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Abstract: We reconsider the properties and relationships of the interaction information and its
modified versions in the context of detecting the interaction of two SNPs for the prediction of a binary
outcome when interaction information is positive. This property is called predictive interaction, and
we state some new sufficient conditions for it to hold true. We also study chi square approximations
to these measures. It is argued that interaction information is a different and sometimes more natural
measure of interaction than the logistic interaction parameter especially when SNPs are dependent.
We introduce a novel measure of predictive interaction based on interaction information and its
modified version. In numerical experiments, which use copulas to model dependence, we study
examples when the logistic interaction parameter is zero or close to zero for which predictive
interaction is detected by the new measure, while it remains undetected by the likelihood ratio test.

Keywords: predictive interaction; interaction information; logistic interaction; Single Nucleotide
Polymorphism (SNP); copula; Kirkwood approximation and parameter

1. Introduction

The aim of the paper is to review existing measures and to introduce a new measure of interaction
strength of two nominal factors in predicting a binary outcome and to investigate how they perform
for this task. We show that there exist interactive effects that are not detectable by parametric tests,
such as the likelihood ratio test, and we propose a test statistic, which performs much better in
such situations. A specific situation that we have in mind is the case of two Single Nucleotide
Polymorphisms (SNPs) and their joint strength to predict the occurrence of a certain disease as
compared to their individual strengths. We will speak of gene-gene interaction when the prediction
effects of genotypes at two corresponding loci combine non-additively. Thus, rather than aiming
at a simpler task of testing associations that allow for interactions, we focus here on testing the
predictive interaction of two SNPs. We will refer to the phenomenon as the interaction effect rather
than (statistical) epistasis in order to avoid confusion, as the term “epistasis” is frequently used to
mean blocking of one allelic effect by another allele at a different locus (cf. [1]).

There are many methods that aim at detecting gene-gene interaction. We mention Multifactor
Dimensionality Reduction (MDR [2]), Bayesian Epistasis Association Mapping (BEAM [3]),
SNP Harvester (SH [4]), Pairwise Interaction-based Association Mapping (PIAM [5]), Genome Wide
Interaction Search (GWIS [6]), logistic regression and methods based on information measures, such as
information gain or interaction information (cf. [7,8]), among others. We refer to [9,10] for overviews
of the methods used.
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There are problems encountered when applying some of the aforementioned methods. The first
one, which is not generally recognized, is that some methods are designed to detect the dependence
between pairs of genes and a disease and do not distinguish whether the dependence is due to
main effects (genes influencing disease individually) or their interaction (the combined effect of
two genes). Thus, the case with strong main effects and with no or a weak interaction effect is still
frequently referred to as gene-gene interaction. In the paper, we carefully distinguish between main
and interaction effects and discuss situations when interaction can be detected based on the strength of
overall dependence. The second problem is that some of the methods used, such as logistic regression,
are model dependent and define interaction in a model-specific way. Thus, it may happen, as we show,
that genes interacting predictively, as it is understood in this paper, do not interact when modeled, e.g.,
by logistic regression. Logistic regression is thus blind to predictive interaction in such cases. The third
one is that the fact of whether loci are interlinked or not influences the analysis. We show that the
dependence between genes may have profound effects on the strength of interaction and its detection.
A focus is here on information measures and their approximations, as their decompositions allow one
to neatly attribute parts of dependence either to the main effects or to the interaction effect. Let us
note that the problem of the dependency of SNPs to be taken into account is recognized; see, e.g., [11].
We also refer to [12], where the maximal strength of interactions for two-locus models without main
effects is studied. Sensitivity analysis of a biological system using interaction information is discussed
in [13]. The analogous problem of measuring interaction in the Quantitative Trait Loci (QTL) setting
with quantitative response is analyzed in, e.g., in [14].

We study the properties of the modified interaction information introduced by [8]. In particular,
we state new sufficient conditions for the predictive interaction of the pair of genes. We also study
its chi square approximations in the neighborhood of total independence (loci and the outcome are
mutually independent) and in the case when the loci may be interdependent. Plug-in estimators
of the interaction measures are introduced, and we investigate their behavior in parametric models.
This analysis leads us to the introduction of a new test statistic for establishing predictive interaction,
which is defined as a maximum of the information interaction estimator and its modified version.
It is shown that it leads to a test that is superior or on par with the Likelihood Ratio Test (LRT) in all
parametric models considered, and the superiority is most pronounced when logistic interaction is
zero or close to zero. Thus, there are cases when genes interact predictively that are not detected by
LRT. As the detection of weak interactions becomes increasingly important, the proposed method
seems worth studying. The proposal is also interesting from the computational point of view, as
LRT, which is a standard tool to detect interactions in the logistic regression model, does not have a
closed form expression; its calculation is computationally intensive and requires iterative methods.
Our experience shows that the execution of LRT described below is at least fifteen-times longer than
for any test considered based on interaction information. This is particularly important when the
interaction effect has to be tested for a huge number of pairs of SNPs. We do not treat this case, here
leaving it for a separate paper.

The paper is structured as follows. In Section 2, we discuss interaction information measures,
their variants, as well as approximations and the corresponding properties. Parametric approaches
to interaction are examined in Section 3. We also show some links between the lack of predictive
interaction and additive logistic regression (cf. Proposition 7). Moreover, the behavior of the introduced
measures in logistic models for independent and dependent SNPs is studied there. In Section 4, we
investigate the performance of tests based on empirical counterparts of the discussed indices by means
of numerical experiments. An illustrative example of the analysis for a real dataset is also included.
Section 5 concludes the paper.
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2. Measures of Interaction

2.1. Interaction Information Measure

We adopt the following qualitative definition of the predictive interaction of SNPs X1 and X2

in explaining dichotomous qualitative outcome Y. We say that X1 and X2 interact predictively in
explaining Y when the strength of the joint prediction ability of X1 and X2 in explaining Y is (strictly)
larger than the sum of the individual prediction abilities of X1 and X2 for this task. This corresponds to
a synergetic effect between X1 and X2 as opposed to the case when the sum is larger then the strength
of a joint prediction, which can be regarded as a redundancy between X1 and X2.

In order to make this definition operational, we need a measure of the strength of prediction
ability of X in explaining Y where X is either a single SNP: X = Xi or a pair of SNPs: X = (X1, X2).
This can be done in various ways; we apply the information-theoretic approach and use mutual
information to this aim. The Kullback–Leibler distance between P and Q will be denoted by KL(P||Q).
We will consider mass function p corresponding to probability distribution P and use p(xi) and p(xj)

to denote mass functions of X1 and X2, respectively, when no confusion arises. Mutual information
between X and Y is defined as:

I(X; Y) = KL(PXY||PX × PY) = ∑
yk

∑
xi

p(xi, yk) log
( p(xi, yk)

p(xi)p(yk)

)
, (1)

where sums range over all possible values yk of Y and xi of X, p(xi, yk) = P(X = xi, Y = yk),
p(xi) = P(X = xi), p(yk) = P(Y = yk) and PX × PY is the so-called product measure of marginal
distributions of X and Y, defined by PX × PY(xi, yk) = p(xi)p(yk). PX × PY is thus the probability
distribution corresponding to (X̃, Ỹ), where X̃ and Ỹ are independent and have distributions
corresponding to p(xi) and p(yk), respectively. Therefore, mutual information is the Kullback–Leibler
distance between joint distribution and the product of the marginal distributions. Note that if
X = (X1, X2), the value xi in (1) is two-dimensional and equals one of the possible values of (X1, X2).

The motivation behind the definition of I(X; Y) is of a geometric nature and is based on the idea
that if Y and X are strongly associated, their joint distribution should significantly deviate from the
joint distribution of X̃ and Ỹ. In view of this interpretation and taking X = (X1, X2), we define the
strength of association of (X1, X2) with Y as:

I((X1, X2); Y) = KL(PX1,X2,Y||PX1,X2 × PY) (2)

and, analogously, the strengths of individual associations of Xi with Y as:

I(Xi; Y) = KL(PXi ,Y||PXi × PY). (3)

We now introduce the interaction information as (cf. [15,16]):

I I(X1; X2; Y) = I((X1, X2); Y)− I(X1; Y)− I(X2; Y)
= KL(PX1,X2,Y||PX1,X2 × PY)− KL(PX1,Y||PX1 × PY)− KL(PX2,Y||PX2 × PY).

(4)

Thus, in concordance with our qualitative definition above, we say that SNPs X1 and X2

interact predictively in explaining Y when I I(X1; X2; Y) is positive. We stress that the above
definition of interaction is not model dependent in contrast to, e.g., the definition of interaction in a
logistic regression. This is a significant advantage as for model-dependent definitions of interaction,
the absence of such an effect under one model does not necessarily extend to other models. This will
be discussed in greater detail later.
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Let us note that I I(X1; X2; Y) defined above is one of the equivalent forms of interaction
information. Namely, observe that:

I I(X1; X2; Y) = H(X1, X2) + H(X1, Y) + H(X2, Y)− H(X1, X2, Y)− H(X1)− H(X2)− H(Y)
= −I(X1, X2)− I(X1, Y)− I(X2, Y)− H(X1, X2, Y) + H(X1) + H(X2) + H(Y),

(5)

where H(X1, X2) = −∑ij pij log pij is the entropy of X = (X1, X2) with other quantities defined
analogously. This easily follows from noting that I(X; Y) = H(X)+ H(Y)−H(X, Y) (cf. [17], Chapter 2).
The second equality above is actually a restatement of the decomposition of entropy H(X1, X2, Y) in
terms of the values of its difference operator ∆ (cf. [18]). Namely, Formula (4.10) in [18] asserts that
II(X1; X2; Y) = −∆H(X1, X2, Y).

Interaction information is not necessarily positive. It is positive when the strength of association
of (X1, X2) with Y is larger than an additive effect of both X1 and X2, i.e., when X1 and X2 interact
predictively in explaining Y. Below, we list some properties of II(X1; X2; Y).

Proposition 1. (i)

I((X1, X2); Y) = I(X1; Y) + I(X2; Y) + II(X1; X2; Y) (6)

(ii) (X1, X2) are independent of Y if and only if I(X1; Y) = 0, I(X2; Y) = 0 and II(X1; X2; Y) = 0; (iii) We have:

I I(X1; X2; Y) = ∑
xi,xj,yk

p(xi, xj, yk) log
( p(xi, xj, yk)

p(xi, xj)p(xi, yk)p(xj, yk)/p(xi)p(xj)p(yk)

)
(7)

(iv) It holds that:
I I(X1; X2; Y) = I(X1; X2|Y)− I(X1; X2), (8)

where I(X1; X2|Y) is conditional mutual information defined by:

I(X1; X2|Y) = ∑
y

p(y) ∑
xi,xj

p(xi, xj|y) log
p(xi, xj|y)

p(xi|y)p(xj|y)
. (9)

Some comments are in order. Note that (i) is an obvious restatement of (4) and is analogous to
the decomposition of variability in ANOVA models. The proof of (ii) easily follows from (i) after
noting that the independence (X1, X2) of Y is equivalent to KL(PX1,X2,Y||PX1,X2 × PY) = 0 in view
of the information inequality (see [17], Theorem 2.6.3). Whence, if (X1, X2) is independent of Y,
then I((X1, X2); Y) = 0, and thus, also, I(Xi; Y) = 0 for i = 1, 2. In view of (6), we then have that
I I(X1; X2; Y) = 0. The trivial consequence of (i) is that I I(X1; X2; Y) ≥ −[I(X1; Y) + I(X2; Y)]; thus,
when main effects I(Xi; Y) are zero, i.e., Xi are independent of Y, we have I I(X1; X2; Y) ≥ 0, and in
this case, I I(X1; X2; Y) is a measure of association between (X1, X2) and Y.

Part (ii) asserts that in order to check the joint independence of (X1, X2) and Y, one needs to
check that Xi for i = 1, 2 are individually independent with Y, and moreover, interaction information
I I(X1; X2; Y) has to be zero. Part (iii) follows easily from (5).

Part (iv) yields another interpretation of I I(X1; X2; Y) as a change of mutual information
(information gain) when the outcome Y becomes known. This can be restated by saying that
in the case when X1 and X2 are independent, the interaction between genes can be checked by
testing the conditional dependence between genes given Y. This is the source of the methods
discussed, e.g., in [19,20] based on testing the difference of inter-locus associations between cases
and controls. Note however that this works only for independent SNPs, and in the case when X1 and
X2 are dependent, conditional mutual information I(X1; X2|Y) overestimates interaction information.
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Let p̃K be the function appearing in the denominator of (7):

p̃K(xi, xj, yk) =
p(xi, xj)p(xi, yk)p(xj, yk)

p(xi)p(xj)p(yk)
(10)

and P̃K the associated distribution. P̃K is called the (unnormalized) Kirkwood superposition approximation
of P. Note that (7) implies that if the KL distance between P and P̃K is small, then interaction
II(X1; X2; Y) is negligible. Let:

η = ∑
xi,xj,yk

p̃K(xi, xj, yk) (11)

be the Kirkwood parameter. If Kirkwood parameter equals one, then Kirkwood approximation P̃K is
a probability distribution. In general,

PK = P̃K/η (12)

is a probability distribution, which will be called the Kirkwood superposition distribution. We say that
a discrete distribution p has perfect bivariate marginals if the following conditions are satisfied ([21]):

∑
i

p(xi, xj)p(xi, yk)

p(xi)
= p(xj)p(yk) (all j, k)

∑
j

p(xi, xj)p(xj, yk)

p(xj)
= p(xi)p(yk) (all i, k)

∑
k

p(xi, yk)p(xj, yk)

p(yk)
= p(xi)p(xj) (all i, j)

(13)

Note that Condition (13) implies that bivariate marginals of p̃K coincide with those of p(xi, xj, yk).
Now, we state some new facts on the interplay between predictive interaction, the value of the
Kirkwood parameter and Condition (13). In particular it follows that if η < 1, then genes interact
predictively, and the sufficient condition for that is given in Part (iv) below.

Proposition 2. (i) II(X1; X2; Y) ≥ log(1/η), and thus, if η < 1, then II(X1; X2; Y) > 0; (ii) If any of the
conditions in (13) are satisfied then η = 1 and II(X1; X2; Y) ≥ 0; (iii) If any two components of random
vector (X1, X2, Y) are independent, then η = 1; (iv) If for any i, j ∑k p(xi, yk)p(xj, yk)/p(yk) < p(xi)p(xj)

then η < 1.

Part (i) is equivalent to KL(PX1,X2,Y||PK) = II(X1; X2; Y) + log η ≥ 0. The proof of (ii) follows by
direct calculation. Assume that, e.g., the first condition in (13) is satisfied. Then:

η = ∑
xi,xj

p(xi, xj)

p(xi)p(xj)
∑
yk

p(xi, yk)p(xj, yk)

p(yk)
= ∑

xi,xj

p(xi, xj) = 1. (14)

(iii) is a special case of (ii) as the independence of two components of (X1, X2, Y) implies that
a respective condition in (13) holds. Note that the condition in (iv) is weaker than the third equation
in (13), and Part (iv) states that if Xi are weakly individually associated with Y, they either do not
interact or interact predictively.

The usefulness of using the normalized Kirkwood approximation to test for interactions was
recognized by [8]. It is applied in the BOOST package to screen off pairs of genes that are unlikely
to interact. In [7], interaction information is used for a similar purpose; see also [22]. We call:

IIm = KL(PX1,X2,Y||PK) = II(X1; X2; Y) + log η (15)
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modified interaction information, which is always nonnegative. Numerical considerations indicate
that it is also useful to consider:

Ī I = max(II, IIm). (16)

Note that Ī I = II is equivalent to η ≤ 1. In connection with Proposition 2, we note that we also
have another representation of II(X1; X2; Y) in terms of the Kullback–Leibler distance, namely:

II(X1; X2; Y) = KL(PY|X1,X2
||P̄K), (17)

where P̄K is a distribution on values of Y pertaining to p̄K(yk|xi, xj) = p(yk)p(xi|yk)p(xj|yk)/
p(xi)p(xj) and:

KL(PY|X1,X2
||P̄K) = ∑

xi,xj

p(xi, xj)∑
y

p(y|xi, xj) log
p(y|xi, xj)

p̄K(yk|xi, xj)
(18)

The last representation of II(X1; X2; Y) follows from (5) by an easy calculation.

2.2. Other Nonparametric Measures of Interaction

We define:
π(xi, yk) = p(xi, yk)− p(xi)p(yk) (19)

π(xi, xj, yk) = p(xi, xj, yk)− pa(xi, xj, yk), (20)

where:
pa(xi, xj, yk) = p(xi)p(xj, yk) + p(xj)p(xi, yk) + p(yk)p(xi, xj)− 2p(xi)p(xj)p(yk). (21)

Note that bivariate marginals of pa coincide with those of p
(
xi, xj, yk

)
, e.g., ∑k pa (xi, xj, yk

)
=

p
(
xi, xj

)
; however, pa is necessarily positive. We have the following decomposition:

p(xi, xj, yk)− p(xi)p(xj)p(yk) = p(xi)π(xj, yk) + p(xj)π(xi, yk) + p(yk)π(xi, xj) + π(xi, xj, yk). (22)

Thus, the terms π(xj, yk), π(xi, yk) and π(xi, xj) correspond to the first order dependence effects
for p(xi, xj, yk), whereas π(xi, xj, yk) reflects the second order effect. Furthermore, note that the second
order effect is equivalent to the dependence effect when all of the first order effects, including π(xi, xj),
are zero.

Moreover, let:

χ2
X1;Y = ∑

i,k

(p (xi, yk)− p (xi) p (yk))
2

p (xi) p (yk)
= ∑

i,k

π2 (xi, yk)

p(xi)p(yk)
, (23)

χ2
(X1,X2);Y

= ∑
i,j,k

(p(xi, xj, yk)− p(xi, xj)p(yk))
2

p(xi)p(xj)p(yk)
. (24)

and:

χ2
X1;X2;Y = ∑

i,j,k

(
p
(
xi, xj, yk

)
− pa (xi, xj, yk

))2

p(xi)p(xj)p(yk)
= ∑

i,j,k

π2 (xi, xj, yk
)

p(xi)p(xj)p(yk)
. (25)

We have:

Proposition 3. (i) (X1, X2) are independent of Y if and only if π(xi, yk) = 0, π(xj, yk) = 0 and
π(xi, xj, yk) = 0 for any xi, xj, yk.; (ii) The independence of (X1, X2) and Y is equivalent to χ2

X1;Y = 0, χ2
X2;Y = 0

and χ2
X1;X2;Y = 0; (iii) Condition π(xi, xj, yk) = 0 for any xi, xj, yk is equivalent to:

p(xi, xj, yk)

p(xi)p(xj)p(yk)
= αij + βjk + γik (26)
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for some αij, βjk and γik.

Part (i) is checked directly. Note, e.g., that π(xj, yk) = 0; π(xj, yk) = 0; π(xi, xj, yk) = 0 is equivalent
to Xi; Xj are independent of Y; and further, pa(xi, xj, yk) = p(xi, xj)p(yk). Thus, π(xi, xj, yk) = 0 is
equivalent to (X1, X2) being independent of Y. Part (ii) is obvious in view of (i). Note that it is an
analogue of Proposition 1 (ii). Part (iii) is easily checked. This is due to [23].

In the proposition below, we prove a new decomposition of χ2
(X1,X2);Y

, which can be viewed as an

analogue of (6) for the chi square measure. In particular, in view of this decomposition, χ2
X1;X2;Y is a

measure of interaction information. Namely, the following analogue of Proposition 1 (i) holds:

Proposition 4. We have:

χ2
(X1,X2);Y

= χ2
X1;Y + χ2

X2;Y + χ2
X1;X2;Y. (27)

In order to prove (27), noting the rewriting of (22), we have:

p(xi,xj,yk)−p(xi,xj)p(yk)

p(xi)p(xj)p(yk)
=

p(xi,xj,yk)−pa(xi,xj,yk)

p(xi)p(xj)p(yk)
+
(

p(xi,yk)
p(xi)p(yk)

− 1
)
+
( p(xj,yk)

p(xj)p(yk)
− 1
)

, (28)

We claim that squaring both sides, multiplying them by p(xi)p(xj)p(yk) and summing over
i, j, k yields (27). Namely, we note that all resulting mixed terms disappear. Indeed, the mixed term
pertaining to the first two terms on the right-hand side equals:

2 ∑
i,j,k

[p(xi, xj, yk)− pa(xi, xj, yk)]

[
p(xi, yk)

p(xi)p(yk)
− 1

]
= 0 (29)

due to ∑j p(xi, xj, yk)− pa(xi, xj, yk) = 0. The mixed term pertaining to the last two terms on the
right-hand side equals:

2 ∑
i,j,k

[
p(xi, yk)− p(xi)p(yk)

p(xi)p(yk)

][
p(xj, yk)− p(xj)p(yk)

p(xj, p(yk)

]
p(xi)p(xj)p(yk) = 0 (30)

as ∑i p(xi, yk)− p(xi)p(yk) = 0.
We note that (27) is an analogue of the decomposition of ∑i,j,k(p(xi, xj, yk) −

p(xi)p(xj)p(yk))
2/p(xi)p(xj)p(yk) into four terms (see Equation (9) in [23]). Han in [18] proved

that for the distribution of PX1,X2,Y close to independence, i.e., when all three variables X1, X2

and Y are approximately independent, interaction information II(X1; X2; Y) and 2−1χ2
X1;X2;Y are

approximately equal. A natural question in this context is how those measures compare in general.
In particular, we would like to to allow for the dependence of X1 and X2. In this, case Han’s

result is not applicable, as PX1,X2,Y is not close to independence (cf. (22)). It turns out that despite
analogous decompositions in (6) and (27) in the vicinity of mass function p0(xi, xj, yk) = p(xi, xj)p(yk)

(independence of (X1, X2) and Y), II(X1; X2; Y) is approximated by different functions of chi squares.

Proposition 5. We have the following approximation in the vicinity of p0(xi, xj, yk) = p(xi, xj)p(yk):

I I(X1; X2; Y) =
1
2

{
∑
i,j,k

(p(xi, xj, yk)− p(xi, xj)p(yk))
2

p(xi, xj)p(yk)
− χ2

(X1;Y) − χ2
(X2;Y)

}
+ o(1), (31)

where term o(1) tends to zero when the vicinity of p0 shrinks to this point.
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Expanding f (t) = t log t for t = p(xi, xj, yk) around t0 = p(xi, xj)p(yk), we obtain:

p(xi, xj, yk) log p(xi, xj, yk) = p(xi, xj)p(xk) log
[
p(xi, xj)p(xk)

]
+ (1+ log

[
p(xi, xj)p(xk)

]
)(p(xi, xj, yk)− p(xi, xj)p(yk)) +

1
2
(p(xi, xj, yk)− p(xi, xj)p(yk))

2

p(xi, xj)p(yk)
+ o(1).

Rearranging the terms, we have:

p(xi, xj, yk)(log p(xi, xj, yk)− log
[
p(xi, xj)p(yk)

]
) =

p(xi, xj, yk)− p(xi, xj)p(yk) +
1
2
(p(xi, xj, yk)− p(xi, xj)p(yk))

2

p(xi, xj)p(yk)
+ o(1).

Summing the above equality over i, j and k and using the definition of I((X1, X2); Y), we have:

I((X1, X2); Y) =
1
2 ∑

i,j,k

(p(xi, xj, yk)− p(xi, xj)p(yk))
2

p(xi, xj)p(yk)
+ o(1). (32)

Reasoning analogously, we obtain I(Xi; Y) = χ2
Xi,Y

+ o(1) for i = 1, 2. Using now the definition of
interaction information, we obtain the conclusion.

Note that it follows from the last two propositions that we have the following generalization of
Lemma 3.3 in [18].

Proposition 6. In the vicinity of p0(xi, xj, yk) = p(xi, xj)p(yk), it holds that:

I I(X1; X2; Y)− 1
2 χ2

X1;X2;Y = 1
2 ∑i,j,k

[p(xi)p(xj)−p(xi,xj)]

p(xi,xj)

[p(xi,xj,yk)−p(xi,xj)p(yk)]
2

p(xi)p(xj)p(yk)
+ o(1). (33)

This easily follows by replacing−2−1
{

χ2
X1;Y + χ2

X2;Y

}
in (31) by 2−1

{
χ2

X1;X2;Y − χ2
(X1,X2);Y

}
+ o(1)

and using the definition of χ2
(X1,X2);Y

.

2.3. Estimation of the Interaction Measures

We discuss now the estimators of the introduced measures. Suppose that we have n observations
on genotypes of the two SNPs under consideration. The data can be cross-tabulated in a 3× 3× 2
contingency table with nijk denoting the number of data points falling in the cell X1 = xi, X2 = xj
and Y = k. The considered estimators are plug-in versions of theoretical quantities. Namely, we
define (cf. (7)):

Î I = Î I(X1; X2; Y) = ∑
xi ,xj,yk

p̂(xi, xj, yk) log
( p̂(xi, xj, yk)

p̂(xi, xj)p̂(xi, yk)p̂(xj, yk)/p̂(xi)p̂(xj)p̂(yk)

)
, (34)

where p̂(xi, xj, yk) = nijk/n and other empirical quantities are defined analogously. Let:

Î Im = Î I + log η̂, (35)

where η̂ is a plug-in estimator of η, an estimator of I Im. Analogously, we define:

̂̄I I = max( Î I, Î Im) (36)

Moreover, let:
χ̂2 = χ̂2

X1;X2;Y (37)
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denote the plug-in estimator of χ2
X1;X2;Y defined in (25) and χ̂2

m the plug-in estimator of the main term
on the right-hand side of (31).

Han in [18] proved that for the distribution of PX1,X2,Y close to independence, i.e., when all
three variables X1, X2 and Y are approximately independent, we have that the distribution of
2nÎ I(X1; X2; Y) is close to the distribution of nχ̂2

X1;X2;Y for large sample sizes. Moreover:

nχ̂2
X1;X2;Y → χ2(4) (38)

in the distribution when the sample size tends to infinity, where χ2(4) denotes the chi square
distribution with four degrees of freedom. However, the large sample distribution of 2nÎ I(X1; X2; Y) for
p(xi, xj, yk) = p0(xi, xj, yk) is unknown. Note that although one can establish the asymptotic behavior
of empirical counterparts of each term on the right-hand side of (31), these parts are dependent, which
contributes to the difficulty of the problem.

In Section 3 below, we discuss the problem of detecting predictive interaction using the empirical
indices defined above as the test statistics.

3. Modeling Gene-Gene Interactions

Interaction information and its modifications are model-free indices of measuring the interaction
of SNPs in predicting the occurrence of a disease. Below, we list several approaches to measure
interaction based on modeling. Although, as it turns out, the logistic model encompasses all of them,
various parametrizations used for such models imply that the meaning of interaction differs in
particular cases.

3.1. Logistic Modeling of Gene-Gene Interactions

As a main example of parametric modeling involving the quantification of interaction strength,
we consider logistic regression. It turns out that any type of conditional dependence can be described
by it. Namely, a general logistic model with interactions that models conditional dependence
P(Y = 1|X1, X2), where X1 and X2 are qualitative variables with I and J values, respectively,
has I J parameters. Indeed, it allows for an intercept term, (I − 1) + (J − 1) main effects of X1 and
X2 and (I − 1)(J − 1) interactions, i.e., I J parameters in total. This is equal to the number of possible
pairs (xi, xj). Thus, any form of conditional dependence of Y on X1 and X2 can be described by this
model for some specific choice of intercept, main effects and interactions.

We discuss a specific setting frequently used for GWAS analysis when X1 and X2 stand for two
biallelic genetic markers with the respective genotypes AA, Aa, aa (reference value) and BB, Bb, bb
(reference value). For convenience, the values of SNPs will be denoted, although not treated as,
consecutive integers 1, 2 and 3. Y is a class label, i.e., a binary outcome, which we want to predict, with
one standing for cases and zero for controls.

We consider the additive logistic regression model ω, which asserts that:

log
(P(Y = 1|X1 = xi, X2 = xj)

P(Y = 0|X1 = xi, X2 = xj)

)
= µ + αi + β j (39)

and compare it with a general saturated model Ω:

log
(P(Y = 1|X1 = xi, X2 = xj)

P(Y = 0|X1 = xi, X2 = xj)

)
= µ + αi + β j + γij. (40)

In the logistic regression model, X1 and X2 interact when γij is non-zero for some i, j, and
Model (40) is frequently called a general logistic model with interactions. Thus, interactions here
correspond to all coefficients γij, and a lack of interactions means that all of them are zero. Note that
the number of independent parameters in (40) when both X1 and X2 have three values is nine and
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equals the number of possible pairs (xi, xj). For specific values of the main effects and interaction,
which have been used in GWAS, see, e.g., [19,22], and for complete enumeration of models with 0/1
penetrance, see [24].

We discuss now different modeling approaches. The main difference in comparison with (40) is that
another function of the odds is parametrized. The choice of the function influences the parametrization
of the model, however; for discrete predictors, all such parametrizations are equivalent.

In particular, in [19], so-called multiplicative and threshold models for a disease were considered
(Table 1, p. 365). In the multiplicative model, the odds of the disease have a baseline value γ and
increase multiplicatively once there is at least one disease allele at each locus:

P(Y = 1|X1 = xi, X2 = xj)

P(Y = 0|X1 = xi, X2 = xj)
= γ(1 + θ)δij , (41)

where δAA,BB = 4, δAa,BB = δAA,Bb = 2, δAa,Bb = 1 and δij = 0, otherwise. In the threshold model, the
odds of the disease increase by a constant multiplicative factor once there is at least one disease allele
at each locus, i.e., δAA,BB = δAa,BB = δAA,Bb = δAa,Bb = 1 and δij = 0, otherwise. It is easily seen that
both models are special cases of (40). Moreover, if δij is such that δij = ηi + κj, then Equation (41) is a
special case of the additive model (39). Note that interactions in (41) are measured by coefficients δij,
as well as by θ.

An analogous approach is to model the prevalence of the disease P(Y = 1|X1, X2) instead of
the odds as in (41) or the logarithmic odds as in (40). This is adopted in [20], where Table 1, p. 832,
lists six representative models. In particular, a threshold model corresponds to the situation when
the prevalence of the disease increases from zero to f , where f is positive, provided a disease allele is
present at each locus. Interaction in the threshold model is measured by f . As the model considers
zero as a baseline value, it is not a special case of the threshold model in [19].

Interesting insight for particular dependence models is obtained when they are parametrized
using Minor Allele Frequency (MAF), overall prevalence P(Y = 1) and heritability h2. This is adopted
in [22,25] where several models with varying values of these parameters are considered.

Below, we state the proposition that describes the connection between the additive logistic
regression model and the lack of predictive interaction. Namely, Part (ii) states that if the Kirkwood
parameter is not larger than one and I I = 0, then the additive logistic model holds true.

Proposition 7. (i) Equation (39) is equivalent to:

pijk = θ·jkφi·kψij· i, j = 1, 2, 3, k = 1, 2 (42)

for some values
(

θ·jk
)

, (φi·k) ,
(
ψij·
)
; (ii) If I I = 0 and η ≤ 1, then PY|X1,X2

satisfies (39).

It is easily checked that Condition (42) implies (39). On the other hand, if we assume (39),
then we have pij1 = pij0 exp(µ + αi + β j), and we can take ψij· = pij0, θ·j0 = φi·0 ≡ 1 and
θ·j1 = exp(µ + β j) and φi·1 = exp(αi). This proves (i). Now, for (ii), if η ≤ 1 and I I (X1; X2; Y) = 0, then

pijk =
(

p·jk pi·k pij·
)

/
(

p·j·p··k pi··
)
, which satisfies (42). The last equality follows from the generalization

of the information inequality stating that KL distance D(p||q) = 0 if and only if p = q when p is
a probability mass function and q is nonnegative and such that ∑i q(xi) ≤ 1. Thus, if η ≤ 1, then any
model with interaction information of zero has to be an additive logistic regression model. However,
we will show that conditions I I = 0 and γij ≡ 0 are not equivalent even in the case when X1 and X2

are independent and η = 1.
The principal tool to detect interactions in logistic regression is the log-likelihood ratio statistic

(LRT), defined as:

LRT = 2 log
L(Ω)

L(ω)
= 2× KL(P̂Ω||P̂ω), (43)
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where L(Ω), L(ω) are respectively the values of the likelihood for models Ω and ω, and P̂Ω, P̂ω are
respectively estimated probability distributions. Large positive values of LRTare interpreted as an
indication that the additive model is not adequate and that interactions between genes occur. In order
to check what is the usual range of values of LRT under ω, we use the property stating that when
ω is adequate, LRT is approximately distributed as a χ square distribution with four degrees of
freedom provided that all cells contain at least five observations. Whereas the calculation of L(Ω)

is straightforward, as it involves only fractions nijk/n as parametric estimates of probabilities of
interest, the calculation of L(ω) is computationally intensive and involves the Iterated Weighted Least
Squares (IWLS) procedure. Thus, it is also if interest to find an easily computable approximation of
LRT. This was exactly the starting point of [8] where it was noticed that probability mass function
pK(xi, xj, yk) = p̃K(xi, xj, yk)/η follows the additive logistic regression model. Indeed, we have,
in view of (10):

P
(
Y = 1

∣∣xi, xj
)

P
(
Y = 0

∣∣xi, xj
) = log

pK(xi, xj, Y = 1)
pK(xi, xj, Y = 0)

= log
p(Y = 0)
p(Y = 1)

+ log
p(xi, Y = 1)
p(xi, Y = 0)

+ log
p(xj, Y = 1)
p(xj, Y = 0)

(44)

and thus, it satisfies (39). In particular, it follows that:

LRT ≤ 2 log
L(Ω)

LK
= 2 Î Im, (45)

where LK is a value of the likelihood for a logistic regression model using plug-in estimators to estimate
Kirkwood probabilities. Since Î Im is easily computable, the lower bound on 2 Î Im can be imposed to
screen pairs that are unlikely to interact, as in view of (45), the cases with small values of 2 log L(Ω)/LK
yield even smaller values of LRT. However, as we discuss in Section 3, there are cases of interactions
that will be detected by Î Im, but they will remain undetected by LRT.

Note also that from the considerations above, we have revealed the interpretation of the
interaction information:

Î I(X1; X2; Y) = 2× KL(P̂Ω||̂̃PK), (46)

where ̂̃PK is a probability distribution corresponding to estimated non-normalized Kirkwood
approximations.

Another interaction modeling tool for contingency tables is a log-linear model for which the
logarithm of the expected value of the number of observations falling into each cell is modeled.
Since the expected value for the cell (i, j, k) equals µijk = np(xi, xj, yk), it is seen that the approach is
equivalent to logistic modeling. In particular, Model (39) is equivalent to the so-called homogeneous
association model:

log µijk = λ + λi + λj + λk + λij + λjk + λik. (47)

Because of the equivalence, we will discuss only the logistic setting later on.

3.2. ANOVA Model for Binary Outcome

Additive ANOVA models briefly described below are used to model the dependence of the
quantitative outcome on qualitative predictors, in QTL studies in particular. However, they work
reasonably well for a binary outcome. We provide a brief justification for this.

In an additive ANOVA model ω, we assume that the conditional distribution of Y given X1 and X2:

(
Y
∣∣X1 = i, X2 = xj

)
∼ N

(
µ + αi + β j, σ2

)
, (48)

and for model Ω with interactions, we postulate that:(
Y
∣∣X1 = i, X2 = xj

)
∼ N

(
µ + αi + β j + γij, σ2

)
. (49)
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Estimation of the parameters of ANOVA models is based on least squares analysis, i.e.,
minimization of the following sum of squares:

R(M) =
n

∑
l=1

(yl − ŷl)
2 , (50)

where ŷl is a prediction for the l-th observation under assumed model M. It is well known (see, e.g., [26])
that the F statistic defined by (51) below has an asymptotically F distribution with parameters p− q
and n− p (p and q denote the number of coefficients in models Ω and ω, respectively).

F =
(R(ω)− R(Ω)) /(p− q)

R(Ω)/(n− p)
(51)

In our problem, the outcome is binary, so formally, it is not legitimate to use the ANOVA model in
this case. Nevertheless, the prediction has an interesting property. Let us denote y(1) := Y = I (Y = 1)
and y(0) := 1−Y = I (Y = 0). Then, for the additive ANOVA model and the model with interaction,
we have:

ŷ(0) + ŷ(1) = 1 (52)

Moreover, if the values of the respective SNPs are denoted by xi and xj, then for the
model with interaction, we have ŷ(0) = nij0/nij = P̂

(
Y = 0|xi, xj

)
and ŷ(1) = nij1/nij =

P̂
(
Y = 1|xi, xj

)
. Using this notation for both models, we can treat predictors ŷ(0) and ŷ(1) as estimators

of P
(
Y = 0|X1 = xi, X2 = xj

)
and P

(
Y = 1|X1 = xi, X2 = xj

)
, respectively. Now, manipulating

conditional probabilities, we can rewrite (50) as:

R(M) =
n

∑
l=1

(yl − ŷl)
2 = ∑

l:yl=0

(
ŷ(1)l

)2
+ ∑

l:yl=1

(
ŷ(0)l

)2

= ∑
i,j,k

nijk

(
P̂
(
Y 6= k

∣∣X1 = i, X2 = j
))2

= n ∑
i,j

P̂ (X1 = i, X2 = j, Y = k)
(

P̂
(
Y 6= k

∣∣X1 = i, X2 = j
))2

= n ∑
i,j

P̂ (X1 = i, X2 = j) P̂
(
Y = 1

∣∣X1 = i, X2 = j
)
(1− P̂

(
Y = 1

∣∣X1 = i, X2 = j
)
).

(53)

Note that it follows that R(M) can be treated as the weighted variability of prediction, which is
the largest when P̂

(
Y = 0

∣∣X1 = i, X2 = j
)
= 0.5. Thus, minimizing (53) leads to finding the parameters

of model M that yield the most certain prediction. This provides some intuition, in addition to (52),
for why the ANOVA model yields reasonable estimates in the case of a binary outcome.

3.3. Behavior of Interaction Indices for Logistic Models

Our main goal here is to check whether estimators of the information interaction lead to
satisfactory, universal and easy to compute tests for predictive interaction. We recall that X1 and X2

interact predictively in explaining Y when I I(X1; X2; Y) > 0. Thus, we consider as the null hypothesis
H0 : I I = 0 and as an alternative H1, the hypothesis we are interested in, namely H1 : I I > 0. As test
statistics, we employ sample versions of interaction information indices and their approximations
introduced above. We discuss the behavior of the pertaining tests for logistic models (see Section 3),
as for discrete predictors, they cover all possible types of conditional dependence of Y given their values.
Two types of distributions of (X1, X2) will be considered, the first, when X1 and X2 are independent and
the second one, when their dependence is given by Frank’s copula with parameter−1 (see Appendix A
for the definition). Frank’s copula with parameter −1 was chosen as for the logistic models considered
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below, it leads to predictive interaction. In both cases, we set Minor Allele Frequency MAF = 0.25,
where MAF = P(X1 = AA) = P(X2 = BB). In Table A1, the conditional distributions are specified
(see also Appendix A for the method of generation). As discussed below, larger values of λ and γ lead
to larger values of interaction measures.

3.4. Behavior of Interaction Indices When X1 and X2 Are Independent

We consider first a special case when X1 and X2 are independent. We recall that it follows from
Proposition 2 (iii) that parameter η then equals one regardless of the form of prevalence mapping.
Thus, Kirkwood superposition approximation is a probability distribution, and the fact that I I = 0 is
equivalent to the property that distribution P equals its Kirkwood approximation. Moreover, we then
have I I = I Im and χ2 = χ2

m. We omit the proof of the second equality. Below, we discuss specific
logistic regression models that are used in the simulations. For each model, the intercept was set so
that prevalence P(Y = 1) is approximately 0.1. In Table 1, the coefficients for additive logistic models
considered here are specified.

Table 1. Coefficients for additive logistic models with parameter λ (cf. (39)). In each model, intercept µ

was chosen, such that prevalence P(Y = 1) is equal to approximately 0.1.

Model\Coefficients α1 α2 α3 β1 β2 β3

M0λ 0 0 0 0 0 0
M1λ λ 0 0 0 0 0
M2λ λ λ 0 0 0 0
M3λ λ 0 0 λ 0 0
M4λ λ λ 0 λ λ 0

Note that for model M0, both predictors are independent of Y, whereas in M1 and M2, only X2

is independent of Y. It is seen from (39) that for M3, logarithmic odds depend on the occurrence of
either value AA, BB or both, whereas for M4, they also depend on the values Aa and Bb. The additive
influence of both loci is the same and measured by parameter λ.

We also consider a general logistic model with interactions given in (40). We employ three types
of models, the additive parts of which are the same as in models M01, M31 and M41, respectively.
Note that M01 denotes model M0λ with λ = 1. The form of interaction is stated in Table 2. Mi (γ) for
i = 0, 3, 4 will denote the logistic model, the additive part of which is as in model Mi1 and interaction
part as in Table 2 for a fixed value of γ. Thus, M0(γ) is a model with no main effects, but with a logistic
interaction effect, whereas additive effects, as well logistic interaction are nonzero in M3(γ) and M4(γ).
Note that in the models considered, parameter γ measures the strength of the logistic interaction.

Table 2. Values of the γij coefficients from Model (40) for the same constant value of γ.

i\j 1 2 3

1 γ γ 0
2 γ γ 0
3 0 0 0

We discuss now how interaction indices behave for the introduced models. We start with additive
logistic regression models M0λ − M4λ. Note that for models M0λ, M1λ and M2λ, all considered
interactions measures are zero, since for M0λ, response Y is independent of (X1, X2), whereas for M1λ

and M2λ, predictor X2 is independent of (X1, Y). The values of I I, I Im, χ2 and χ2
m as a function of λ

for models M3λ and M4λ are shown in Figure 1.
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Figure 1. Theoretic values of interaction measures for the additive logistic model and independent SNPs.

In models M3λ and M4λ, the values of I I are small, but strictly positive for λ > 0. Note that the
monotone dependence of χ2 = χ2

m on λ is much stronger than for I I = I Im. In Figure 2, the behavior
of interaction measures as a function of γ for the logistic model with the nonzero interaction term is
depicted. Thus, we check how nonparametric interaction information and its modifications depend
on logistic interaction parameter γ. Observe that I I is positive, close to zero for γ = 0.5 and for
γ ≥ 0.5 grows slowly in all models considered. There is no significant difference between the values
of I I for all models M0 (γ) , M3 (γ) and M4 (γ) when γ is fixed, which means that the additive part
in the saturated logistic model has a weak influence on the interaction information. Index χ2 is
also approximately 0 for γ = 0.5, but grows much faster than I I when γ increases. The differences
between the values of χ2 for models M0 (γ) , M3 (γ) and M4 (γ) are much more pronounced than
for interaction information I I, and they increase with γ. The values of all indices are larger when the
logistic interaction is nonzero.

II IIm χ2 χm
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γ
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Figure 2. Theoretic values of the interaction measures for the logistic model with the interaction and
independent SNPs.

3.5. Behavior of Interaction Indices When X1 and X2 Are Dependent

The situation when X1 and X2 are dependent is more involved. First, Kirkwood superposition
approximation does not have to be a probability distribution; therefore, the fact that I I = 0 is not
equivalent to the equality of mass functions p

(
xi, xj, yk

)
and p̃K

(
xi, xj, yk

)
. Second, the dependence of

predictors means that distribution (X1, X2, Y) deviates more strongly from joint independence, i.e.,
from the situation when the asymptotic behavior of 2nÎ I is known and given in (38).

As before, we consider the logistic model with and without interactions. For logistic regression
models, we choose the same values of parameters as in the previous section (see Tables 1 and 2) with
the exception of µ, which was set such that in every model, prevalence is equal approximately to 0.1.

The behavior of interaction indices for the discussed models is shown below. Their variability
in λ for models M3λ, M4λ when predictors are dependent is shown in Figure 3 and for models with
interaction in Figure 4. Model M0λ is omitted as all considered indices are zero there independently of
λ. Note that we have a stronger dependence of I I on λ in M4 than in M3; the effect is much weaker in
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the case of I Im due to the fact that log η negatively depends on λ for M4. Furthermore, for this model,
the dependence of I I on λ is much stronger than for the independent case.

II IIm χ2 χm
2 log(η)

0.00
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0.02

0.03

0.5 1.0 1.5 2.00.5 1.0 1.5 2.00.5 1.0 1.5 2.00.5 1.0 1.5 2.00.5 1.0 1.5 2.0
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Figure 3. Theoretic values of the interaction measures for the additive logistic model and
dependent SNPs.
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Figure 4. Theoretic values of the interaction measures for the logistic model with the interaction and
dependent SNPs.

When logistic interaction is nonzero, we again see pronounced differences in the behavior of
I I between M3 and M4. This indicates that in the contrast to the independence case, two factors,
namely the value of γ, as well as the form of main effects, influence the value of I I. The differences
between the values of I Im for different models are negligible. Values I I are larger for the dependent
than for the independent case for the same value of γ. Note that from the logistic model perspective.
the strength of interaction in all three models is the same and corresponds to the value of γ. Again, the
dependence of χ2 and χ2

m on γ is much stronger than for I I.

4. Tests for Predictive Interaction

The main challenge with the application of the constructed statistics for testing is the determination
of their behavior under the null hypothesis I I = 0. The asymptotic distribution of Î I is known only
for the case when X1, X2 and Y are independent, which is a special case only of the null hypothesis,
and the asymptotic distributions of Î Im and ˆ̄I I are unknown. In order to overcome this problem, we
hypothesize that the distributions of all three statistics do not deviate much from the χ2(4) distribution,
at least in the right tails, and we check the validity of our conjecture by calculating the actual Type I
error rates for nominal error rates α using the Monte Carlo method. The results are shown in Figure 5
for the independent predictors and in Figure 6 for dependent ones. The results for LRT and ANOVA
tests are included as the benchmarks. It is seen that for the independent predictors, discrepancies
between actual and nominal rates for Î I and Î Im are negligible and comparable to the discrepancy of
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LRT for all models Mi, i = 0, 1, 2, and the same is true for ˆ̄I I in the case of models M0 and M1. The same
observation holds for the dependent predictors, although here, empirical evidence is restricted to
model M0, as it is the only model known to us that satisfies the null hypothesis in this case. Based on
this observation, in the following, we compare the power of LRT and ANOVA with the powers of the
new tests with a rejection region { Ĩ I ≥ χ2

0.95(4)}, where χ2
0.95(4) stands for the quantile of order 0.95 of

the χ2(4) distribution and Ĩ I stands for either Î I, Î Im or ˆ̄I I.
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Figure 5. Actual Type I error rates against the nominal error α rate when X1 and X2 are independent
for models M01, M11 and M21.

Datasets pertaining to the discussed models are generated as described in the Appendix.
The pertinent parameters are:
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Figure 6. Actual Type I error rates against nominal error rate α when X1 and X2 are dependent for
model M01.

• t0, t1, the number of observations in controls (Y = 0) and cases (Y = 1), set equal in our
experiments and n = t0 + t1, the total number of observations. Values of n = 500 and n = 1000
were considered.

• MAF, the minor allele frequency for X1 and X2. We set MAF = 0.25 for both loci.
• copula, the function that determines the cumulative distribution of (X1, X2) based on its marginal

distributions.
• p(i, j) := P

(
Y = 1

∣∣xi, xj
)
, the prevalence mapping, which in our experiments was either additive

logistic or logistic with nonzero interaction.

For every model, 1000 datasets were generated, and for each of them, tests of the interaction
effect based on the introduced indices were performed. The null hypothesis is the lack of predictive
interaction I I = 0. The null hypothesis at the specific significance level α is not rejected if the value of
the test statistic is less than (1− α), the quantile of appropriate distribution; otherwise, we reject this
hypothesis and claim that there is a predictive interaction effect. As discussed above, the tests based
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on all indices except the ANOVA test were compared with the χ2 (4) distribution, and for the ANOVA
test, null distribution was the F-Snedecor distribution with parameters four and n− 9. For models
with I I = 0, we estimate the probability of Type I error for a given α as a fraction of the tests that are
falsely rejected. For the model with the predictive interaction effect, statistical power is estimated as a
fraction of the tests that are rejected at a significance level of 0.05. We will refer to those tests as simply
interaction information, χ2, LRT and ANOVA tests in the following.

All experiments have been performed in the R environment. The source codes of functions used
are available from the corresponding author’s website.

4.1. Behavior of Interaction Tests When X1 and X2 Are Independent

We consider the situation when SNPs X1 and X2 are independent. In this case, η = 1 and both Î I
and Î Im estimate I I consistently.

4.1.1. Type I Errors for Models M0–M2

First, we consider models M0–M2, where I I = 0 and for which the null hypothesis holds.
Recall that for M0, all components of random vector (X1, X2, Y) are independent; thus, in this case,
convergence (38) to the χ2(4) distribution holds. In Figure 5, we compare the Type I error rate with the
nominal error rate. Note that Type I errors of Î I, Î Im and LRT approximately agree with nominal level
α. This indicates that the distributions of these statistics under the null hypothesis are approximately
χ2(4) distributed. For ANOVA and χ2 tests, the probability of Type I error is slightly smaller than α.
For the maximum statistic ̂̄I I, the probability of Type I error agrees well with the nominal level for
models M0 and M1 for M2; it exceeds α, but the relative difference is not larger than 20% for α ≤ 0.05.

4.1.2. Power for Additive Logistic Models

Now, we focus on models M3λ and M4λ. From Figure 1, we see that for λ = 0.5, index I I is very
close to zero, and predictably, the power is close to the significance level for such λ (see Figure 7).
However, for larger λ, the power of Î Im and Î I increases for M3, and in the case of M4, this holds also
for Î Im. The difference between the behavior of Î Im on the one side and Î I and χ2 approximations on
the other for model M4 is remarkable and shows that modification incorporating log η̂ is worthwhile.
However, for model M3, it does not improve the performance of Î I. Note also that unsurprisingly.
The power of the LRT test stays close to the significance level, but the power of ANOVA starts to
increase for large λ. A clear winner in both cases is the test based on ̂̄I I, which performs very well for
both models, as it takes advantage of the good performance of Î I for M3 and Î Im for model M4.
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Figure 7. Powers for models M3λ and M4λ against λ when X1 and X2 are independent.
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4.1.3. Power for the Logistic Model with Interactions

We consider now the power of the tests with respect to logistic interaction parameter γ for models
M0 (γ) , M3 (γ) and M4 (γ) . Note that M0 (γ) is now included as I I is positive for γ > 0. In all cases,
Î Im performs better than Î I, supporting the usefulness of the correction. LRT works comparably to
ANOVA and, in some cases, worse than Î Im and ̂̄I I. We stress that this does not contradict the fact that
LRT is the most powerful test at the level α for null hypothesis H̄0 : γ = 0. Indeed, it follows from
the previous experiments that predictive interaction tests are not level α tests for H̄0; thus, they may
have larger power than LRT. The power of Î Im and ̂̄I I is around 30% for M4, even for γ close to zero,
when for LRT, it stays around a significance level of 0.05. Note also that Î I and χ̂2

m fail to detect the
predictive interaction for model M4.

4.2. Behavior of the Interaction Tests When X1 and X2 Are Dependent

We consider the situation where SNPs X1 and X2 are dependent. The distribution of (X1, X2) is
modeled by the Frank copula with θ = −1 (see Table A1).

4.2.1. Type I Errors for Model M0

Note that for dependent X1 and X2, only M0 satisfies the null hypothesis, as for the models M1
and M2, index I I is negative. It follows from Figure 6 that for all tests apart from χ2 tests, Type I error
for M0 is approximately α, and it is significantly smaller than α for both χ2 tests. For larger α and
n = 1000 errors for information, interaction tests exceed slightly α, similarly to LRT.

4.2.2. Power for Additive Logistic Models When X1 and X2 Are Dependent

The behavior of the discussed tests is analogous to the case of independence (see Figure 8) with
one important difference. Namely, now Î I performs better than Î Im apart from model M4 for λ ≥ 1.5
and n = 500. LRT and ANOVA do not detect any interaction for λ ≤ 1.5, but the power of ANOVA
starts to pick up for large λ. Note the erratic behavior of the χ̂2

m test for which the power actually starts
to decrease for larger λ. This possibly is caused by the fact that the test is not well calibrated and the
fact that χ̂2

m is likely to become negative for large λ. The power of ̂̄I I is the largest one among all tests.

4.2.3. The Powers for Logistic Models with Interaction When X1 and X2 Are Dependent

Obviously, when logistic interaction is present, the LRT test performs much better (see Figure 9).
The same applies to ANOVA and Î I, but the best performance is again exhibited by ̂̄I I.
Consider, e.g., its performance for the model M4. Its excellent behavior for small γ’s stems
from the very good performance of Î I, whereas for larger γ’s from the performance of Î Im.
Comparing Figures 9 and 10, we see that the dependence between predictors improved the performance
of the tests based on the interaction information measures, especially for a smaller sample size,
which is consistent with the larger values of the interaction information in the dependent than in the
independent case. Note that in the dependent case, the power of Î I and ̂̄I I for M4 is above 0.9 for γ

close to zero, whereas it is less then 0.3 for such γ in the independent case.
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Figure 8. Powers for models M3λ and M4λ against λ when X1 and X2 are dependent.
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Figure 9. The power for models M0 (γ) , M3 (γ) and M4 (γ) against γ when X1 and X2 are dependent.
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Figure 10. Powers for models M0 (γ) , M3 (γ) and M4 (γ) against γ when X1 and X2 are independent.

4.3. Real Data Example

We perform the analysis of a real dataset in order to show that the pairs of SNPs that correspond
to large values of interaction indices exhibit interesting patterns of conditional dependence. We used
data on pancreatic cancer studied by [27] and downloaded from the address [28]. They consist
of 208 observations (121 cases and 87 controls) with values of 901 SNPs. We applied tests Î I,
Î Im and ̂̄I I for all pairs and α = 0.05 with Bonferroni correction resulting in an individual level
of significance 1.23× 10−7 = 0.05/K, where K = (901 × 900)/2. All three tests rejected the null
hypothesis I I = 0 for 11 pairs. The pair of SNPs with the largest values of Î I and Î Im is the pair
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(SNP1, SNP2) =(rs1131854,rs7374) with values Î I = 0.1239 and Î Im = 0.1246. Figure 11 shows the
probability mass function of this pair (a) and of the conditional mass functions given Y = 1 (b) and
Y = 0 (c).
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Figure 11. Probability mass function for the pair (rs1131854,rs7374) (a) and for corresponding
conditional mass functions given Y = 1 (b) and Y = 0 (c).

Note that the pattern of the change of the conditional probabilities of the occurrence of the AA
genotype for SNP2 given the genotypes of SNP1 for the cases Y = 1 is reversed in the case of the
controls Y = 0. For the pooled sample, the conditional probabilities are approximately equal. Moreover,
observe that the conditional frequency of SNP2 = BB given SNP1 = BB is around 0.2 for the cases,
whereas it is zero for the controls.

This preliminary example indicates that the analysis based on large values of interaction information
indices allows one to detect interesting patterns of dependence between pairs of SNPs and the response.

5. Discussion

In the theoretical part of the paper, we reviewed and proved some new properties of interaction
information, its modification and their approximations. It is argued that parameter η introduced
in (11) plays an important role in establishing predictive interaction. Theoretical analysis supported
considering a new measure defined in (16), being the maximum of interaction information, and its
modified version, which was considered in numerical experiments. There are several conclusions
that can be drawn from the conducted numerical experiments. The first one is that the dependence
between predictors influences the performance of interaction information tests: while Î Im performs
in general better than Î I for independent predictors, the situation is reversed for dependent ones.
Their natural combination, statistics ̂̄I I, is superior to any of them and LRT. When compared to LRT,
the difference in performance is most striking when detecting predictive interaction in the cases when
logistic interaction is 0 as, e.g., in models M3λ and M4λ. This should serve as a cautionary remark
for the situations when the interaction information test is used as a screening test and then LRT is
applied for remaining pairs of genes: the screening test may rightly retain pairs of genes interacting
predictively; however, the interaction may not be confirmed by the LRT test. Such cases are likely
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to occur especially for dependent pairs. It is also worthwhile to note that ̂̄I I is as least good as LRT
and sometimes much better for detecting interactions when the logistic interaction γ is close to zero.
This is a promising feature, as detecting such weak interactions is the most challenging and bears
important consequences for revealing the dependence structure of diseases. This of course requires the
construction of interaction tests suitable for a huge number of pairs and is a subject of further study.
On the negative side, tests based on χ2 approximations tend to perform less well than those based on
interaction information and their modifications. This is possibly due to their non-adequate calibration
in the case when the null hypothesis holds. It also should be stressed that in numerical experiments,
we studied the problem of distinguishing between no interaction information (I I = 0) and predictive
interaction (I I > 0). In the case when interaction information is negative, Î Im and ̂̄I I are likely not to
detect such an effect.
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Appendix A

We describe briefly the generation method. Our objective is to generate separately two samples
from conditional distributions of (X1, X2) given Y = 0 and Y = 1 with predetermined sizes t0 and t1.
This is easily performed for a given prevalence mapping p(y|xi, xj) and bivariate mass function
p(xi, xj), as we have by Bayes’s theorem:

p
(

xi, xj|y
)
=

p
(
y|xi, xj

)
p(xi, xj)

∑
xi′ ,xj′

p
(

y|xi′ , xj′
)

p(xi′ , xj′)
, (A1)

The prevalence mapping we consider is either additive logistic or logistic with interactions.
We discuss below the choice of mass function p(xi, xj).

Appendix A.1. Distribution of (X1, X2)

We first specify marginal distributions of X1 and X2 and then construct bivariate mass function
p(xi, xj) with those marginals. We fix Minor Allele Frequency (MAF) for two SNPs (here, we use the
same value of MAF for X1 and X2) and assume that both SNPs fulfil the Hardy–Weinberg principle,
which means that p (x1) = MAF2, p (x2) = 2 · MAF(1− MAF) and p (x3) = (1−MAF)2 . Let F1

and F2 denote cumulative distributions of X1 and X2, respectively, which can be different in general.
Then, we determine the bivariate distribution function F12 of (X1, X2) as:

F12
(

xi, xj
)

:= C
(

F1 (xi) , F2
(
xj
))

(A2)

where C(·, ·) is a fixed copula (cf. [29]). This approach allows one to fix marginals in advance; moreover,
it provides us with a simple method of introducing dependence between alleles. We consider the case
when X1 and X2 are independent, for which C(x, y) = xy, and dependent X1 and X2 characterized by
the Frank copula given by:

CFr
θ (u, v) = −1

θ
log

{
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

}
, θ ∈ R \ {0}. (A3)



Entropy 2017, 19, 23 22 of 23

Other popular copulas such as Gumbel’s and Clayton’s copula yield negative interaction
information and are not considered here.

Below, we specify mass functions for independent and dependent X1 and X2 when the dependence
is given by Frank copula with parameter −1 and marginals have the same distribution with
MAF = 0.25.

Table A1. Mass function p
(

xi, xj

)
of (X1, X2) for MAF = 0.25. The upper panel corresponds to

independent X1 and X2 and the lower to the Frank copula with θ = −1.

i\j 1 2 3 ∑

Independent X1 and X2

1 0.0039 0.0235 0.0351 0.0625
2 0.0234 0.1406 0.2110 0.3750
3 0.0352 0.2109 0.3164 0.5625
∑ 0.0625 0.3750 0.5625 1

Frank Copula with θ = −1

1 0.0024 0.0180 0.0421 0.0625
2 0.0180 0.1232 0.2339 0.3750
3 0.0421 0.2339 0.2865 0.5625
∑ 0.0625 0.3750 0.5625 1

Appendix A.2. Prevalence Mapping with the Logistic Regression Model

Logarithmic odds in the logistic regression model are given by (40):

log

(
p
(
Y = 1|xi, xj

)
p
(
Y = 0|xi, xj

)) = µ + αi + β j + γij (A4)

This is equivalent to:

P(Y = 1|xi, xj) =
exp

(
µ + αi + β j + γij

)
1 + exp

(
µ + αi + β j + γij

) (A5)

The above formula is used in (A1) in order to determine distributions of (X1, X2) in both populations.
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