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Abstract: Alzheimer’s disease (AD) is a degenerative brain disorder leading to memory loss and
changes in other cognitive abilities. The complexity of electroencephalogram (EEG) signals may help
to characterise AD. To this end, we propose an extension of multiscale entropy based on variance
(MSEσ2 ) to multichannel signals, termed multivariate MSEσ2 (mvMSEσ2 ), to take into account both
the spatial and time domains of time series. Then, we investigate the mvMSEσ2 of EEGs at different
frequency bands, including the broadband signals filtered between 1 and 40 Hz, θ, α, and β bands,
and compare it with the previously-proposed multiscale entropy based on mean (MSEµ), multivariate
MSEµ (mvMSEµ), and MSEσ2 , to distinguish different kinds of dynamical properties of the spread
and the mean in the signals. Results from 11 AD patients and 11 age-matched controls suggest
that the presence of broadband activity of EEGs is required for a proper evaluation of complexity.
MSEσ2 and mvMSEσ2 results, showing a loss of complexity in AD signals, led to smaller p-values in
comparison with MSEµ and mvMSEµ ones, suggesting that the variance-based MSE and mvMSE
can characterise changes in EEGs as a result of AD in a more detailed way. The p-values for the
slope values of the mvMSE curves were smaller than for MSE at large scale factors, also showing the
possible usefulness of multivariate techniques.

Keywords: Alzheimer’s disease; complexity; multivariate generalized multiscale entropy; statistical
moments; electroencephalogram

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form
of dementia in the elderly population, affecting intellectual, behavioural, and functional abilities [1–3].
A positive diagnosis of AD allows the patient and his/her family time to be informed about the disease,
to make life and financial decisions, and to plan for the future. In contrast, a negative diagnosis may
reduce worry about memory loss associated with ageing. Moreover, it permits for early treatments of
reversible conditions with similar symptoms (like depression and nutrition or medication problems) [2].
Medical-based diagnosis of AD is not fully reliable and symptoms are frequently dismissed as normal
consequences of healthy ageing. Spinal fluid analysis and signal and image processing methods are
used to increase the confidence of the diagnosis of AD [2,3].

As AD progresses, there are changes in the dynamical brain activity that can be recorded in
electroencephalogram (EEG) signals [1,2]. The EEG is an affordable, portable, and non-invasive tool to
assess brain activity [4]. In addition, in comparison with other non-invasive brain imaging approaches,
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EEG has high temporal resolution and includes essential information about abnormal brain dynamics
in AD subjects [2]. The studies show that AD causes a spectral slowdown and alterations in the
non-linear dynamics of the brain signal [5,6].

A prevailing approach to diagnose of AD is to consider specific frequency bands in EEG, such as
δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–40 Hz) [2,7,8]. AD affects these different
frequency bands in different ways. An increase of power in δ, θ, and γ, and a decrease of power in
higher frequencies α and β have been reported in AD patients in comparison with healthy age-matched
control subjects [2,7–9].

In recent years, because of the non-linearity in the brain, even at the neuronal level [10],
there has been an increasing interest in non-linear techniques for the analysis of EEGs for diagnosis
of AD [1,2,11–13]. One of the most popular non-linear concepts used to assess the dynamical
characteristics of signals is that of entropy [14,15]. This concept measures the uncertainty and
irregularity of a time series [14,15]. Higher entropy normally stands for higher uncertainty, whereas
lower entropy shows more regularity and certainty in a signal [14,16]. Thus, it can be considered as an
indicator of dynamical changes along the temporal evolution of EEG signals.

Entropy approaches have been broadly used to characterise different kinds of signals. However,
they achieve their maxima for signals with no structure (random) and are defined only for a single
temporal scale: the one associated with the original sampling of the time series [17,18]. This can
be considered as a limitation to investigate dynamics at longer time scales. Accordingly, multiscale
entropy (MSE) was proposed to define entropy values for a range of scales to evaluate the complexity
of signals at different time scales [17]. Thus, MSE quantifies signal complexity, which may remain
hidden for basic entropy approaches [19].

Complexity indicates a degree of structural richness [19]. In fact, neither completely regular
(periodic) nor completely irregular (uncorrelated random) time series are truly complex, because none
of them is structurally rich at a global level. Thus, the concept of irregularity and complexity are not
the same. For example, white Gaussian noise (WGN) is more irregular than 1/f noise, although the
latter is more complex. It is in agreement with this fact that the WGN does not have a rich structure
and shows a rapid drop in entropy with an increase in time scale factor [19–21].

The MSE algorithm at the temporal scale factor λ includes two main steps [17]. First, in the
coarse-graining process, the original signal is divided into non-overlapping segments with length λ,
and then the average of each segment is calculated. Second, the sample entropy (SampEn) [15] of the
coarse-grained time series is computed [17].

For multi-channel signals, the MSE algorithms, though powerful and broadly-used, treat
individual time series separately. Therefore, this method is appropriate for the components of
multi-channel time series that are statistically independent. However, real multivariate physiological
signals are simultaneously recorded and the time series are statistically dependent [22,23]. To this end,
multivariate MSE using the mean in the coarse-graining process, named mvMSEµ, has been recently
introduced [22]. The mvMSEµ algorithm was validated on both illustrative benchmark signals and on
real-world multivariate physiological and non-physiological datasets [22,24].

However, the dynamics of the volatility (variance) of a time series over multiple temporal scales
to extract dynamical properties of spread also need to be inspected. To this end, Costa and Goldberger
have recently proposed a modified MSE where the variance is used in the coarse-graining process [25].
The mean- and variance-based MSE would be referred to as MSEµ and MSEσ2 , respectively. MSEσ2 was
used to analyse heartbeat signals from healthy young and older subjects and patients with congestive
heart failure syndrome. It was demonstrated that the dynamics of the volatility of heartbeat signals
obtained from healthy young subjects are highly complex. The results also showed that MSEσ2 values
decrease with ageing and pathology [25].
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EEG irregularity and complexity analyses have been successfully and widely employed and
provide a new view to understand physiological processes in both healthy and pathological conditions
in AD [1,11,13,26–28]. The MSE- and mvMSE-based methods have been successfully used to
characterise biomedical signals to detect different pathological states like epilepsy, schizophrenia,
Parkinson’s disease, and AD [13,29–32].

Escudero et al. used multiscale entropy with a coarse-graining process based on the mean to
characterise EEGs in AD [11]. Later, Morabito et al. analysed EEGs in AD patients with multivariate
entropy techniques based on the mean [13]. However, since the dataset included few subjects and
channels, the results may not be completely reliable [13]. Azami and colleagues used only mvMSEµ

for magnetoencephalograms (MEGs) in AD [32]. They consider five subsets of channels and not all the
channels as a whole. Multiscale approaches using the variance in the coarse-graining process have yet
to be applied to EEG analysis. Therefore, there is a need to investigate the usefulness of MSEσ2 and
mvMSE where the coarse graining process uses variance (mvMSEσ2 ) in comparison with the more
broadly used methods based on mean (MSEµ and mvMSEµ) to characterise EEGs in AD.

The aim of this research is to investigate the first and second moments (mean and variance) for
the coarse-graining process of MSE and mvMSE to characterise EEGs to discriminate age-matched
control subjects from AD patients. We want to evaluate the differences between results obtained by the
multiscale entropy methods and their corresponding multivariate versions. We also test the hypothesis
that AD patients’ signals are less complex than controls’ recordings [13,19]. In addition, the changes
in entropy values for different frequency bands are investigated to understand the effect of AD and
entropy-based methods on each frequency band.

The outline of this paper is as follows. The next section describes the EEG data used in this study
and explains briefly the MSEµ, MSEσ2 , mvMSEµ, and mvMSEσ2 algorithms. Results are presented in
Section 3. The discussions and conclusions are explained in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Subjects

Eleven AD patients (five men; six women; age: 72.5 ± 8.3 years, mean ± standard deviation (SD))
and 11 age-matched control subjects (seven men; four women; age: 72.8 ± 6.1 years, mean ± SD) took
part in this study. All 22 subjects were recruited from the Alzheimer’s Patients’ Relatives Association
of Valladolid, Spain, and fulfilled the criteria of probable AD [33]. The EEG signals were recorded in
the University Hospital of Valladolid, Spain, after all of the subjects had undergone a careful clinical
assessment which included clinical history, neurological and physical examinations, brain scans and
a mini mental state examination (MMSE), as a commonly accepted, simplified, scored form of the
cognitive mental status examination [34].

The average of MMSE scores for the AD patients was 13.1 ± 5.9 points (mean ± SD),
demonstrating that the mean of the disease degree is moderate, but five patients had an MMSE
score below 12 points and, therefore, severe AD dementia. Two subjects were taking lorazepam at
the time of the recording, which may improve the beta activity with therapeutic doses, although no
prominent fast rhythms were seen in the visual inspection of their EEG signals. The other patients did
not use any medication that could be expected to affect the EEG recordings [35,36]. The MMSE score
value for 11 age-matched elderly control subjects without past or present neurological disorders was
30 ± 0. Informed consent was obtained for all 22 subjects and the local ethics committee approved
the study.

2.2. EEG Recordings

More than 5 min of EEG time series were recorded from each subject with a Profile Study Room
2.3.411 EEG equipment (Oxford Instruments) at electrodes F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3,
C4, P3, P4, O1, O2, Fz, Cz, and Pz of the international 10–20 system with a linked ear lobes reference.
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The signals have a sampling frequency of 256 Hz, with a 12-bit analog-to-digital precision. The EEGs
from all 22 subjects were recorded when they were awake and eyes-closed to obtain less noisy signals.
A specialist clinician selected 5 s epochs (1280 sample points) with minimal artefacts to be appropriately
used for analysis. For each subject, 30.0 ± 12.5 (mean ± SD) artefact-free epochs were chosen from
each electrode. Before analysis, all EEG time series were digitally band-pass filtered in both forward
and reverse directions to avoid net phase shift with a Hamming window FIR filter of order 200 and
cut-off frequencies at 1 Hz and 40 Hz to remove residual electromyographic activity.

2.3. Methods

2.3.1. Multiscale Entropy Based on Mean and Variance

MSE methods include two steps: (I) coarse-graining process and (II) calculation of SampEn at
each scale factor.

(I) Assume we have a signal {x1, x2, . . . , xb, . . . , xC} with length C. Each element of the
coarse-grained time series for MSEµ and recently proposed MSEσ2 are respectively calculated as:

µyi
(λ) =

1
λ

iλ

∑
b=(i−1)λ+1

xb 1 ≤ i ≤
⌊

C
λ

⌋
= N (1)

σ2
yi

(λ) =
1
λ

iλ

∑
b=(i−1)λ+1

(xb − µyi
(λ))

2
1 ≤ i ≤

⌊
C
λ

⌋
= N (2)

where λ, y = {y1, y2, . . . , yN}, and N denote the scale factor, the coarse-grained signal, and
its length, respectively [17,25]. In fact, the coarse-grained time series of MSEµ and MSEσ2 are
respectively the mean and variance values of consecutive sample points [17,25]. Note that
the coarse-graining process based on the mean and variance start from scale factor 1 and 2,
respectively [17,25].

(II) At each scale factor, the SampEn of the coarse-grained signal y = {y1, y2, . . . , yN} is calculated
in the next step. For the sake of conciseness, here, we use yi for both the coarse-grained
signals σ2

yi
(λ) and µyi

(λ). At each time t of y, a vector Ym
t = {yt, yt+1, . . . , yt+m−2, yt+m−1}

for t = 1, 2, . . . , N−(m−1), including the m-th subsequent values is constructed, where m, named
embedding dimension, stands for how many samples are contained in each vector. Next,
the distance between such vectors as the maximum difference of their corresponding scalar
components, d

[
Ym

t1
, Ym

t2

]
= max

{∣∣∣Ym
t1+k − Ym

t2+k

∣∣∣ : 0 ≤ k ≤ m− 1 and t1 6= t2

}
are calculated.

A match happens when the distance d
[
Ym

t1
, Ym

t2

]
is smaller than a predefined tolerance r.

The probability Bm(r) shows the total number of m-dimensional matched vectors [15]. Similarly,
Bm+1(r) is defined for embedded dimension of m + 1. Finally, the SampEn is defined as follows [15]:

SampEn(y, m, r) = − ln
(

Bm+1(r)/Bm(r)
)

(3)

where m and r for SampEn were, respectively, chosen as 2, and 0.15 multiplied by the SD of the
original time series following recommendations in [15].

2.3.2. Multivariate Multiscale Entropy Based on Mean and Variance

Like MSE, mvMSE includes two main steps: (I) coarse-graining process and (II) calculation of
multivariate SampEn (mvSE) at each scale factor.
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(I) Assume we have a p-channel (multivariate) time series Z =
{

zq,b

}C

b=1
, q = 1, . . . , p, where C is

the length of each channel’s signal. Each element of the coarse-grained time series is calculated
as follows:

µuq,i
(λ) =

1
λ

iλ

∑
b=(i−1)λ+1

zq,b 1 ≤ i ≤
⌊

C
λ

⌋
= N, 1 ≤ q ≤ p (4)

where λ is the time scale factor [17,22,37]. As an extension of MSEσ2 [25] to multi-channel signals,
we propose to use variance, instead of mean value, in the coarse-graining process as follows:

σ2
uq,i

(λ) =
1
λ

iλ

∑
b=(i−1)λ+1

(zq,b − µuq,i
(λ))

2
1 ≤ i ≤

⌊
C
λ

⌋
= N, 1 ≤ q ≤ p (5)

(II) Second, for the defined scale factor λ, the mvSE of the coarse-grained signal is calculated [24,37,38].
To calculate the mvSE, multivariate embedded vectors are initially generated [24]. In [39],
the Takens embedding theorem for multivariate concept is described. Using the p-channel
signal U =

{
uq,i
}q=p, i=N

q=1, i=1 where N is the length of each coarse-grained time series
{

uq
}p

q=1,
the multivariate embedded reconstruction is defined as:

Um(i) = [u1,i, u1,i+τ1 , . . . , u1,i+(m1−1)τ1
, u2,i, u2,i+τ2 , . . . , u2,i+(m2−1)τ2

, . . . , up,i, up,i+τp , . . . , up,i+(mp−1)τp ] (6)

where m = [m1, m2, . . . , mp] and τ = [τ1, τ2, . . . , τp] are the embedding and the time lag vectors,
respectively.

For p-variate time series
{

uq
}p

q=1, the mvSE algorithm, as a natural extension of standard SampEn,
is described as follows [24]:

1. Form multivariate embedded vectors Um(i) ∈ Rm where i = 1, 2, . . . , N − n and n =

max{m} × max{τ}.
2. Calculate the distance between any two composite delay vectors Um(i) and Um(j) as the

maximum norm.
3. For a given Um(i) and a threshold r, count the number of instances Pi where d[Um(i), Um(j)] ≤ r,

i 6= j. Next, calculate the frequency of occurrence as φm
i (r) =

1
N−n Pi and define a global quantity

φm(r) = 1
N−n

N−n
∑

i=1
φm

i (r).

4. Extend the dimensionality of the multivariate delay vector in (6) from m to (m + 1) (keep the
dimension of the other variables unchanged).

5. Repeat steps 1–4 and find φ
(mq+1)
i (r). Next, calculate φ

(m+1)
i (r) which denotes the average over

all n of φ
(mq+1)
i (r). Finally, find φ

(m+1)
i (r) which stands for the average over all i of φi(r) in an

(m + 1)-dimensional space.
6. Finally, mvSE is defined as:

mvSE(Z, m,τ, r) = − ln

(
φ(m+1)(r)

φm(r)

)
(7)

where mk, τk, and r for all of the approaches were, respectively, chosen as 2, 1, and 0.15 multiplied
by the SD of the original time series according to [15,24]. Note that the number of sample points
is at least 10m, or preferably at least 30m, to robustly estimate SampEn and mvSE, according
to [24,40,41].



Entropy 2017, 19, 31 6 of 17

Since multivariate time series may have different amplitude ranges, the distances calculated from
embedded vectors obtained with Takens embedding theorem may be dominated by components of
the vectors coming from the time series with the largest amplitudes. Thus, we scale all of the data
channels to the same amplitude range and normalise each data channel to unit SD so that the total
variation becomes equal to the number of channels or variables [24].

2.4. Experimental Procedures

In addition to the original EEG signals band-pass filtered between 1 Hz and 40 Hz, we investigate
the MSEµ, mvMSEµ, MSEσ2 , and mvMSEσ2 on different EEG frequency bands, including θ, α, and β.
Note that δ and γ, respectively, have too low and high frequency to be considered here based on the
fact that the MSEµ and mvMSEµ methods at scale factor λ can be considered as a low-pass filter with
cut-off frequency fs

2λ [42].
Another powerful strategy to discriminate the controls from AD subjects is to use the slope values

as features of the MSE and mvMSE profiles [11]. The MSE and mvMSE profiles, showing, respectively,
the SampEn and mvSE values of each coarse-grained time series versus the scale factor, were visually
inspected to determine the range of scales over which the slope would be calculated. A nonparametric
test, namely the Mann–Whitney U-test, was used to evaluate the differences between results for AD
patients versus controls, as the entropy values at each scale factor did not follow a normal distribution.
The scales with the p-values between 0.01 and 0.05 (significant), and less than 0.01 (very significant)
are shown with + and *, respectively, in this study.

3. Results

3.1. Global Evaluation of Multivariate and Univariate Multiscale Entropies

The results obtained by the MSEµ, mvMSEµ, MSEσ2 , and mvMSEσ2 methods are, respectively,
shown in Figures 1–4. For each of Figures 1–4, (a)–(d) show the results at frequency bands 1–40 Hz,
θ, α, and β, respectively. As can be seen in (b)–(d) of Figures 1–4, the results obtained at frequency
bands θ, α, and β do not show that controls’ signals are more complex than AD patients’ ones. This fact
suggests that complexity changes are best highlighted considering broadband activity.
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In Figures 1a and 2a, the profiles of the mvMSEµ and mvMSEµ are different for the control
individuals and AD patients at short- and long-time scale factors. In comparison with the AD group,
controls’ signals have more irregularity at short-time scales, whereas the AD patients’ time series are
more irregular at long-time scales.

Comparing Figure 1 with Figure 2 demonstrates that mvMSEµ highlights differences between
groups at individual scales better than the averaging of univariate MSEµ profiles. However,
the opposite seems to happen for MSEσ2 (Figure 3) when compared with mvMSEσ2 (Figure 4).
This might be because the variance coarse-grained sequences have too little variability and the
multivariate implementation leads to values that are too low (notice that the output values are in
1/100s of the unit).
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The results obtained using the variance-based coarse graining process (Figures 3a and 4a), unlike
the mean-based ones (Figures 1a and 2a), show that for all the scale factors, the controls’ EEGs
have a higher complexity. This is in agreement with findings that controls’ time series are more
complex than AD patients’ [11,19,25,32,35,38,43,44]. Of note is that the ranges of entropy values
for Figures 1 and 2, and similarly Figures 3 and 4, indicate that the larger the number of channels,
the smaller the multivariate entropy values. For more information, please refer to Appendix A.

The p-values for MSEσ2 - and mvMSEσ2 -based profiles show that MSEσ2 leads to significant
differences at all scale factors, while the significant differences based on mvMSEσ2 are seen at scale
factors 8 and 10. In comparison with MSEµ, MSEσ2 discriminates better AD group and controls,
while compared with mvMSEσ2 , mvMSEµ discriminates better these two groups. It shows that the
mean- and variance-based complexity measures can complement each other to characterise EEGs
in AD. It is worth noting that the results obtained by different values of r (0.2, 0.25, and 0.3) and m
(1 and 2) employed in other complexity studies are similar to our results [11,32,44,45].

Note that all channels are considered as a multivariate whole for multivariate entropy techniques
although for the univariate ones, the entropy value is computed for each channel. Since the average
is reported for MSE-based methods, the results are probably expected to have lower coefficients
of variations, although these methods cannot take into account the dynamics across the channels
(spatial domain).

In the light of a recently published article providing guidelines on the interpretation of MSEµ

results of brain signals [46], we evaluated all MSE and mvMSE methods on 40 different univariate
and uncorrelated multivariate WGN time series band-pass filtered at 1–40 Hz, 4–8 Hz, 8–13 Hz, and
13–30 Hz, to investigate whether the entropy profiles of brain signals are linked to their power content.
The length of the time series and the number of channels of the filtered multivariate WGN were
respectively 1280 sample points (equal to the length of the EEG time series) and 16 (equal to the
number of channels of EEG time series), and the parameter values for the multiscale methods were
equal to those used for the EEG dataset. The results, shown in Figures 1–4, show that the shape
of MSEµ and MSEσ2 curves are linked to the power spectral density of the corresponding filtered
signals. In fact, to some extent, the MSE curves are determined by the (low and high cut-offs of the)
filtering process, especially for frequency bands 4–8 Hz, 8–13 Hz, and for 13–30 Hz to a lesser extent.
However, it is important to note that the entropy profiles for EEG signals of AD patients and controls
do not overlap with the curves of the filtered WGN at most scale factors for the frequency band of
1–40 Hz. It also evidences the need to have broadband EEGs, instead of narrow band activity, for the
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evaluation of multiscale complexity. In contrast with the results of univariate entropy techniques,
the mvMSEµ- and mvMSEσ2 -based curves for AD patients and controls have clearly dissimilar shapes
with those for filtered uncorrelated multichannel WGN, suggesting that the multivariate entropy-based
values of AD patients’ and controls’ time series are completely different to those of filtered uncorrelated
sixteen-channel WGN.

The computation times of the MSEµ, mvMSEµ, MSEσ2 , and mvMSEσ2 methods for one of the
16-channel AD signals with the length of 1280 sample points are shown in Table 1. Note that the
running time for the MSE-methods is the sum of computation time values for each of the 16 channels.
In this study, the simulations have been carried out using a PC with Intel (R) Xeon (R) CPU, E5420,
2.5 GHz and 8-GB RAM by MATLAB R2010a. Since the MSEσ2 and mvMSEσ2 start from scale factor 2
and SampEn has a computational cost of O(N2), the computation time of this kind of algorithms is
noticeably smaller than that of the MSEµ or mvMSEµ algorithms. The mvMSE methods deal with both
the spatial and time domains, albeit the MSE algorithms consider only the time domain. Thus, as can be
seen in Table 1, the MSE techniques are significantly faster than their corresponding mvMSE methods.

Table 1. The computation time of the univariate and multivariate multiscale entropy based on the
mean and variance.

MSEµ mvMSEµ MSEσ2 mvMSEσ2

4.77 s 21.78 s 2.4 s 8.05 s

3.2. Regional Evaluation with Univariate Metrics

To evaluate the complexity of the signal of each channel of AD patients’ and controls’ EEGs,
we employ univariate MSE methods. The MSEµ and MSEσ2 values and their p-values for each channel
of EEGs, band-pass-filtered between 1 and 40 Hz, are presented in Figures 5 and 6, respectively.
The p-values show the superiority of MSEσ2 over MSEµ for characterising AD. Moreover, the lowest
p-values for MSEσ2 that obtained by the channels O1, O2, and P3 were equal to 0.0058, 0.0086,
and 0.0087, respectively, in agreement with [11].
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Figure 5. Plots illustrating the mean ± SD (as error bars) of the MSEµ values computed from 11 AD
and 11 control subjects for each channel of 1–40 Hz band-pass-filtered EEG signals. Sixteen electrodes
of the international 10–20 system were analysed. (a) C3; (b) C4; (c) F3; (d) F4; (e) F7; (f) F8; (g) Fp1;
(h) Fp2; (i) O1; (j) O2; (k) P3; (l) P4; (m) T3; (n) T4; (o) T5; and (p) T6. The scales with the p-values
between 0.01 and 0.05, and less than 0.01 are shown with + and *, respectively.
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Figure 6. Plots illustrating the mean ± SD (as error bars) of the MSEσ2 values computed from 11 AD
and 11 control subjects for each channel of 1–40 Hz bandpass filtered EEG signals. Sixteen electrodes
of the international 10–20 system were analysed. (a) C3; (b) C4; (c) F3; (d) F4; (e) F7; (f) F8; (g) Fp1;
(h) Fp2; (i) O1; (j) O2; (k) P3; (l) P4; (m) T3; (n) T4; (o) T5; and (p) T6. The scales with the p-values
between 0.01 and 0.05, and less than 0.01 are shown with + and *, respectively.

3.3. Features (Slopes) from Univariate and Multivariate Multiscale Profiles

As mentioned before, a powerful strategy to distinguish different kinds of dynamics consists in
using the slopes as features from multivariate and univariate multiscale entropy profiles. As can be
seen in Figures 1a and 2a, for MSEµ and mvMSEµ methods, the curves increase until a scale factor of 4.
Then, the slope decreases and the SampEn and mvSE values are nearly constant or decrease slightly.
Therefore, we can divide each of the MSE and mvMSE curves into two segments: (I) the first part
corresponds to the steep increasing slope (small scale factors, i.e., 1 ≤ λ ≤ 4), and (II) the second one
contains the scale factors in which the slope of the SampEn and mvSE values is smoother (large scale
factors, i.e., 5 ≤ λ ≤ 10). For MSEσ2 and mvMSEσ2 profiles, because the curves are always ascending
and their slope values do not change noticeably, we consider one slope from the scale factor 2–10
(the entropy values for MSEσ2 and mvMSEσ2 methods are undefined at a scale factor of 1). Note that
the slope values of both parts were calculated based on the least-square approach.

Table 2 shows the average ± SD of slope values of the MSE and mvMSE profiles for small and
large time scales. We also calculate the p-values of the Mann–Whitney U-test to investigate whether
there is any significant difference between the AD and control groups. Like Figures 1–6, the scales with
the p-values between 0.01 and 0.05, and less than 0.01, are denoted by + and *, respectively. For small
scale factors, no significant differences between both groups can be found with the MSEµ and mvMSEµ,
whereas the differences between these groups are significant (MSEµ) and very significant (mvMSEµ)
when we consider the large scale factors. This demonstrates the importance of mvMSE method
to characterise EEG signals in AD. Moreover, both the MSEσ2 and mvMSEσ2 methods lead to the
significant differences for AD patients and controls.

The slopes were also computed for each channel to investigate which channels discriminate better
the two subject groups. All results at scale factors 1 ≤ λ ≤ 4 did not lead to significant differences.
Table 3 summarises the average± SD of slope values of the MSEµ profiles with scale factors 5 ≤ λ ≤ 10.
Table 3 also shows that the p-values for all channels at large scale factors leads to (very) significant
differences for several channels. The average ± SD of slope values for MSEσ2 curves are shown in
Table 4. The p-values derived by electrodes O1, O2, F4, P3, and T5 for both the MSEµ with scale factors
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5 ≤ λ ≤ 10 and MSEσ2 profiles are (very) significant. The p-values for F4 and O1 are smaller than 0.05
for MSEµ with scale factors 5 ≤ λ ≤ 10, while electrode O2 leads to the significant difference using the
MSEσ2 method. This suggests that variance- and mean-based MSE offer complementary approaches
to characterise AD.

Table 2. Average ± SD of slope values of the MSE and mvMSE profiles, and p-values and classification
accuracies for AD patients versus controls over all channels and subjects. The scales with the p-values
between 0.01 and 0.05, and less than 0.01 are shown with + and *, respectively.

Method AD Patients Controls p-Value Classification Ratio

MSEµ (1 ≤ λ ≤ 4) 0.4107 ± 0.0226 0.4185 ± 0.0238 0.3933 63.64%
MSEµ (5 ≤ λ ≤ 10) + 0.0022 ± 0.0195 −0.0216 ± 0.0240 0.0215 72.73%
MSEσ2 (2 ≤ λ ≤ 10) + 0.1130 ± 0.0154 0.1301 ± 0.0137 0.0151 72.73%
mvMSEµ (1 ≤ λ ≤ 4) 0.0074 ± 0.0088 0.0077 ± 0.0092 0.5114 31.82%

mvMSEµ (5 ≤ λ ≤ 10) * −0.0048 ± 0.0037 −0.0099 ± 0.0033 0.0071 72.73%
mvMSEσ2 (2 ≤ λ ≤ 10) + 0.0030 ± 0.0009 0.0041 ± 0.0012 0.0302 63.64%

Table 3. Average ± SD of slope values of the MSEµ profiles and p-values for controls versus AD
patients at scale factors (5 ≤ λ ≤ 10) for each channel. The scales with the p-values between 0.01 and
0.05, and less than 0.01 are shown with + and *, respectively.

Electrode AD Patients Controls p-Value

C3 −0.006 ± 0.0302 −0.0360 ± 0.0356 0.0762
C4 −0.018 ± 0.0264 −0.0160 ± 0.0472 0.8955
F3 −0.001 ± 0.0171 −0.0209 ± 0.0238 0.0878

F4 * 0.0076 ± 0.0244 −0.0318 ± 0.0220 0.0031
F7 0.0018 ± 0.0219 −0.0206 ± 0.0317 0.1150

F8 + −0.007 ± 0.0285 −0.0279 ± 0.0149 0.0418
Fp1 −0.001 ± 0.0174 −0.0136 ± 0.0443 0.1007
Fp2 0.0029 ± 0.0115 −0.0099 ± 0.0378 0.0660
O1 * 0.0162 ± 0.0285 −0.0306 ± 0.0256 0.0031
O2 + 0.0194 ± 0.0277 −0.0136 ± 0.0415 0.0418
P3 + 0.0276 ± 0.0238 −0.0040 ± 0.0453 0.0488
P4 0.0177 ± 0.0303 −0.0151 ± 0.0399 0.0660
T3 −0.019 ± 0.0379 −0.0267 ± 0.0390 0.8438
T4 −0.029 ± 0.0496 −0.0324 ± 0.0297 0.7427

T5 + 0.0139 ± 0.0278 −0.0246 ± 0.0312 0.0126
T6 0.0120 ± 0.0361 −0.0213 ± 0.0494 0.0660

Table 4. Average ± SD of slope values of the MSEσ2 profiles and p-values for controls versus AD
patients at scale factors (λ ≤ 10) for each channel. The scales with the p-values between 0.01 and 0.05,
and less than 0.01 are shown with + and *, respectively.

Electrode AD Patients Controls p-Value

C3 + 0.1163 ± 0.0178 0.1296 ± 0.0119 0.0488
C4 0.1213 ± 0.0186 0.1289 ± 0.0135 0.2643
F3 0.1127 ± 0.0127 0.1257 ± 0.0173 0.0660

F4 + 0.1139 ± 0.0164 0.1278 ± 0.0123 0.0418
F7 0.1161 ± 0.0133 0.1273 ± 0.0204 0.1891
F8 0.1165 ± 0.0183 0.1326 ± 0.0154 0.0569

Fp1 0.1079 ± 0.0212 0.1253 ± 0.0182 0.1486
Fp2 0.1085 ± 0.0148 0.1226 ± 0.0214 0.1310
O1 + 0.1080 ± 0.0186 0.1342 ± 0.0208 0.0126
O2 * 0.1078 ± 0.0195 0.1358 ± 0.0219 0.0071
P3 + 0.1023 ± 0.0193 0.1231 ± 0.0183 0.0356
P4 + 0.1038 ± 0.0180 0.1255 ± 0.0201 0.0215
T3 0.1267 ± 0.0218 0.1406 ± 0.0201 0.1486
T4 0.1301 ± 0.0314 0.1389 ± 0.0210 0.4307

T5 + 0.1069 ± 0.0203 0.1307 ± 0.0215 0.0418
T6 + 0.1091 ± 0.0216 0.1327 ± 0.0187 0.0256
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We also classified the controls versus AD subjects using a naive Bayes method [47]. The slope
values across the scale factors were used rather than the entropy values of all scale factors, because
a slope value can be considered as a representative value of a complexity-based curve [11]. We ran
50 repetitions of a 10-fold cross-validation using the WEKA data mining software [48]. The average
classification values are reported in Table 2. As expected intuitively, the highest and lowest classification
accuracies are associated with the largest and smallest p-values, respectively.

4. Discussion and Conclusions

4.1. Global Evaluation of Multivariate and Univariate Multiscale Entropies

We compared the ability of MSEµ, mvMSEµ, MSEσ2 , and mvMSEσ2 to characterise the complexity
of EEG signals in AD. This was done for conventional frequency bands θ, α, and β, and also for the
broadband EEG signals after band-pass filtering between 1 and 40 Hz. The results obtained for
frequency bands θ, α, and β were in contradiction with the widely reported higher complexity in
control subjects than in AD patients, which could nevertheless be observed when estimating the
complexity of the broadband EEGs. This suggests that the presence of broadband activity of EEGs
may be needed for a comprehensive evaluation of complexity with multiscale entropy-based methods.
Furthermore, we have related these findings with a very recent article providing guidelines on the
interpretation of MSE results of brain signals [46] and showed that the profile of multivariate multiscale
entropy of EEG signals at different frequency bands is not determined by the band-pass filtering process
in comparison with the univariate multiscale entropy.

For the MSEµ and mvMSEµ curves, the slope of the curve increasing or decreasing at different
bands can be predicted based on the sampling frequency and the effect of coarse-graining process on
the frequency of signals. Since MSEµ and mvMSEµ at scale factor λ can be considered as a low-pass
filter with cut-off frequency fs

2λ [42], scales 9 and 10, and 4–10 of the broadband analysis corresponds
with α and β, respectively, with θ falling off the range.

The mvMSEµ-based profiles (Figure 2a) were similar to MSEµ-based ones (Figure 1a), although
the crossing point for mvMSEµ results was located at a smaller scale factor compared with that obtained
by MSEµ. These results are in agreement with [11,32,35,38,43,44]. Unlike MSEµ and mvMSEµ, MSEσ2 ,
and mvMSEσ2 of the controls’ EEGs had more complexity values at all scale factors and smaller
p-values. This suggests that both the multivariate and univariate multiscale methods based on the
variance may characterise changes in EEGs in AD patients in a more detailed way than methods based
on the mean.

The irregularity or complexity decrease in the EEG signals of AD patients could be described by
a reduction of dynamical complexity of part of the brain [45]. Nevertheless, the pathophysiological
implications of the reduction of EEGs complexity or irregularity are not quite clear. Among others,
three mechanisms can take into account it: neuronal death, a general effect of lack of neurotransmitter,
and loss of connectivity of local neural networks as a consequence of nerve cell death [12,49]. However,
ageing and age-dependent diseases frequently go together with a broad-ranging loss of physiological
complexity or irregularity [50].

4.2. Regional Evaluation with Univariate Metrics

The mvMSE methods reveal the dynamics across the channels and consider the information
in both the time and spatial domains, while the MSE approaches only consider the time domain.
However, the MSE methods, unlike the mvMSE algorithms, can be used to better understand the
behaviour of each channel separately, which could highlight complexity changes that are specific to
certain electrodes. To this end, we employed MSEσ2 and MSEµ to characterise EEGs in each channel.
The lowest p-values for MSEσ2 and MSEµ were obtained for the channels O1, O2, P3, and P4 and O1,
P3, F3, and F4, respectively. This shows that when MSEµ (or mvMSEµ) cannot distinguish different
types of dynamics of a particular time series (channel), MSEσ2 (or mvMSEσ2 ) may do so, and vice
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versa. It is worth noting that the electrodes with the lowest p-values are similar to most of our previous
research using this database, such as [36,51].

4.3. Features (Slopes) from Univariate and Multivariate Multiscale Profiles

Finally, we studied the slope values of MSE and mvMSE profiles to check whether they could be
used to distinguish AD patients from controls. The p-values for the slopes of the complexity curves
showed the importance of this tool to discriminate different kinds of dynamics and demonstrated when
the differences between AD patients’ and controls’ signals at some scale factors are not significant,
their slopes of complexity curves may lead to significant differences. At small scale factors, significant
differences were not found with the mean coarse-gaining-based approaches, while the differences
between these groups were significant (MSEµ) and very significant (mvMSEµ) when the large scale
factors were considered. This also illustrates the prominence of the mvMSEµ approach over MSEµ.
In addition, significant differences between AD patients and controls were found with both the MSEσ2

and mvMSEσ2 . The p-values at electrodes O1, O2, F4, P3, and T5 for both the MSEµ and MSEσ2 were
significant or very significant.

4.4. Limitations

In spite of the promising results aforementioned, the number of subjects in this pilot study was
relatively small. To ascertain the usefulness of these methods, these novel signal processing approaches
should be used on a larger database of AD patients and controls subjects, potentially including subjects
with mild cognitive impairment. Moreover, the subjects had their eyes closed during the recording of
the EEG signals to obtain less noisy signals. However, the eyes closed condition increases frequency
content in the alpha range. This increase could have induced a bias in the findings, especially when
the alpha range was specifically studied. Thus, investigations under the eyes open condition are also
required. In addition, the detected regularity increase in the EEG might not be exclusive to AD and
supplementary work should be carried out to analyse whether these EEG complexity changes also
happen in other types of dementia. The area under the complexity profiles is another potential feature
of interest for future studies. Finally, a comprehensive comparison among all employed non-linear
techniques should be done in the future.

5. Conclusions

In this pilot study, the ability of MSEµ, mvMSEµ, MSEσ2 , and mvMSEσ2 to characterise the
complexity of different frequency bands of EEG signals in AD was investigated. MSEµ and mvMSEµ,
MSEσ2 , and mvMSEσ2 quantify the dynamical properties of average and spread, respectively, over
multiple time scales. They extract different kinds of information from signals. The results indicated
that when MSEµ or mvMSEµ cannot distinguish different types of dynamics of a particular time
series, MSEσ2 or mvMSEσ2 may do so, and vice versa. The multivariate entropy methods may lead to
more significant differences between groups by taking into account both the spatial and time domains.
However, they cannot characterise the multivariate time series for single channels. Our results
also evidenced that the presence of broadband activity in EEGs is required for a comprehensive
evaluation of complexity with univariate and multivariate multiscale entropy approaches. From a
clinical perspective, MSEσ2 and mvMSEσ2 results were associated with a loss of complexity in AD
time series and showed that the variance-based MSE and mvMSE better discriminate the AD patients’
signals from the controls’ ones in comparison with mean-based multiscale methods. The p-values for
the slope values of mvMSE curves were smaller than for MSE, showing the possible usefulness of
multivariate approaches. Overall, our results support the relevance of multivariate and univariate
multiscale complexity analyses for the characterisation of EEG signals in AD.
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Appendix A

Sample entropy and multivariate sample entropy are used in the second step of the algorithms to
quantify the complexity of univariate and multivariate time series, respectively. Sample entropy is
based on the conditional probability that sequences close to each other for m consecutive data points
will also be close to each other when one more point is added to each sequence. Thus, the proportion of
unseen, new samples over the number of samples included in the previous pattern for the embedding
dimension m = 2 is 50%. However, in multivariate sample entropy, multivariate embedded vectors are
initially generated with the length of m1 + m2 + ... + mp, where p denotes the number of channels of a
time series. For example, for a trivariate time series with the embedding dimension m = [2, 2, 2], the
length of embedded vectors is 6. Then, the conditional probability that sequences with the embedding
dimension m = [2, 2, 2] close to each other for six data points will also be close to each other for seven
data points, associated with the embedding dimensions [2, 2, 3], [2, 3, 2], or [3, 2, 2], is calculated.
Note that the length of the newly embedded vectors is 7. Therefore, the proportion of unseen samples
over the number of total samples in previous patterns for the embedding dimension m = [2, 2, 2] is
16.66%. Likewise, for a four-channel time series with the embedding dimension m = [2, 2, 2, 2], the
proportion of unseen samples over the number of samples of previous patterns is 12.5%. Consequently,
the proportion of new samples decreases proportionally to the number of channels, thus decreasing
the likelihood of the longer new pattern not being a match with the shorter ones.

To investigate the changes in multivariate entropy values when the number of channels increases,
we used an uncorrelated multivariate WGN time series that the number of its channels changes from 1
to 16 and the length of each of them is 1280 samples (equal to the length of EEG time series). Figure A1
shows how the number of channels affects the mvMSE output values. It can be seen that the larger
the number of channels, the smaller the multivariate entropy values, something that agrees with our
results, where the multivariate measures result in lower entropy values.

Entropy 2017, 19, 31 14 of 16 

 

embedding dimension m = [2, 2, 2, 2], the proportion of unseen samples over the number of samples 
of previous patterns is 12.5%. Consequently, the proportion of new samples decreases proportionally 
to the number of channels, thus decreasing the likelihood of the longer new pattern not being a match 
with the shorter ones. 

To investigate the changes in multivariate entropy values when the number of channels 
increases, we used an uncorrelated multivariate WGN time series that the number of its channels 
changes from 1 to 16 and the length of each of them is 1280 samples (equal to the length of EEG time 
series). Figure A1 shows how the number of channels affects the mvMSE output values. It can be seen 
that the larger the number of channels, the smaller the multivariate entropy values, something that 
agrees with our results, where the multivariate measures result in lower entropy values. 

 

Figure A1. Multivariate Multiscale entropy values for the uncorrelated 1- to 16-channel WGN noise 
time series. 

References 

1. Bhat, S.; Acharya, U.R.; Dadmehr, N.; Adeli, H. Clinical neurophysiological and automated EEG-based 
diagnosis of the Alzheimer’s disease. Eur. Neurol. 2015, 74, 202–210. 

2. Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from eeg signals: Where are we 
standing? Curr. Alzheimer Res. 2010, 7, 487–505. 

3. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016, 12, 459–509. 
4. Sanei, S. Adaptive Processing of Brain Signals; John Wiley & Sons: Hoboken, NJ, USA, 2013. 
5. Stam, C. Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative 

disorders. J. Neurol. Sci. 2010, 289, 128–134. 
6. Hornero, R.; Escudero, J.; Fernández, A.; Poza, J.; Gómez, C. Spectral and nonlinear analyses of MEG 

background activity in patients with Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2008, 55, 1658–1665. 
7. Van der Hiele, K.; Vein, A.; Reijntjes, R.; Westendorp, R.; Bollen, E.; Van Buchem, M.; Van Dijk, J.; 

Middelkoop, H. EEG correlates in the spectrum of cognitive decline. Clin. Neurophysiol. 2007, 118, 1931–
1939. 

8. Czigler, B.; Csikós, D.; Hidasi, Z.; Gaál, Z.A.; Csibri, É.; Kiss, É.; Salacz, P.; Molnár, M. Quantitative EEG in 
early Alzheimer’s disease patients—Power spectrum and complexity features. Int. J. Psychophysiol. 2008, 
68, 75–80. 

9. Moretti, D.; Fracassi, C.; Pievani, M.; Geroldi, C.; Binetti, G.; Zanetti, O.; Sosta, K.; Rossini, P.; Frisoni, G. 
Increase of theta/gamma ratio is associated with memory impairment. Clin. Neurophysiol. 2009, 120, 295–303. 

10. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear 
deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on 
recording region and brain state. Phys. Rev. E 2001, 64, 061907. 

11. Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M. Analysis of electroencephalograms in 
Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091. 

Figure A1. Multivariate Multiscale entropy values for the uncorrelated 1- to 16-channel WGN noise
time series.



Entropy 2017, 19, 31 15 of 17

References

1. Bhat, S.; Acharya, U.R.; Dadmehr, N.; Adeli, H. Clinical neurophysiological and automated EEG-based
diagnosis of the Alzheimer’s disease. Eur. Neurol. 2015, 74, 202–210. [CrossRef] [PubMed]

2. Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from eeg signals: Where are we
standing? Curr. Alzheimer Res. 2010, 7, 487–505. [CrossRef] [PubMed]

3. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016, 12, 459–509.
4. Sanei, S. Adaptive Processing of Brain Signals; John Wiley & Sons: Hoboken, NJ, USA, 2013.
5. Stam, C. Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative

disorders. J. Neurol. Sci. 2010, 289, 128–134. [CrossRef] [PubMed]
6. Hornero, R.; Escudero, J.; Fernández, A.; Poza, J.; Gómez, C. Spectral and nonlinear analyses of MEG

background activity in patients with Alzheimer’s disease. IEEE Trans. Biomed. Eng. 2008, 55, 1658–1665.
[CrossRef] [PubMed]

7. Van der Hiele, K.; Vein, A.; Reijntjes, R.; Westendorp, R.; Bollen, E.; Van Buchem, M.; Van Dijk, J.;
Middelkoop, H. EEG correlates in the spectrum of cognitive decline. Clin. Neurophysiol. 2007, 118, 1931–1939.
[CrossRef] [PubMed]

8. Czigler, B.; Csikós, D.; Hidasi, Z.; Gaál, Z.A.; Csibri, É.; Kiss, É.; Salacz, P.; Molnár, M. Quantitative EEG in
early Alzheimer’s disease patients—Power spectrum and complexity features. Int. J. Psychophysiol. 2008, 68,
75–80. [CrossRef] [PubMed]

9. Moretti, D.; Fracassi, C.; Pievani, M.; Geroldi, C.; Binetti, G.; Zanetti, O.; Sosta, K.; Rossini, P.; Frisoni, G.
Increase of theta/gamma ratio is associated with memory impairment. Clin. Neurophysiol. 2009, 120, 295–303.
[CrossRef] [PubMed]

10. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear
deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on
recording region and brain state. Phys. Rev. E 2001, 64, 061907. [CrossRef] [PubMed]

11. Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M. Analysis of electroencephalograms in
Alzheimer’s disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091. [CrossRef] [PubMed]

12. Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505.
[CrossRef] [PubMed]

13. Labate, D.; La Foresta, F.; Morabito, G.; Palamara, I.; Morabito, F.C. Entropic measures of EEG complexity
in Alzheimer’s disease through a multivariate multiscale approach. IEEE Sens. J. 2013, 13, 3284–3292.
[CrossRef]

14. Rostaghi, M.; Azami, H. Dispersion entropy: A measure for time series analysis. IEEE Signal Process. Lett.
2016, 23, 610–614. [CrossRef]

15. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [PubMed]

16. Sanei, S.; Chambers, J. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2008.
17. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of complex physiologic time series.

Phys. Rev. Lett. 2002, 89, 068102. [CrossRef]
18. Ahmed, M.; Rehman, N.; Looney, D.; Rutkowski, T.; Mandic, D. Dynamical complexity of human responses:

A multivariate data-adaptive framework. Bull. Pol. Acad. Sci. Tech. Sci. 2012, 60, 433–445. [CrossRef]
19. Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005,

71, 021906. [CrossRef] [PubMed]
20. Silva, L.E.V.; Cabella, B.C.T.; da Costa Neves, U.P.; Junior, L.O.M. Multiscale entropy-based methods for

heart rate variability complexity analysis. Phys. A Stat. Mech. Its Appl. 2015, 422, 143–152. [CrossRef]
21. Fogedby, H. On the phase space approach to complexity. J. Stat. Phys. 1992, 69, 411–425. [CrossRef]
22. Ahmed, M.U.; Mandic, D.P. Multivariate multiscale entropy analysis. IEEE Signal Process. Lett. 2012, 19,

91–94. [CrossRef]
23. Humeau-Heurtier, A. Multivariate refined composite multiscale entropy analysis. Phys. Lett. A 2016, 380,

1426–1431. [CrossRef]
24. Ahmed, M.U.; Mandic, D.P. Multivariate multiscale entropy: A tool for complexity analysis of multichannel

data. Phys. Rev. E 2011, 84, 061918. [CrossRef] [PubMed]

http://dx.doi.org/10.1159/000441447
http://www.ncbi.nlm.nih.gov/pubmed/26588015
http://dx.doi.org/10.2174/156720510792231720
http://www.ncbi.nlm.nih.gov/pubmed/20455865
http://dx.doi.org/10.1016/j.jns.2009.08.028
http://www.ncbi.nlm.nih.gov/pubmed/19729174
http://dx.doi.org/10.1109/TBME.2008.919872
http://www.ncbi.nlm.nih.gov/pubmed/18714829
http://dx.doi.org/10.1016/j.clinph.2007.05.070
http://www.ncbi.nlm.nih.gov/pubmed/17604688
http://dx.doi.org/10.1016/j.ijpsycho.2007.11.002
http://www.ncbi.nlm.nih.gov/pubmed/18093675
http://dx.doi.org/10.1016/j.clinph.2008.11.012
http://www.ncbi.nlm.nih.gov/pubmed/19121602
http://dx.doi.org/10.1103/PhysRevE.64.061907
http://www.ncbi.nlm.nih.gov/pubmed/11736210
http://dx.doi.org/10.1088/0967-3334/27/11/004
http://www.ncbi.nlm.nih.gov/pubmed/17028404
http://dx.doi.org/10.1016/j.clinph.2004.01.001
http://www.ncbi.nlm.nih.gov/pubmed/15203050
http://dx.doi.org/10.1109/JSEN.2013.2271735
http://dx.doi.org/10.1109/LSP.2016.2542881
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.1103/PhysRevLett.89.068102
http://dx.doi.org/10.2478/v10175-012-0055-0
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://www.ncbi.nlm.nih.gov/pubmed/15783351
http://dx.doi.org/10.1016/j.physa.2014.12.011
http://dx.doi.org/10.1007/BF01053799
http://dx.doi.org/10.1109/LSP.2011.2180713
http://dx.doi.org/10.1016/j.physleta.2016.02.029
http://dx.doi.org/10.1103/PhysRevE.84.061918
http://www.ncbi.nlm.nih.gov/pubmed/22304127


Entropy 2017, 19, 31 16 of 17

25. Costa, M.D.; Goldberger, A.L. Generalized multiscale entropy analysis: Application to quantifying the
complex volatility of human heartbeat time series. Entropy 2015, 17, 1197–1203. [CrossRef] [PubMed]

26. Stam, C.; Montez, T.; Jones, B.; Rombouts, S.; Van Der Made, Y.; Pijnenburg, Y.; Scheltens, P. Disturbed
fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin. Neurophysiol. 2005, 116,
708–715. [CrossRef] [PubMed]

27. Mizuno, T.; Takahashi, T.; Cho, R.Y.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Assessment of EEG
dynamical complexity in alzheimer’s disease using multiscale entropy. Clin. Neurophysiol. 2010, 121,
1438–1446. [CrossRef]

28. Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: A review. Entropy 2015, 17,
3110–3123. [CrossRef]

29. Takahashi, T.; Cho, R.Y.; Mizuno, T.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Antipsychotics reverse
abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. Neuroimage 2010, 51,
173–182. [CrossRef] [PubMed]

30. Ouyang, G.; Dang, C.; Li, X. Multiscale entropy analysis of EEG recordings in epileptic rats. Biomed. Eng.
Appl. Basis Commun. 2009, 21, 169–176. [CrossRef]

31. Chung, C.-C.; Kang, J.-H.; Yuan, R.-Y.; Wu, D.; Chen, C.-C.; Chi, N.-F.; Chen, P.-C.; Hu, C.-J. Multiscale entropy
analysis of electroencephalography during sleep in patients with parkinson disease. Clin. EEG Neurosci.
2013. [CrossRef] [PubMed]

32. Azami, H.; Smith, K.; Fernandez, A.; Escudero, J. Evaluation of resting-state magnetoencephalogram
complexity in Alzheimer’s disease with multivariate multiscale permutation and sample entropies.
In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), Milan, Italy, 5–29 August 2015; pp. 7422–7425.

33. McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of
Alzheimer’s disease: Report of the nincds-adrda work group* under the auspices of department of health
and human services task force on Alzheimer’s disease. Neurology 1984, 34, 939. [CrossRef] [PubMed]

34. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive
state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [CrossRef]

35. Abásolo, D.; Escudero, J.; Hornero, R.; Gómez, C.; Espino, P. Approximate entropy and auto mutual
information analysis of the electroencephalogram in alzheimer’s disease patients. Med. Biol. Eng. Comput.
2008, 46, 1019–1028. [CrossRef] [PubMed]

36. Abásolo, D.; Hornero, R.; Espino, P.; Alvarez, D.; Poza, J. Entropy analysis of the EEG background activity in
Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241. [CrossRef] [PubMed]

37. Humeau-Heurtier, A. Multivariate generalized multiscale entropy analysis. Entropy 2016, 18, 411. [CrossRef]
38. Morabito, F.C.; Labate, D.; La Foresta, F.; Bramanti, A.; Morabito, G.; Palamara, I. Multivariate multi-scale

permutation entropy for complexity analysis of alzheimer’s disease EEG. Entropy 2012, 14, 1186–1202.
[CrossRef]

39. Cao, L.; Mees, A.; Judd, K. Dynamics from multivariate time series. Phys. D Nonlinear Phenom. 1998, 121,
75–88. [CrossRef]

40. Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J.
Physiol. Heart Circ. Physiol. 1994, 266, H1643–H1656.

41. Azami, H.; Escudero, J. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for
complexity analysis of multichannel signals. Phys. A Stat. Mech. Its Appl. 2017, 465, 261–276. [CrossRef]

42. Valencia, J.F.; Porta, A.; Vallverdú, M.; Claria, F.; Baranowski, R.; Orlowska-Baranowska, E.; Caminal, P.
Refined multiscale entropy: Application to 24-h holter recordings of heart period variability in healthy and
aortic stenosis subjects. IEEE Trans. Biomed. Eng. 2009, 56, 2202–2213. [CrossRef] [PubMed]

43. Morabito, F.C.; Labate, D.; Bramanti, A.; La Foresta, F.; Morabito, G.; Palamara, I.; Szu, H.H. Enhanced
compressibility of EEG signal in Alzheimer’s disease patients. IEEE Sens. J. 2013, 13, 3255–3262. [CrossRef]

44. Yang, A.C.; Wang, S.-J.; Lai, K.-L.; Tsai, C.-F.; Yang, C.-H.; Hwang, J.-P.; Lo, M.-T.; Huang, N.E.; Peng, C.-K.;
Fuh, J.-L. Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer’s
disease. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2013, 47, 52–61. [CrossRef] [PubMed]

45. Hornero, R.; Abásolo, D.; Escudero, J.; Gómez, C. Nonlinear analysis of electroencephalogram and
magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci. 2009, 367, 317–336. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/e17031197
http://www.ncbi.nlm.nih.gov/pubmed/27099455
http://dx.doi.org/10.1016/j.clinph.2004.09.022
http://www.ncbi.nlm.nih.gov/pubmed/15721085
http://dx.doi.org/10.1016/j.clinph.2010.03.025
http://dx.doi.org/10.3390/e17053110
http://dx.doi.org/10.1016/j.neuroimage.2010.02.009
http://www.ncbi.nlm.nih.gov/pubmed/20149880
http://dx.doi.org/10.4015/S1016237209001222
http://dx.doi.org/10.1177/1550059412475066
http://www.ncbi.nlm.nih.gov/pubmed/23545244
http://dx.doi.org/10.1212/WNL.34.7.939
http://www.ncbi.nlm.nih.gov/pubmed/6610841
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://dx.doi.org/10.1007/s11517-008-0392-1
http://www.ncbi.nlm.nih.gov/pubmed/18784948
http://dx.doi.org/10.1088/0967-3334/27/3/003
http://www.ncbi.nlm.nih.gov/pubmed/16462011
http://dx.doi.org/10.3390/e18110411
http://dx.doi.org/10.3390/e14071186
http://dx.doi.org/10.1016/S0167-2789(98)00151-1
http://dx.doi.org/10.1016/j.physa.2016.07.077
http://dx.doi.org/10.1109/TBME.2009.2021986
http://www.ncbi.nlm.nih.gov/pubmed/19457745
http://dx.doi.org/10.1109/JSEN.2013.2263794
http://dx.doi.org/10.1016/j.pnpbp.2013.07.022
http://www.ncbi.nlm.nih.gov/pubmed/23954738
http://dx.doi.org/10.1098/rsta.2008.0197
http://www.ncbi.nlm.nih.gov/pubmed/18940776


Entropy 2017, 19, 31 17 of 17

46. Courtiol, J.; Perdikis, D.; Petkoski, S.; Müller, V.; Huys, R.; Sleimen-Malkoun, R.; Jirsa, V.K. The multiscale
entropy: Guidelines for use and interpretation in brain signal analysis. J. Neurosci. Methods 2016, 273, 175–190.
[CrossRef] [PubMed]

47. Rish, I. An empirical study of the naive bayes classifier. In IJCAI 2001 Workshop on Empirical Methods in
Artificial Intelligence; IBM: New York, NY, USA, 2001; pp. 41–46.

48. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The weka data mining software:
An update. ACM SIGKDD Explor. Newslett. 2009, 11, 10–18. [CrossRef]

49. Jelles, B.; Van Birgelen, J.; Slaets, J.; Hekster, R.; Jonkman, E.; Stam, C. Decrease of non-linear structure in the
EEG of alzheimer patients compared to healthy controls. Clin. Neurophysiol. 1999, 110, 1159–1167. [CrossRef]

50. Kyriazis, M. Practical applications of chaos theory to the modulation of human ageing: Nature prefers chaos
to regularity. Biogerontology 2003, 4, 75–90. [CrossRef] [PubMed]

51. Abásolo, D.; Hornero, R.; Gómez, C.; García, M.; López, M. Analysis of EEG background activity in
Alzheimer’s disease patients with lempel–ziv complexity and central tendency measure. Med. Eng. Phys.
2006, 28, 315–322. [CrossRef] [PubMed]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jneumeth.2016.09.004
http://www.ncbi.nlm.nih.gov/pubmed/27639660
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1016/S1388-2457(99)00013-9
http://dx.doi.org/10.1023/A:1023306419861
http://www.ncbi.nlm.nih.gov/pubmed/12766532
http://dx.doi.org/10.1016/j.medengphy.2005.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16122963
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Subjects 
	EEG Recordings 
	Methods 
	Multiscale Entropy Based on Mean and Variance 
	Multivariate Multiscale Entropy Based on Mean and Variance 

	Experimental Procedures 

	Results 
	Global Evaluation of Multivariate and Univariate Multiscale Entropies 
	Regional Evaluation with Univariate Metrics 
	Features (Slopes) from Univariate and Multivariate Multiscale Profiles 

	Discussion and Conclusions 
	Global Evaluation of Multivariate and Univariate Multiscale Entropies 
	Regional Evaluation with Univariate Metrics 
	Features (Slopes) from Univariate and Multivariate Multiscale Profiles 
	Limitations 

	Conclusions 
	

