q−1)

. (113)
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The equation above becomes the complex conjugate of Equation (104) for q → 1 through the
identification Φ(~x, t) = Ψ∗(~x, t); substituting the q-exponential of Equation (6) in Equation (113),
one finds,

Φ(~x, t)
Φ0

=

{
expq

[
i
h̄
(~p ·~x− Et)

]}−(2q−1)
=

[
Ψ(~x, t)

Ψ0

]−(2q−1)

. (114)

One important aspect of Equation (113) may be seen by substituting the above solutions for Ψ(~x, t)
and Φ(~x, t) in order to reproduce the same energy-momentum relation of Equation (105), for all q.

The NLKGE of Equation (104) has attracted some interest recently, and it was shown to be
directly related to the hypergeometric differential equation, being derived from the latter, through
mathematical manipulations [90]. Moreover, by introducing a dissipative term in Equation (104),
a nonlinear generalization of the celebrated telegraph equation was proposed [113].

6. Conclusions and Perspectives

Inspired by q-statistics, new types of nonlinear quantum equations were proposed recently, which
included the Schroedinger, Klein–Gordon and Dirac equations for a free particle. These generalizations
present nonlinear terms, characterized by exponents depending on an index q, in such a way that
the standard linear equations are recovered in the limit q → 1. This review focused mostly on
recent advances for the nonlinear Schroedinger equation, although some results obtained for the
Klein–Gordon and for a class of linear nonhomogeneous Schroedinger equations were also discussed.

Interestingly, in the case of a free particle, the nonlinear equations discussed herein present
a common, soliton-like, traveling solution, which is written in terms of the q-exponential function
that naturally emerges within nonextensive statistical mechanics. Such a solution, called the q-plane
wave, preserves the corresponding well-known Einstein energy-momentum relation in both the
Schroedinger and Klein–Gordon cases, for arbitrary values of q; in the first case, the Planck and the de
Broglie relations are also preserved. Other solutions found recently in the literature for the nonlinear
Schroedinger in both cases of a free particle, as well as for a particle in the presence of well-known
potentials were also discussed. In this latter case, for an infinite potential well, solutions were found
that may be relevant for systems where one finds a low-energy particle localized in the central region
of a confining potential.

A common difficulty in all of these equations concerns the necessity for an additional field (or extra
wave function) in order to fulfill the continuity equation. This conclusion was reached by means of
a classical field theory, showing that besides the usual Ψ(~x, t), a new field Φ(~x, t) should be introduced;
this latter field becomes Ψ∗(~x, t) only when q→ 1.

A class of linear nonhomogeneous Schroedinger equations, characterized by position-dependent
masses, which need the extra field Φ(~x, t) in order to fulfill a continuity equation, is also discussed.
Interestingly, in this case, an appropriate transformation connecting Ψ(~x, t) and Φ(~x, t) was proposed,
leading to the possibility for finding a connection between these fields in the nonlinear cases, which
remains as an open problem.

Finally, the solutions presented herein are potential candidates for applications to nonlinear
excitations in many physical systems, like plasmas, nonlinear optics, graphene structures, as well as in
shallow and deep water waves.
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