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Abstract: Air traffic management (ATM) aims at providing companies with a safe and ideally
optimal aircraft trajectory planning. Air traffic controllers act on flight paths in such a way that
no pair of aircraft come closer than the regulatory separation norms. With the increase of traffic,
it is expected that the system will reach its limits in the near future: a paradigm change in ATM is
planned with the introduction of trajectory-based operations. In this context, sets of well-separated
flight paths are computed in advance, tremendously reducing the number of unsafe situations that
must be dealt with by controllers. Unfortunately, automated tools used to generate such planning
generally issue trajectories not complying with operational practices or even flight dynamics. In this
paper, a means of producing realistic air routes from the output of an automated trajectory design
tool is investigated. For that purpose, the entropy of a system of curves is first defined, and a mean
of iteratively minimizing it is presented. The resulting curves form a route network that is suitable
for use in a semi-automated ATM system with human in the loop. The tool introduced in this work
is quite versatile and may be applied also to unsupervised classification of curves: an example is
given for French traffic.

Keywords: curve system entropy; curves manifold; curve clustering; probability distribution
estimation; air traffic management

1. Introduction

Based on recent studies [1], traffic in Europe is expected to grow by an average yearly rate of
2.6%, yielding a net increase of two million flights per year at the 2020 horizon. The long-term
forecast gives a two-fold increase in 2050 over the current traffic, pointing out the need for a paradigm
change in the way flights are managed. Two major framework programs, SESAR (Single European
Sky Air traffic management Research) in Europe and Nextgen in the U.S. have been launched in
order to first investigate potential solutions and to deploy them in a second phase. One of the main
changes that the air traffic management (ATM) system will undergo is a switch from airspace-based
to trajectory-based operations with a delegation of the separation task to the crews. Within this
framework, trajectories become the basic object of ATM, changing the way air traffic controllers
will be working. In order to alleviate the workload of controllers, trajectories will be planned
several weeks in advance in such a way that close encounters are minimized and ideally removed.
For that purpose, several tools are currently being developed; most of them coming from the field
of robotics [2]. Unfortunately, flight paths issued by these algorithms are not tractable for a human
controller and need to be simplified. The purpose of the present work is to introduce an automated
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procedure that takes as input a set of trajectories and outputs a simplified one that can be used in
an operational context. Please note that the separation norm constraints were not taken into account
in this work. In our algorithm, we cannot enforce the regulatory separation norms, just construct
clusters with low interactions. According to the applications, the results of our algorithm may be used
as an initial solution of a post-processing algorithm based on optimal control in order to keep in line
with the regulatory constraints. Using entropy associated with a curves system, a gradient descent is
performed in order to reduce it so as to straighten trajectories while avoiding areas with low aircraft
density, thus enforcing route-like behavior. This effect is related to the fact that entropy-minimizing
distributions favor concentration.

2. Entropy-Minimizing Curves

2.1. Motivation

As previously mentioned, air traffic management of the future will make an intensive use
of 4D trajectories as a basic object. Full automation is a far-reaching concept that will probably
not be implemented before 2040–2050, and even in such a situation, it will be necessary to keep
humans in the loop so as to gain a wide societal acceptance of the concept. Starting from SESAR
or Nextgen initial deployment and aiming towards this ultimate objective, a transition phase with
human-system cooperation will take place. Since ATC controllers are used to a well-structured
network of routes, it is advisable to post-process the 4D trajectories issued by automated systems
in order to make them as close as possible to line segments connecting beacons. To perform this task,
in an automatic way, flight paths will be deformed so as to minimize an entropy criterion that enforces
avoidance of low density areas and at the same time penalizes length. Compared to already available
bundling algorithms [3] that tend to move curves to high density areas, this new procedure generates
geometrically-correct curves, without excess curvature.

Let a set γ1, . . . , γN of smooth curves be given that will be aircraft flight paths for the air traffic
application. It will be assumed in the sequel that all curves are smooth mappings from [0, 1] to
a domain Ω of Rq with everywhere non-vanishing derivatives in ]0, 1[. This last condition allows
one to view them as smooth immersions with boundaries and is sound from the application point of
view, as aircraft velocities are bounded below by the efficiency consideration and ultimately by the
stall and, therefore, cannot vanish expect at the endpoints. In air traffic applications, the dimension of
the state space is generally two and sometimes three when the evolution of the aircraft in the vertical
plane is of interest.

The approach taken in this work is first to get a sound definition of spatial density associated
with a curve system, then to derive from it an entropy that will be minimized.

2.2. Spatial Density of a System of Curves

Due to the fact that aircraft positions are acquired through radar measurements, a trajectory
is known only at discrete sampling times. In the operational context, the sampling period ranges
from 4 to 10 s, which corresponds roughly to a 100–250-m traveling distance. Derived from that,
a classical performance indicator used in ATM is the aircraft density [4], obtained from the sampled
positions γi(tj), j = 1, . . . , ni on each flight path γi, i = 1, . . . , N. It is constructed from a partition
Uk, k = 1, . . . , P of Ω by counting the number of samples occurring in a given Uk, then dividing out
by the total number of samples n = ∑N

i=1 ni. More formally, the density dk in the subset Uk of Ω is
expressed as:

dk = n−1
N

∑
i=1

ni

∑
j=1

1Uk

(
γi(tj)

)
(1)
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with 1Uk the characteristic function of the set Uk. It seems natural to extend the density obtained from
samples to another one based on the trajectories themselves using an integral form:

dk = λ−1
N

∑
i=1

∫ 1

0
1Uk (γi(t)) dt (2)

where the normalizing constant λ is chosen so that dk is a discrete probability distribution:

λ =
P

∑
k=1

N

∑
i=1

∫ 1

0
1Uk (γi(t)) dt =

N

∑
i=1

∫ 1

0

P

∑
k=1

1Uk (γi(t)) dt

and since Uk, k = 1, . . . , P is a partition:

P

∑
k=1

1Uk (γi(t)) = 1 (3)

so that λ = N.
Density can be viewed as an empirical probability distribution with the Uk considered as bins in

an histogram. It is thus natural to extend the above computation so as to give rise to a continuous
distribution on Ω. For that purpose, local weighting techniques, such as kernel density estimation
methods, are well known in nonparametric statistics, because they are a useful data-driven way
to yield continuous density estimation. Many references may be found in the literature as in [5,6].
Given the observations, the resulting estimation will be the sum of weights taking into account
the distance between the observations and the location x at which the density has to be estimated;
the more an observation is close to x, the greater is the weighting. The weights are defined by selecting
a summable function centered on the observations, called a kernel, usually denoted by K : R→ R+ in
the univariate case, and a smoothed version of the Parzen–Rosenblatt density estimator [7,8] is used.
Standard choices for the K function are the ones used for nonparametric kernel estimation, like the
Epanechnikov function [9]:

K : x 7→
(

1− x2
)

1[−1,1](x).

There exists a large variety of kernel functions, and any density function satisfying the
normalization condition can be considered, so that the estimation is a probability density. Moreover,
the kernel function is a symmetric positive function, with the first moment equal to zero and a finite
second order moment. In the multivariate case, a multivariate kernel functionK : Rq → R+ is selected
that can be expressed by means of a real kernel K associated with a norm, denoted by ‖.‖, in Rq

as follows:
K(x) = K(‖x‖), x ∈ Rq.

The normalization condition becomes:∫
Rq
K (x) dx =

∫
Rq

K (‖x‖) dx = 1.

A kernel version of the density is then defined as a mapping d from Ω to [0, 1]:

d : x 7→ ∑N
i=1
∫ 1

0 K (‖x− γi(t)‖) dt

∑N
i=1
∫

Ω

∫ 1
0 K (‖x− γi(t)‖) dtdx

. (4)

Normalizing the kernel is not mandatory, as the normalization occurs with the definition of d.
It is nevertheless easier to consider these kinds of kernels, as is done in nonparametric density
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estimation. Note that when K is compactly supported, which is the case of the Epanechnikov function
and all of its relatives, it becomes:∫

Ω
K (‖x− γi(t)‖) dx =

∫
Rq

K (‖x‖) dx

provided that Ω contains the set:

{x ∈ Rq, inf
i=1...N,t∈[0,1]

‖x− γi(t)‖ ≤ A}

where the interval [−A, A] contains the support of K. The case of kernels with unbounded support,
like Gaussian functions, may be dealt with provided Ω = Rq. In the application considered,
only compactly-supported kernels are used, mainly to allow fast machine implementation of the
density computation.

Using the polar coordinates (ρ, θ) and the rotation invariance of the integrand, the
relation becomes:

Vol
(
Sq−1

) ∫
R+

K(ρ)ρq−1dρ = 1

which yields a normalizing constant of 2/π for the Epanechnikov function in dimension two, instead
of the usual 3/4 in the real case. When the normalization condition is fulfilled, the expression of the
density simplifies to:

d : x 7→ N−1
N

∑
i=1

∫ 1

0
K (‖x− γi(t)‖) dt. (5)

The normalizing constant is the same as in (2).
As an example, one day of traffic over France is considered and pictured in Figure 1

with the corresponding density map, computed on an evenly-spaced grid with a normalized
Epanechnikov kernel.

(a) (b)

Figure 1. (a) Traffic over France; (b) Associated density.

Unfortunately, density computed this way suffers a severe flaw for the ATM application: it is not
related only to the shape of trajectories, but also to the time behavior. Formally, it is defined on the set
Imm ([0, 1],Rq) of smooth immersions from [0, 1] to Rq while the space of primary interest will be the
quotient by smooth diffeomorphisms of the interval [0, 1], Imm ([0, 1],Rq) /Diff([0, 1]). Invariance of
the density under the action of Diff([0, 1]) is obtained as in [10] by adding a term related to velocity
in the integrals. The new definition of d becomes:

d̃ : x 7→ ∑N
i=1
∫ 1

0 K (‖x− γi(t)‖) ‖γ′i(t)‖dt

∑N
i=1
∫

Ω

∫ 1
0 K (‖x− γi(t)‖) ‖γ′i(t)‖dtdx

. (6)
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Assuming again a normalized kernel and letting li be the length of the curve γi, the expression
of the density simplifies to:

d̃ : x 7→ ∑N
i=1
∫ 1

0 K (‖x− γi(t)‖) ‖γ′i(t)‖dt

∑N
i=1 li

. (7)

The new Diff-invariant density is pictured in Figure 2 along with the standard density. While the
overall aspect of the plot is similar, one can observe that routes are more apparent in the right picture
and that the density peak located above the Paris area is of less importance and less symmetric due
to the fact that near airports, aircraft are slowing down, and this effect exaggerates the density with
the non-invariant definition.

(a) (b)

Figure 2. Density (a) and Diff invariant density (b) for 12 February 2013 traffic.

The extension of the two-dimensional defined that way to the general case of curves in
an arbitrary space Rq is straightforward.

2.3. Further Properties of the Density

In this section, the curves considered are a smooth mapping from the closed interval [0, 1] to Rq,
with a non-vanishing derivative in ]0, 1[. All multivariate kernelsKwill be assumed smooth, positive,
with a unit integral and of the form x 7→ K (‖x‖). However, it is not required that they are compactly
supported unless explicitly stated. All results are presented for the whole space Rq, but apply almost
verbatim to an open subset.

Definition 1. Let f be a smooth summable mapping from R to R. The scaling fν of f is defined, for each
ν > 0, to be the mapping:

fν : x ∈ R 7→ 1
ν

f
( x

ν

)
.

It is clear that the L1-norm of the original mapping is preserved by the scaling. Given a summable
kernel function K from R to R+, it defines a multivariate kernel K on Rq that maps x to K(‖x‖).
One may derive from it a parametrized family of kernels in R by mapping each ν in ]0, 1] to the scaled
kernel Kν. If the original K is of unit integral, so are all of the Kν.

Proposition 1. Let γ : [0, 1] → Rq be a smooth path with a non-vanishing derivative in ]0, 1[. Let Kν, ν > 0
be a parametrized family of unit integral kernels. The family of Borel measures µν defined for any Borel set A by:

µν(A) =
∫

A

∫ 1

0
Kν (‖x− γ(t)‖) ‖γ′(t)‖dtdx
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is tight and converges narrowly to the Lebesgue measure on γ ([0, 1]).

Proof. Let ε > 0 be given. By the summability of K, there exists a positive real number r, such that:∫
Rq−B(0,r)

K(‖x‖)dx < ε

with B(0, r) the open ball of radius r centered at the origin. Since B(0, r) ⊂ B(0, rν−1) for ν > 0,
the same holds for all of the family Kν. Let B(0, M) be an open ball containing γ ([0, 1]). Then:

µν

(
Rq − B(0, M + r)

)
=
∫
Rq−B(0,M+r)

∫ 1

0
Kν (‖x− γ(t)‖) ‖γ′(t)‖dtdx

=
∫ 1

0

∫
Rq−B(0,M+r)

Kν (‖x− γ(t)‖) ‖γ′(t)‖dxdt

≤ ε
∫ 1

0
‖γ′(t)‖dt = ε l(γ)

(8)

where l(γ) denotes the length of γ. This proves the tightness of the family Kν.
Let f : Rq → R be a bounded continuous mapping. It becomes:

Iν( f ) =
∫
Rq

∫ 1

0
Kν (‖x− γ(t)‖) f (x)‖γ′(t)‖dtdx =

∫ 1

0

∫
Rq

Kν (‖x− γ(t)‖) f (x)‖γ′(t)‖dxdt

=
∫ 1

0

∫
Rq

K (‖x‖) f (xν + γ(t)) ‖γ′(t)‖dxdt
(9)

and since f is bounded, the dominated convergence theorem shows that:

lim
ν→0

Iν( f ) =
∫ 1

0
f (γ(t)) ‖γ′(t)‖dt

proving the second part of the claim.

The density in (7) is for a single curve of the form d(x) = l(γ)−1
∫ 1

0 K (‖x− γ(t)‖) ‖γ′(t)‖dt with
l(γ) the length of the curve γ. It is invariant under the change of the parameter and can be written in
a more concise way as: ∫ 1

0
K (‖x− γ(η)‖) ‖dη (10)

where η is the arclength times l(γ)−1.
This form allows a simple probabilistic interpretation of the density d: if a point u is drawn on

the curve γ according to a uniform distribution and independently a vector v in Rq with a density K
(the multivariate kernel corresponding to K), then the density of x = u + v is given by Equation (10).

Proposition 2. If the multivariate kernel K has a finite second moment, that is the univariate kernel K is
such that:

M =
∫
R+

rq+1K(r) dr < +∞

then the Wasserstein distance between the densities d1, d2 associated with smooth curves γ1, γ2 is bounded by:

2Vol(Sq−1)M + D(γ1, γ2)

with :

D(γ1, γ2) =
∫ 1

0
‖γ1(η)− γ2(η)‖2dη

where each curve is parametrized by the scaled arclength as in (10).
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Proof. Let us consider the plan [11] given by the density:

d : (x, y) 7→
∫ 1

0
K(‖x− γ1(η)‖)K(‖y− γ2(η)‖)dη

where each curve is parametrized by the scaled arclength. The associated transport cost is given by:

C =
∫
Rq×Rq

‖x− y‖2
∫ 1

0
K (‖x− γ1(η)‖)K (‖y− γ2(η)‖) dηdxdy

letting u = y− x and using Fubini gives:

C =
∫ 1

0

∫
Rq

K (‖x− γ1(η)‖)
∫

Rq
‖u‖2K (‖u + x− γ2(η)‖) dudxdη.

The inner term can be written as:∫
Rq
‖u‖2K (‖u + x− γ2(η)‖) du =

∫
Rq
‖u + γ2(η)− x‖2K (‖u‖) du

=
∫
Rq
‖u‖2K(‖u‖)du + 2〈γ2(η)− x,

∫
Rq

uK(‖u‖)du〉+ ‖γ2(η)− x‖2.
(11)

The integral: ∫
Rq

uK(‖u‖)du

is zero and, using spherical coordinates:∫
Rq
‖u‖2K(‖u‖)du =

∫
R+

rq+1K(r)
∫
Sq−1

dσ dr = Vol(Sq−1)M

with M =
∫
R+ rq+1K(r). Putting back this value in the expression of the cost gives:

C = Vol(Sq−1)M
∫ 1

0

∫
Rq

K (‖x− γ1(η)‖) dxdη +
∫ 1

0

∫
Rq

K (‖x− γ1(η)‖) ‖γ2(η)− x‖2dxdη

= Vol(Sq−1)M +
∫ 1

0

∫
Rq

K (‖x− γ1(η)‖) ‖γ2(η)− x‖2dxdη

= Vol(Sq−1)M +
∫ 1

0

∫
Rq

K (‖x‖) ‖γ2(η)− γ1(η) + x‖2dxdη.

(12)

Finally: ∫
Rq

K (‖x‖) ‖γ2(η)− γ1(η) + x‖2dx =
∫
Rq

K (‖x‖) ‖γ2(η)− γ1(η)‖2dxdη

+ 2〈γ2(η)− γ1(η),
∫
Rq

xK (‖x‖) dx

+ Vol(Sq−1)M.

(13)

As before, the middle term vanishes, and the first one integrates to:

∫ 1

0
‖γ2(η)− γ1(η)‖2dη

so that:

C = 2Vol(Sq−1)M +
∫ 1

0
‖γ2(η)− γ1(η)‖2dη.

This result indicates that the densities associated with curves γ1, γ2 using the smoothing process
described above cannot be too far (with respect to the Wasserstein distance) from each other if the
geometric L2 distance D(γ1, γ2) is small. In fact, the upper bound in Proposition 2 can be interpreted
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as the cost of moving the smoothed density around γ1 to the uniform distribution on the curve,
then moving γ1 to γ2, keeping points with equal scaled arclength in correspondence, and finally,
moving the uniform distribution on γ2 to the smoothed density.

Having the density at hand, the entropy of the system of curves γ1, . . . , γN is defined the usual
way as:

E(γ1, . . . , γN) = −
∫

Ω
d̃(x) log

(
d̃(x)

)
dx.

The entropy is dependent on the particular choice of the kernel K. As mentioned before, it is
a common practice in the field of non-parametric statistics to introduce a tuning parameter ν > 0
in the kernel, called bandwidth, so that it is expressed as a scaled version K = fν of a given
function f : R+ → R+. The value of ν is the most influential parameter in the estimation of the
density and must be selected carefully. For curve clustering applications, it is defined by the desired
interaction length: if ν tends to zero, the curves will behave as independent objects, while on the other
end of the scale, very high bandwidth will tend to remove the influence of the curves themselves.
For the moment, no automated means of finding an optimal ν was used, although it will be part of a
future work.

2.4. Minimizing the Entropy

In order to fulfill the initial requirement of finding bundles of curve segments as straight
as possible, one seeks after the system of curves minimizing the entropy E(γ1, . . . , γN),
or equivalently maximizing: ∫

Ω
d̃(x) log

(
d̃(x)

)
dx.

The reason why this criterion gives the expected behavior will become more apparent after
derivation of its gradient at the end of this part. Nevertheless, when considering a single trajectory,
it is intuitive that the most concentrated density distribution is obtained with a straight segment
connecting the endpoints: this point will be made rigorous later.

Letting ε be a perturbation of the curve γj, such that ε(0) = ε(1) = 0, the first order expansion
of −E(γ1, . . . , γN) will be computed in order to get a maximizing displacement field, analogous to
a gradient ascent (the choice has been made to maximize the opposite of the entropy, so that the
algorithm will be a gradient ascent one) in the finite dimensional setting. The notation:

∂F
∂γj

will be used in the sequel to denote the derivative of a function F of the curve γj in the sense that for
a perturbation ε:

F(γj + ε) = F(γj) +
∂F
∂γj

(ε) + o(‖ε‖2).

First of all, please note that since d̃ has integral one over the domain Ω:

∫
Ω

∂d̃(x)
∂γj

(ε)dx = 0

so that:

− ∂

∂γj
E(γ1, . . . , γN)(ε) =

∫
Ω

∂d̃(x)
∂γj

(ε) log
(
d̃(x)

)
dx. (14)
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Starting from the expression of d̃ given in Equation (7), the first order expansion of d̃ with respect
to the perturbation ε of γj is obtained as a sum of a term coming from the numerator:

∫ 1

0
K
(
‖x− γj(t)‖

)
‖γ′j(t)‖dt. (15)

and a second one coming from the length of γj in the denominator. This last term is obtained from
the usual first order variation formula of a curve length:∫

[0,1]

∥∥∥γ′j(t) + ε′(t)
∥∥∥ dt =

∫
[0,1]

∥∥∥γ′j(t)
∥∥∥ dt +

∫
[0,1]

〈
γ′j(t)

‖γ′j(t)‖
, ε′(t)

〉
dt + o(‖ε‖2).

Using an integration by parts, the first order term can be written as:

∫
[0,1]

〈
γ′j(t)

‖γ′j(t)‖
, ε′(t)

〉
dt =

−
∫
[0,1]

〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε(t)

〉
dt

(16)

with: (
γ′′j (t)

‖γ′j(t)‖

)
N

=
γ′′j (t)

‖γ′j(t)‖
−

γ′j(t)

‖γ′j(t)‖

〈
γ′j(t)

‖γ′j(t)‖
,

γ′′j (t)

‖γ′j(t)‖

〉
the normal component of:

γ′′j (t)

‖γ′j(t)‖
.

Please note that when dealing with planar curves (i.e., with values in R2), it is κj(t)Nj(t) with κj
(resp. Nj) the curvature (resp. the unit normal vector) of γj.

The integral in (15) can be expanded in a similar fashion. Using as above the notation ()N for
normal components, the first order term is obtained as:

∫
[0,1]

〈(
γj(t)− x
‖γj(t)− x‖

)
N

, ε(t)

〉
K′
(
‖γj(t)− x‖

)
‖γ′j(t)‖dt

−
∫
[0,1]

〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε(t)

〉
K
(
‖γj(t)− x‖

)
dt.

(17)

From the expressions in (16) and (17), the first order variation of the entropy is:

1

∑N
i=1 li

( ∫
[0,1]

〈∫
Ω

(
γj(t)− x
‖γj(t)− x‖

)
N

K′
(
‖γj(t)− x‖

)
log(d̃(x))dx, ε(t)

〉
‖γ′j(t)‖dt

−
∫
[0,1]

(∫
Ω

K
(
‖γj(t)− x‖

)
log(d̃(x))dx

)〈( γ′′j (t)

‖γ′j(t)‖

)
N

, ε(t)

〉
dt

+

(∫
Ω

d̃(x) log(d̃(x))dx
) ∫

[0,1]

〈(
γ′′j (t)

‖γ′j(t)‖

)
N

, ε(t)

〉
dt

)
.

(18)
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As expected, only moves normal to the trajectory will change at first order the value of the
criterion: the displacement of the curve γj will thus be performed at t in the normal bundle to γj and
is given, up to the (∑N

i=1 li)−1 term, by:

∫
Ω

(
γj(t)− x
‖γj(t)− x‖

)
N

K′
(
‖γj(t)− x‖

)
log(d̃(x))dx‖γ′j(t)‖

−
(∫

Ω
K
(
‖γj(t)− x‖

)
log(d̃(x))dx

)( γ′′j (t)

‖γ′j(t)‖

)
N

+

(∫
Ω

d̃(x) log(d̃(x))dx
)( γ′′j (t)

‖γ′j(t)‖

)
N

.

(19)

The first term in the expression will favor moves towards areas of high density, while the second
and third ones are moving along normal vector and will straighten the trajectory. This last point can
be enlightened by considering the case of a single planar curve with fixed endpoints.

Proposition 3. Let a, b be fixed points in R2 and K be a kernel as in (7). The segment [a, b] is a critical point
for the entropy associated with the curve system in R2 consisting of single smooth paths with endpoints a, b.

Proof. Let the segment [a, b] be parametrized as γ : t ∈ [0, 1] 7→ a + tv with v the vector (b − a).
Starting with the expression (19), it is clear that the second and third terms occurring in the formula
will vanish as the second derivative of γ is zero. Let u be the unit normal vector to γ. Any point x
in R2 can be written as x = a + θv + ξu, θ, ξ ∈ R, so that γ(t)− x = (t− θ)v− ξu and ‖γ(t)− x‖ =√
(t− θ)2‖b− a‖2 + ξ2. The change of variables x → (θ, ξ) has Jacobian ‖v‖ = ‖b− a‖. For a fixed

t ∈ [0, 1], it becomes:

∫
R2

(
γ(t)− x
‖γ(t)− x‖

)
N

K′ (‖γ(t)− x‖) log(d̃(x))dx‖γ′(t)‖ =

‖b− a‖2
∫
R

∫
R

−ξ√
(t− θ)2‖b− a‖2 + ξ2

K′
(√

(t− θ)2‖b− a‖2 + ξ2
)

log(d̃(θ, ξ))dξdθ.
(20)

The density d̃ for the γ curve is expressed in ξ, θ coordinates as:

∫
[0,1]

K
(√

(t− θ)2‖b− a‖2 + ξ2
)

dt

and is an even function in ξ. The same is true for K′ (‖γ(t)− x‖). Finally, the mapping:

ξ 7→ −ξ√
(t− θ)2‖b− a‖2 + ξ2

is odd for a fixed θ, so that the whole integrand is odd as a function of ξ. By the Fubini theorem,
integrating first in ξ will therefore yield a vanishing integral, proving the assertion.

The result still holds in Rq, the only different aspect being that x is now expanded as x = a +
θv + ∑

q−1
i=1 ξiui with ui, i = 1, . . . , q − 1 an orthonormal basis of the orthogonal complement of Rv

in Rq. Rewriting γ(t) − x = (t − θ)v − ∑
q−1
i=1 ξiui and ‖γ(t) − x‖ =

√
(t− θ)2‖b− a‖2 + ∑

q−1
i=1 ξ2

i ,
the same parity argument can be applied on any of the components ξi, i = 1, . . . , q− 1, showing that
the integral is vanishing.

The effect of curve straightening is present when minimizing the entropy of a whole curve
system, but is counterbalanced by the gathering effect. Depending on the choice of the kernel
bandwidth, one or the other effect is dominant: straightening is preeminent for low values, being
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the only remaining effect in the limit, while gathering dominates at high bandwidths. For the air
traffic application, a rule of the thumb is to take 2–3-times the separation norm as an effective support
for the kernel. Using an adaptive bandwidth may be of some interest also: starting with medium to
high values favors curve gathering; then, gradually reducing it will straighten the trajectories.

Using the scaled arclength in the entropy gives an equivalent, but somewhat easier to interpret
result. Starting with the expression (7) that takes in this case the form:

d̃ : x 7→ ∑N
i=1 li

∫ 1
0 K (‖x− γi(η)‖) dη

∑N
i=1 li

. (21)

Let i ∈ {1, . . . , N} be fixed. An admissible variation of the curve γi is a smooth mapping
from ]− a, a[×[0, 1] to Rq, with a > 0 satisfying the following properties:

(a) ∀η ∈ [0, 1], φ(0, η) = γi(η).
(b) ∀(t, η) ∈]− a, a[×]0, 1[, ‖∂ηφ(t, η)‖ = lφ(t) with lφ(t) the length of the curve η 7→ φ(t, η).
(c) ∀t ∈]− a, a[, φ(t, 0) = γi(0), φ(t, 1) = γi(1).

Taking the derivative with respect to tat zero of Equation (b) yields:〈
∂t∂ηφ(0, η), ∂ηφ(0, η)

〉
= ∂tlφ(0)li.

Letting T(η) be the unit tangent vector to γi at η and noting that ∂ηφ(0, η) = liT(η), it becomes:〈
∂t∂ηφ(0, η), T(η)

〉
= ∂tlφ(t). (22)

This relation puts a constraint on the variation of the tangential component of the curve
derivative and shows that it has to be constant in η.

Proposition 4. Let D be the mapping from ]− a, a[×Rq to R+ defined by:

D : (t, x) 7→
∑N

j=1,j 6=i lj
∫ 1

0 K
(
‖x− γj(η)‖

)
dη +

∫ 1
0 K (‖x− φ(t, η)‖) dη

∑N
j=1 lj

.

where η refers collectively to the scaled arclength parameter for each curve. The partial derivative ∂tD(0, x) is
given by:

∂tD(0, x) =
li

∑N
j=1 lj

∫ 1

0

〈
γi(η)− x
‖γi(η)− x‖ , ∂tφ(0, η)

〉
K′ (‖γi(η)− x‖) dη.

The proof is straightforward and is omitted. From Proposition 4, the variation of the entropy
is derived:

∂tE = −
∫
Rq

li
∑N

j=1 lj

∫ 1

0

〈
γi(η)− x
‖γi(η)− x‖ , ∂tφ(0, η)

〉
K′ (‖γi(η)− x‖) dηdx. (23)

This relation is equivalent to (18): it can be seen by splitting the terms into a normal and
a tangential component. The first one yields:

−
∫
Rq

li
∑N

j=1 lj

∫ 1

0

〈(
γi(η)− x
‖γi(η)− x‖

)
N

, (∂tφ(0, η))N

〉
K′ (‖γi(η)− x‖) dηdx.
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For the tangential part, the starting point is the relation:

∂η (K (‖φ(0, η)− x‖) T(η)) =liK′ (‖φ(0, η)− x‖)
〈

φ(0, η)− x
‖φ(0, η)− x‖ , T(η)

〉
T(η)

+ K (‖φ(0, η)− x‖) ∂ηT(η).
(24)

where the subscript T stands for tangential component. It becomes:

li
∑N

j=1 lj

∫ 1

0

〈(
γi(η)− x
‖γi(η)− x‖

)
T

, (∂tφ(0, η))T

〉
K′ (‖γi(η)− x‖) dηdx =

li
∑N

j=1 lj

∫ 1

0

〈
∂η (K (‖φ(0, η)− x‖) T(η)) , (φ(0, η))T

〉
dηdx

− li
∑N

j=1 lj

∫ 1

0

〈
K (‖φ(0, η)− x‖) ∂ηT(η), (φ(0, η))T

〉
dηdx.

(25)

With an integration by parts, the first integral in the right-hand side becomes:

− li
∑N

j=1 lj

∫ 1

0

〈
K (‖φ(0, η)− x‖) T(η), ∂η (∂tφ(0, η))T

〉
dηdx =

− li
∑N

j=1 lj

∫ 1

0
K (‖φ(0, η)− x‖) ∂tlφ(0)dηdx.

(26)

Gathering terms, the expression (18) is recovered. As expected, only the normal components
enter the relation, but it has to be noted that the tangential component of ∂tφ(0, η) is not arbitrary and
can be deduced from (22). The gradient with respect to the i-th curve is obtained from the expression
of the entropy variation and can be written in its simplest form as:

li
∑N

j=1 lj

∫
Rq

∫ 1

0

γi(η)− x
‖γi(η)− x‖K′ (‖γi(η)− x‖) dη log d̃(x)dx. (27)

where d̃ is the estimated spatial density. One must keep in mind the constraint on ∂tφ(0, η) that is
hidden within the apparent simplicity of the expression.

3. Numerical Implementation

The two formulations (19) and (27) of the gradient may be used. The first one is more
complicated, but does not require any additional constraint to be taken into account. The second
one cannot be applied readily as the tangential component must comply with Relation (22). In both
cases, it is needed to evaluate a spatial integral, which may yield to prohibitive computational time,
especially in high dimensions. In the air traffic application, only planar 3D curves are considered,
greatly simplifying the problem. Nevertheless, the performance of the algorithms is still a concern,
and the choice made was to replace the spatial integral by a discrete sum over an evenly-spaced grid.
From now, it is assumed that all curves are planar, so that the ambient space for the spatial density
d̃ is R2. Going back to the expression of d̃ given by (7), a first step is to replace the integral over t
by a discrete sum. In practice, curves are described by a sequence of sampled points γi(tij) where
the sampling times tij will be assumed to be identical for all curves. This assumption is not satisfied
in the air traffic application, so that a pre-processing step must be taken before the actual entropy
minimization stage. It will not be described here, as any standard interpolation procedure can be
applied with negligible differences on the final result. To obtain the results presented here, a cubic
spline smoother was used. Since the sampling times are assumed to be the same for all trajectories,
the double subscript will be dropped, so that the samples on each trajectory will be denoted as
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γij = γi(tj). It is further assumed that the derivative γ′ij = γ′i(ti) is available, most of the time
through a numerical approximation. Given a quadrature formula on [0, 1] with points tj, j = 1, . . . , m
and weights wj, j = 1, . . . , m, the density may be approximated at x ∈ R2 by:

d̃(x) =
1

∑N
i=1 li

N

∑
i=1

m

∑
j=1

wjK
(
‖x− γij‖

)
‖γ′ij‖. (28)

where the lengths li, i = 1, . . . , N are also obtained with the same quadrature rule:

li =
m

∑
j=1

wj‖γ′ij‖.

When γ′ij is computed in a numerical way, it may be expressed as:

γ′ij =
m

∑
k=1

w̃jkγi,k.

where the weights w̃jk are often obtained through the application of the Lagrange interpolation
formula to ensure exactness on polynomials up to a given degree. In a more compact form, it can
be written in matrix form as: 

γ′i1
...

γ′iq

 = W̃

 γi1
...

γiq


where the matrix W̃ has as entries the weights w̃jk. The cost of evaluating d̃ at a single point is
in o(Nm), with the kernel evaluation being dominant. When dealing with points in R2 or R3 and
compactly-supported kernels, a simple trick greatly reduces the time needed to compute d̃. First of
all, the domain of interest is discretized on an evenly-spaced grid, so that the points of evaluation
of the density d̃ are its vertices xij, i = 1, . . . , nx, j = 1, . . . , ny. The grid step δx (resp. δy) in the
first (resp. second) coordinate is the difference between any two adjacent vertices δx = xi+1,j − xi,j
(resp. δy = xi,j+1 − xi,j (most of the time, δx = δy). Since the expression (28) is linear, the computation
can be performed by accumulating values K(‖xkl − γij‖)‖γ′ij‖ for a fixed couple (i, j), where only
the points xkl close enough to γij are considered. In fact, the evaluation can be written as a 2D
discrete convolution:

d̃(xkl) = ∑
i=1,...,N,j=1,...,m

wjK(‖xkl − γij‖)‖γ′ij‖. (29)

When the support of K is small compared to the overall spatial domain, much computation is
saved using this procedure. Furthermore, it can be thought of as 2D filtering, so that highly efficient
algorithms coming from the field of image processing can be applied: in particular, computing
the density on a graphics processing unit (GPU) is straightforward and allows one to decrease the
computational time by at least a factor of ten. When dealing with the scaled arclength, the derivative
term is not present, and a factor of li appears in from of the integral. The discrete version becomes:

d̃(xkl) = ∑
i=1,...,N,j=1,...,m

liwjK(‖xkl − γij‖) (30)

where γij = γi(ηj), ηj being in correspondence with tj. Please note that the quadrature weights must
be adapted to the abscissa ηj, j = 1, . . . , m and not to the tj, j = 1, . . . , m. Therefore, it is advisable
to resample the curves so that the points ηj, j = 1, . . . , m are, for example, evenly spaced or of the
Gauss–Lobatto form. The former was chosen for the experiments due to its ease of implementation,
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although the second form is probably more efficient from a numerical point of view and will be
investigated in a second stage.

Having the density at hand, the gradient of the entropy with respect to the points
γij, i = 1, . . . , N, j = 1, . . . , m can be easily computed using a straightforward application of the
formula (19). When dealing with planar curves, a simplification occurs for the second derivative
term since for a smooth curve γj: (

γ′′j (t)

‖γ′j(t)‖

)
N

= κ(t)N(t).

where κ is the curvature and N the unit normal vector. These quantities may be computed using
numerical differentiation, but a coarse approximation based on the rotation rate of the vectors
γi,j+1 − γi,j, γi,j+2 − γi,j+1 works well in many cases.

The case of scaled arclength parametrization needs some extra attention, due to the condition
on the tangential component. The simplest approach is to move the points γij according to an
unconstrained gradient, then to re-sample the obtained curve so as to get adjusted γij that correspond
to the abscissa ηj, j = 1, . . . , m.

In a numerical implementation, the scaling factor in front of the whole expression may be
dropped due to the fact that all gradient-based algorithms will use an automatically-tuned step
length. As usual with gradient algorithms, one must carefully select the step taking in the maximizing
direction in order to avoid divergence. A simple fixed step strategy was first applied and gives
satisfactory results on small datasets. A safer approach is to adapt the step size so as to ensure
a sufficient decrease of the entropy. Due to the potentially huge dimension of the search space,
this procedure has to be simple enough. An approximate quadratic search [12] was used in the
final implementation.

The procedure applied to one day of traffic over France yields the picture of Figure 3. As expected,
a route-like network emerges. In such a case, since the traffic comes from an already organized
situation, the recovered network is indeed a subset of the route network in the french airspace.
Please note that there is a trade-off between the density concentration and the minimal curvature of
the recovered trajectories, as already mentioned. The kernel bandwidth was chosen empirically in
the example presented, with the aid of visual interaction.

(a) (b)

Figure 3. Traffic of 24 February 2013: (a) Initial traffic; (b) Bundled traffic.

In the second example of Figure 4, the problem of automatic conflict solving is addressed. In the
initial situation, aircraft are converging to a single point, which is unsafe. Air traffic controllers will
proceed in such a case by diverting aircraft from their initial flight path so as to avoid each other,
but only using very simple maneuvers. An automated tool will make full use of the available airspace,
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and the resulting set of trajectories may fail to be manageable by a human: in the event of a system
failure, no backup can be provided by controllers. The entropy minimization procedure was added to
an automated conflict solver in order to end up with flight paths still tractable by humans. The final
result is shown in the right part of Figure 4, where encounters no longer exists, but aircraft are bound
to simple trajectories, with a merging and a splitting point. Note that since the automated planner
acts on velocity, all aircraft are separated in time on the inner part.

(a) (b)

Figure 4. (a) Initial flight plans; (b)Final flight plans.

4. Conclusions and Future Work

Algorithms coming from the field of shape spaces emerge as a valuable tool for applications
in ATM. In this work, the foundations of a post-processing procedure that may be applied after an
automated flight path planner are presented. Entropy minimization makes straight segment bundles
emerge, which fulfills the operational requirements. Computational efficiency has to be improved in
order to release a usable building block for future ATM systems. One way to address this issue is to
compute kernel density estimators using GPUs, which excel in this kind of task, very similar to texture
manipulations. Furthermore, statistical properties, such as the optimal choice of the bandwidth
parameter in the kernel estimation, should be explored in more detail in the next step of this work.

Another important point that must be addressed in future works deals with the flight paths
that are very similar in shape, but are oriented in opposite directions. As the spatial density is not
sensitive to the directional information, the entropy-based procedure presented in this paper will
tend to aggregate flight paths that should be sufficiently separated in order to prevent hazardous
encounters. In [13], a notion of density based on position and velocity is developed. This work relies
on Lie group modeling as a unifying state representation that takes into account the direction and the
position of the curves. The curve system entropy has been extended to this setting.
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