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Abstract: In order to improve the identification accuracy of the high voltage circuit breakers’ (HVCBs)
mechanical fault types without training samples, a novel mechanical fault diagnosis method of
HVCBs using a hybrid classifier constructed with Support Vector Data Description (SVDD) and
fuzzy c-means (FCM) clustering method based on Local Mean Decomposition (LMD) and time
segmentation energy entropy (TSEE) is proposed. Firstly, LMD is used to decompose nonlinear and
non-stationary vibration signals of HVCBs into a series of product functions (PFs). Secondly, TSEE is
chosen as feature vectors with the superiority of energy entropy and characteristics of time-delay
faults of HVCBs. Then, SVDD trained with normal samples is applied to judge mechanical faults
of HVCBs. If the mechanical fault is confirmed, the new fault sample and all known fault samples
are clustered by FCM with the cluster number of known fault types. Finally, another SVDD trained
by the specific fault samples is used to judge whether the fault sample belongs to an unknown
type or not. The results of experiments carried on a real SF6 HVCB validate that the proposed
fault-detection method is effective for the known faults with training samples and unknown faults
without training samples.

Keywords: high voltage circuit breakers; mechanical fault diagnosis; local mean decomposition;
time segmentation energy entropy; support vector data description; fuzzy c-means

1. Introduction

As the indispensable equipment in power systems, high voltage circuit breakers (HVCBs) are
very important for ensuring the power supply reliability and safe operation of the power system.
Mechanical faults are the main reasons that affect the reliability of HVCBs [1–5]. It is therefore necessary
to carry out the research on the diagnosis method of HVCB mechanical faults in order to ensure the
safe and stable running of the power system.

The typical mechanical fault diagnosis method for HVCBs includes scheduled maintenance
and condition-based maintenance. The scheduled maintenance is not only time consuming and
laborious, but also leads to excessive operations and overhauls. It may result in needless intervention
and even cause faults of HVCBs during the maintenance. The fault diagnosis results of scheduled
maintenance are estimated by experience of maintenance workers [6,7]. In order to avoid the limitation
of scheduled maintenance for HVCBs, the condition-based maintenance has developed in recent
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years. Condition-based maintenance is carried out by analyzing the on-line monitoring normal
operating data without additional HVCB operation. Thus, condition monitoring can not only avoid
the inconvenience caused by scheduled maintenance, but can also reduce the damage of HVCBs by
excessive maintenance.

The automatic fault diagnosis accuracy is the pivotal issue of condition-based maintenance to
ensure the operational reliability of a power system. Most of the studies on automatic fault diagnosis
method have not considered the limitation of fault samples [8–14]. They only choose normal samples
and several known types of fault samples as training samples to train multi-classifiers and carry out
fault diagnosis. However, in the real power system, the operation of HVCBs is rare. It is difficult
to acquire enough fault samples with all fault types. Furthermore, the objective of the traditional
method is to achieve the highest comprehensive recognition accuracy of the normal state and all types
of faults. It can thus easily misidentify the fault types without training samples as normal samples.
Here, we define the known fault types as the fault types which have occurred and been recorded in
a power system, or can be obtained in a laboratory environment. Unknown fault types are the fault
types which have not happened in a power system, or cannot be obtained by experiment for reasons of
cost, etc. Even if the fault state can be detected, it is still easy to misidentify the unknown fault types as
known fault types, which may affect the targeted maintenance of HVCBs [5]. Therefore, the traditional
multi-classifiers are not satisfied by the specific circumstance requirement of HVCB fault diagnosis.

At present, the commonly used fault diagnosis methods mainly include the observer-based
method [15–17], vibration analysis method [11–14], etc. The observer-based method is often used
to diagnose the nonlinear systems with uncertain parameters. It has been widely applied in fault
diagnosis fields such as the fault diagnosis of wind turbines [15]. However, because the operation of
HVCBs is rare, it is very difficult to acquire enough fault samples and construct reliable mathematical
models for HVCB fault diagnosis. Vibration analysis is an effective approach to fault diagnosis [5,18].
Vibration signals, generated during the opening/closing operation of HVCBs, contain important
information about the mechanical state. Therefore, vibration analysis has garnered more and more
attention in HVCB fault diagnosis [14,19]. The signal processing method of vibration signals is the
foundation of mechanical fault feature extraction. The existing signal processing methods such as
short-time Fourier transform (STFT), wavelet packet transform (WPT) [20–22] and empirical mode
decomposition (EMD) [14] are often used to extract the fault feature vector. However, these methods
also have a few limitations. STFT uses a time-frequency window function with fixed width to analyze
signals in the time and frequency domains, so the ability of time-frequency characterizing is limited.
Compared with STFT, WPT has better time-frequency analysis performance [21,22], but its wavelet
basis function needs to be predefined for each component, and final results are influenced greatly
by the wavelet basis function [10,11]. EMD is a self-adaptive time-frequency analysis method for
nonlinear and non-stationary signals. However, the limitations as end effect, mode confusion and
high time consumption affect its application [12,13]. Local Mean Decomposition (LMD), as a new
self-adaptive time-frequency method, was developed by Smith in 2005 [23]. The LMD method can
adaptively decompose a multi-component amplitude-modulated and frequency-modulated (AM–FM)
signal into a series of product functions (PFs). Each PF is the product of an envelope signal and a
purely frequency-modulated signal. The instantaneous frequencies can be derived from the purely
frequency-modulated signal [23,24]. Thus, the LMD method has been widely applied in the rotating
machine fault diagnosis field in recent years [12,13]. However, there has not been any application of
HVCBs in the fault diagnosis field. As with the vibration signals of rotating machine, vibration signals
of HVCBs also show AM-FM features, so the LMD method is suitable for processing the vibration
signal of HVCBs. Although the LMD method is ostensibly similar to the EMD method, the comparison
results show that LMD is better than EMD in some aspects, such as greater ability to mitigate end
effect, less iteration, fewer decomposed components, and so on [10,12].

After processing the vibration signals of HVCBs, the main task is to extract an effective feature
from the obtained components. The energy distribution of the different states of HVCB vibration
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signals has significant discrepancies. Energy entropy can quantitatively describe the complex energy
distribution in the time-frequency area [25]. Therefore, it is effective to choose energy entropy of each
PF component as the feature vector for most mechanical faults. However, for the time-delay faults of
HVCBs such as jam fault of the iron core, it will be difficult to accurately distinguish fault samples
from normal samples [11,14]. Considering that the energy distribution of time-delay faults has an
apparent time delay, the time domain segmentation energy entropy (TSEE) used as the feature vector
could significantly improve the diagnosis ability for time-delay faults.

After the extraction of feature vectors, a classifier is used to automatically identify the fault types
of HVCBs. Support vector machine (SVM) [25,26], back propagation neural network (BPNN) [27,28]
and other traditional multi-classification methods have made a great contribution to fault identification,
but because of the aforementioned drawbacks, traditional multi-classification methods cannot meet
the high reliability requirement of an electrical power system. One-class classifiers can complete the
training only using the normal state samples which are relatively easy to obtain. It is very satisfied
for the high reliability applications [5]. Support Vector Data Description (SVDD) was proposed by
Tax [29]. It has the advantages of faster training and decision, lower requirement for training samples,
strong anti-noise ability and being suitable for small sample. SVDD has been successfully applied to
the field of fault detection. For new fault types without training samples, SVDD can identify them as
fault samples, though it cannot determine whether the fault type is new or not. Fuzzy c-means (FCM)
cluster method [30,31] can divide similar samples into the same class, and it is not dependent on the
training samples. It is thus very useful to analyze the unknown fault sample without training samples.

The main contribution of this paper is to propose a novel mechanical fault diagnosis method
of HVCBs based on LMD, TSEE and the hybrid classifier. This method can solve the problem of
traditional research easily misidentifying the fault types without training samples (unknown fault
types) as normal samples or known fault types. Firstly, LMD is used to decompose vibration signals of
HVCBs into a series of PFs. Secondly, TSEEs are extracted to construct feature vectors for describing the
energy distribution of HVCB vibration signals in the time and frequency domain. Then, a SVDD trained
with normal samples is used to distinguish the normal and fault states of HVCBs. If a mechanical
fault is confirmed, the fault sample and all samples with known fault types are clustered by the FCM
method with the number of known fault types. According to the clustering results, another SVDD
trained with a type of known fault sample is used to judge whether the fault sample belongs to a new
type or not, and the final recognition results are determined. The experiment results are used to prove
the advantage of the new method.

2. Vibration Signal Processing through LMD Method

2.1. Local Mean Decomposition (LMD) Analysis Method

In order to extract effective information about mechanical state from vibration signals,
a multi-component signal is decomposed automatically into a set of mono-component signals which
are called product functions (PFs) using the LMD method. For any signal x(t), it can be decomposed
by the following steps [23].

(1) Determine all local extreme pi of the signal x(t), then calculate the mean value of two successive
extreme pi and pi+1. Therefore, the ith mean value mi can be obtained by:

mi =
pi + pi+1

2
, (1)

All mean values mi calculated by Equation (1) are connected by straight lines first. Then, the local
means are smoothed using moving averaging. The first local mean function m11(t) which is smoothly
varying continuous is obtained.
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(2) The ith envelope estimate ai can be calculated by:

ai =
|pi − pi+1|

2
, (2)

(3) The first envelope function a11(t) can be obtained by the same smoothing method as the local
means. The local mean function m11(t) is separated from original signal x(t), and the resulting
signal denoted as h11(t) can be derived by:

h11(t) = x(t)−m11(t), (3)

(4) In order to achieve the demodulation of h11(t), h11(t) is divided by the envelope function a11(t).

s11(t) = h11(t)/a11(t), (4)

s11(t) is a purely frequency-modulated signal and the procedure should be stopped. Otherwise,
s11(t) should be regarded as the signal to be decomposed, and the steps (1)–(4) are repeated q times
until the condition a1(q+1)(t) = 1 is satisfied. At this point, s1q(t) is a purely frequency-modulated
signal. Therefore, 

h11(t) = x(t)−m11(t)
h12(t) = s11(t)−m12(t)

...
h1q(t) = s1(q−1)(t)−m1q(t)

, (5)

in which 
s11(t) = h11(t)/a11(t)
s12(t) = h12(t)/a12(t)

...
s1q(t) = h1q(t)/a1q(t)

, (6)

When the following condition is satisfied, the iterations should be stopped.

lim
q→∞

a1(q+1)(t) = 1, (7)

However, for practical application, it is too strict to satisfy this criterion. An additional stop
condition can be set as a1(q+1) ∈ [1− ∆e, 1 + ∆e], which will contribute to reducing the number of
iterations, improving the speed of computing and mitigating the impact of end effect, where ∆e is an
established variable.

(5) The envelope signal a1(t) of the first product function PF1(t) is obtained by Equation (8).

a1(t) = a11(t)a12(t) · · · a1q(t) =
q

∏
b=1

a1b(t), (8)

The instantaneous amplitude of PF1(t) is the envelope signal a1(t). The PF1(t) is structured by
the envelope signal a1(t) and the purely frequency-modulated signal s1q (t).

PF1(t) = a1(t)s1q(t), (9)

Actually, PF1(t) is a mono-component AM-FM signal. Its instantaneous frequency can be obtained
by Equation (10)

f1(t) =
1

2π

d[arccos(s1q(t))]
dt

, (10)
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(6) Then, PF1(t) is separated from the original signal x(t) and a new signal u1 (t) is obtained. Take
u1 (t) as a signal to be decomposed and repeat the procedure d times until ud(t) is a constant or a
monotonic function. 

u1(t) = x(t)− PF1(t)
u2(t) = u1(t)− PF2(t)

...
ud(t) = ud−1(t)− PFd(t)

, (11)

Consequently, the original signal x(t) can be reconstructed by all PF components and a residue
ud(t) as Equation (12).

x(t) =
d

∑
m=1

PFm(t) + ud(t), (12)

where d is the number of the derived PF components.
According to the results of LMD, a multi-component signal can be decomposed into a set of

mono-component PF components and a residue. The PF components contain different frequency bands
ranging from high to low. After the decomposition of original signals, the results can clearly reflect the
intrinsic information and local characteristics of the signal, which will contribute to diagnosing the
mechanical faults of HVCBs.

2.2. Analysis of the Results Obtained by the LMD Method

Three types of mechanical fault signals were collected in a field experiment on a real HVCB:
(1) jam fault of the iron core (fault type I); (2) lack of mechanical lubrication (fault type II); (3) base
screw looseness (fault type III). Figure 1 shows the waveform of normal signal and three types of fault
signals. The sampling time of each sample is 150 ms and the sampling frequency is 25.6 kS/s, so each
sample contains 3840 sampling points. The corresponding starting times of four types of signals are
denoted as t1, t2, t3 and t4 with the dashed lines in the figure.
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Figure 1. The measured vibration signal waveform. (a) The signal of normal state; (b) The signal of
fault type I; (c) The signal of fault type II; (d) The signal of fault type III.
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As shown in Figure 1, the starting time of fault type I and fault type II lags behind the normal
signal in different degrees. The maximum amplitude of fault type III is less than the other types of
signals; and the change of amplitude of fault type III is small in sampling time.

The four types of vibration signals are decomposed using LMD and EMD separately. The results
are shown in Figures 2 and 3. In Figures 2 and 3, each component contains 3840 sample points.
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Figure 2. PFs obtained by LMD of different types of vibration signals. (a) PFs obtained by LMD under
the normal state; (b) PFs obtained by LMD under the state of fault type I; (c) PFs obtained by LMD
under the state of fault type II; (d) PFs obtained by LMD under the state of fault type III.

From Figures 2 and 3, we can find that different vibration signals have different numbers of
components. For the same signal, components obtained by LMD are fewer than EMD. This advantage
can guarantee that the feature information will not be divided into a few adjacent decomposition levels
which contain similar information, thus improving the efficiency of decomposition. Starting time of
most PF components obtained from fault type I and fault type II is later than that of the corresponding
PF components of normal signals. In addition, the occurrence moments of energy centers of these two
fault types also lag behind normal signals. The amplitude of most PF components obtained from fault
type III is less than other types of signals. A more comprehensive comparison between LMD and EMD
is presented in Section 5.
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under the normal state; (b) IMFs obtained by EMD under the state of fault type I; (c) IMFs obtained by
EMD under the state of fault type II; (d) IMFs obtained by EMD under the state of fault type III.

3. Feature Extraction Based on Time Segmentation Energy Entropy

By using LMD, a multi-component signal can be decomposed into a set of mono-component
PF components and a residue. The PF components contain different frequency bands ranging from
high to low, so the energy distribution of each PF component generally has obvious differences.
However, as shown in Figure 2, although time-frequency characteristics and energy distribution of
different fault types can be found through visual observation, it is difficult to recognize the HVCB
fault only through simple statistic characteristics (such as maximum, minimum) due to the vibration
signal with complex nonlinear structure. Entropy describes the disorder degree in a system. As an
important part of information theory, Shannon entropy is effective in measuring the disorder degree of
information, especially for a complicated nonlinear signal [32]. It has been widely applied to evaluation
of mechanical conditions and the fault diagnosis field.

Assuming a system appears in several different states x1, x2, · · · , xN , the probability of state xj is
denoted by Pj, and the Shannon entropy H of this system can be defined as:

H = −
N

∑
j=1

PjlogPj, (13)

where Pj ∈ [0, 1] and
N
∑

j=1
Pj = 1. When Pj = 0, PjlogPj = 0.

The energy distribution of the HVCB vibration signal changed in different frequency areas.
When the mechanical faults of HVCB occur, vibration frequency of different parts of mechanical
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structures will be changed significantly. The energy distribution in the same frequency band of
different types of vibration signals has significant differences. Therefore, each frequency component
of vibration signals contains important fault information. The energy entropy [11], developed by
Shannon entropy, can make a quantitative description of energy distribution in both time and frequency
domains. The energy entropy of each PF component can be chosen to construct the feature vector
for mechanical fault diagnosis, but it is difficult to identify the time-delay faults of HVCBs by energy
entropy of each component. To improve the identification ability of time-delay faults of HVCBs, time
segmentation energy entropy (TSEE) is introduced to extract feature vectors.

On the other hand, the different PF contains different characters of time-frequency energy
distribution for fault diagnosis with different effects. The level of PFs used for feature extraction
should be chosen first. Generally, the first few PF components contain the most important and effective
fault information [10,12]. For the different energy distributions, we can compute the ratio of energy
of each PF component to that of the original signal [12]. The ratio, which is called energy ratio here,
is regarded as the selection criterion of PF components. To enhance the persuasion of experimental
results, we take the average of energy ratio of three vibration signals per type. The energy ratio
distribution of four types of vibration signals is shown in Figure 4.
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From Figure 4, we find that the first five PF components of each type of signal contain most of the
energy. Therefore, the first five PF components are chosen to form a component matrix first. Then,
the whole component matrix is segmented into 30 equal sub-matrixes along the time axis (according
to the length of time of signals and the effectiveness of extracted features). Each sub-matrix contains
five time-frequency blocks. Finally, energy entropies of these sub-matrixes are extracted to compose
the TSEE feature vector. The segmentation of the component matrix of the normal signal is shown
in Figure 5.
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Let Ei,j be the energy contained in time-frequency block Bi,j (i = 1, 2, · · · , 5; j = 1, 2, · · · , 30),
and E the total energy contained in the whole component matrix. Ei,j is normalized as

ei,j = Ei,j/E, (14)

According to the basic theory of energy entropy, TSEE of each type of signal can be calculated by:

Hj = −
5

∑
i=1

ei,j · logei,j, j = 1, 2, · · · , 30, (15)

The feature vector of HVCB vibration signals is written as H = [H1, H2, · · · , H30]. H is regarded
as the input vector of a hybrid classifier to diagnose HVCB faults.

4. Hybrid Classifier with Support Vector Data Description (SVDD) and Fuzzy C-Means (FCM)

Due to the excessive dependence of training samples, a traditional multi-class classifier can
misidentify the fault types without training samples as normal samples or the wrong type. Therefore,
a hybrid classifier based on SVDD and FCM is used for fault diagnosis of HVCBs.

4.1. Support Vector Data Description

Support Vector Data Description (SVDD) has received widespread attention in the field of
condition monitoring [33,34]. The basic idea of SVDD is to compute a spherically shaped decision
boundary with minimum radius that encloses most of target samples in a high dimension feature
space [33–36], as illustrated in Figure 6.

Entropy 2016, 18, 322  9 of 19 

 

 
Figure 5. The segmentation of component matrix of normal signal. 

According to the basic theory of energy entropy, TSEE of each type of signal can be calculated 
by: 

5

1
, ,log , 1,2, ,30

i
j i j i jH e e j

=

= − ⋅ =  , (15)

The feature vector of HVCB vibration signals is written as 1 2 30[ ]H ,H , ,H=H  . H is regarded 
as the input vector of a hybrid classifier to diagnose HVCB faults. 

4. Hybrid Classifier with Support Vector Data Description (SVDD) and Fuzzy C-Means (FCM) 

Due to the excessive dependence of training samples, a traditional multi-class classifier can 
misidentify the fault types without training samples as normal samples or the wrong type. Therefore, 
a hybrid classifier based on SVDD and FCM is used for fault diagnosis of HVCBs. 

4.1. Support Vector Data Description 

Support Vector Data Description (SVDD) has received widespread attention in the field of 
condition monitoring [33,34]. The basic idea of SVDD is to compute a spherically shaped decision 
boundary with minimum radius that encloses most of target samples in a high dimension feature 
space [33–36], as illustrated in Figure 6. 

μ

y

yD

 
Figure 6. The basic idea of SVDD for mechanical fault detection of HVCBs. 

Given datasets =, 1,2,...,ix i n , they are mapped into a high-dimensional feature space through 
nonlinear mapping ( ): x xφ φ→  at first. Then a hypersphere μ,R( )  with minimum volume that 
encloses most of target samples is obtained in feature space, where μ  and R  denote the center and 

Figure 6. The basic idea of SVDD for mechanical fault detection of HVCBs.



Entropy 2016, 18, 322 10 of 19

Given datasets xi, i = 1, 2, ..., n, they are mapped into a high-dimensional feature space through
nonlinear mapping φ : x → φ(x) at first. Then a hypersphere (µ, R) with minimum volume that
encloses most of target samples is obtained in feature space, where µ and R denote the center and radius
of the hypersphere respectively. This may boil down to the following quadratic programming problem: minF (R, µ, ξ) = R2 + C∑

i
ξi

s.t. ||φ (xi)− µ||2 ≤ R2 + ξi, ξi ≥ 0, ∀i
, (16)

where ξi is a slack variable, it is introduced to allow some sample points to lie outside the sphere. C is
the penalty parameter, which is used to control the tradeoff between the volume of the hypersphere
and the number of outliers.

A kernel function is chosen to satisfy the condition of K(xi, xj) =
〈
φ(xi), φ(xj)

〉
,

where
〈
φ(xi), φ(xj)

〉
denotes the inner product of φ(xi) and φ(xj) in feature space. The expression of

RBF Gaussian kernel function adopted in this paper is as follows:

K(xi, xj) = exp

{
−
∣∣∣∣xi − xj

∣∣∣∣2
2σ2

}
, (17)

In order to solve the optimization problem (16), Lagrange multipliers αi are introduced. Then,
Equation (16) is transformed into

max
αi

L = ∑
i

αiK (xi, xi)−∑
i,j

αiαjK
(
xi, xj

)
s.t. ∑

i
αi = 1, i = 1, 2, · · · , n

0 ≤ αi ≤ C, i = 1, 2, · · · , n

, (18)

Lagrange multipliers αi can be obtained by Equation (18). When αi > 0, the corresponding sample
xs is called a support vector. The radius of the hypersphere can be obtained by:

R2 = K (xs, xs)− 2∑
i

αiK(xi, xs) + ∑
i,j

αiαjK(xi, xj), (19)

After completing all of the above process, the training of SVDD is finished. Here, we choose
the normal signals as target samples. Thus, for any given HVCB vibration sample y, the distance
D from the sample point to the center of the hypersphere is used to compare with the radius of the
hypersphere. Then, if there are mechanical faults of HVCBs, they can be detected. The distance D can
be calculated by:

D2
y = ||y− µ||2 = K(y, y)− 2∑

i
αiK(xi, y) + ∑

i,j
αiαjK(xi, xj), (20)

If D2
y > R2, it shows that test sample y is a fault sample. Otherwise, it is a normal sample. Because

of the insufficient samples of HVCB faults, SVDD has the over-fitting problem to some extent. SVDD
is only suitable for separating the testing set into two types. Therefore, the excessive use of SVDDs
will increase the complexity and degree of over-fitting of the classifier.

4.2. Fuzzy C-Means Algorithm

The fuzzy c-means algorithm (FCM), based on objective function, is one of the most classic
clustering algorithms. It is very useful for unsupervised clustering. The objective of FCM adopted in
the new method is to carry on preliminary classification of the new sample which is confirmed as a
fault condition. In the condition of taking the number of known fault types as the clustering number,
the possible type of the new sample can be determined only by clustering analysis of one time. On this
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basis, only one additional SVDD classifier is needed to judge whether the new sample belongs to an
unknown type or not. Therefore, the use of FCM in the new method is not only able to reduce the
complexity of the classifier, but also helps avoid the over-fitting problem caused by the excessive use
of SVDDs.

Let X = {x1, x2, · · · , xn} as a data set; Z = [z1, z2, · · · , zc]
T is cluster center vector; U = [uij]n×c is

the membership matrix; c is the number of clusters; n is the number of data samples; uij denotes the
membership of data point xi in the jth cluster. The normalized uij must satisfy the following condition:

c
∑

j=1
uij = 1, ∀i

uij ∈ [0, 1], ∀i, j

0 <
n
∑

i=1
uij < n, ∀n

, (21)

δij is the Euclidean distance between data point xi and clustering center zj, it can be calculated by
the following Equation:

δij =
∣∣∣∣xi − zj

∣∣∣∣ = (xi − zj)
T(xi − zj), (22)

In order to get the membership matrix U, the objective function of FCM is defined as:

J(U, Z) =
n

∑
i=1

c

∑
j=1

(uij)
t(δij)

2, (23)

where t is the weighting fuzziness parameter. It must satisfy the condition of t > 1 to get the good result
and it is generally chosen as 2. The essence of FCM clustering is an iterative process to calculate the
membership matrix U and cluster center vector Z which minimize the objective function J. The steps
are as follows [28]:

FCM Algorithm
Step 1. Determine c and t, initialize U and let iter = 0, (ε > 0).
Step 2. Compute clustering centers (zj) by Equation (24):

zj =
n

∑
i=1

(uij)
txi/

n

∑
i=1

(uij)
t, (24)

Step 3. Update U by Equation (25):

uij = 1/
c

∑
w=1

(δij/δwj)
2

t−1 , (25)

Step 4. Compute
∣∣∣∣∣∣z(iter+1) − z(iter)

∣∣∣∣∣∣,
IF
∣∣∣∣∣∣z(iter+1) − z(iter)

∣∣∣∣∣∣ < ε, STOP

ELSE iter = iter + 1, return to Step 2.

4.3. Fault Diagnosis Process of the New Method

In order to solve the problem whereby traditional analyses can easily misidentify unknown fault
types as normal condition or known fault types, a novel mechanical fault diagnosis method of HVCBs
based on LMD, TSEE and hybrid classifier is proposed. On the premise of feature extraction using
LMD, TSEE feature is extracted by time-domain segmentation, then a hybrid classifier constructed
with SVDD and FCM is used for fault diagnosis. In the process of classification, SVDD is first used to
judge whether a fault occurs. If a mechanical fault is confirmed, FCM is used to carry on preliminary
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classification of the fault sample. According to the clustering result, corresponding SVDD can be used
to judge whether the fault sample belongs to an unknown type or not.

The whole process of fault diagnosis method proposed in this paper is as follows:

(1) LMD is used to decompose vibration signals of HVCBs into a series of PFs.
(2) The first five PF components are chosen according to energy ratio to form a component matrix;

the whole component matrix is then segmented into 30 equal time-domain sub-matrixes along
the time axis. Each sub-matrix contains five time-frequency blocks. Then energy entropies of
these sub-matrixes are extracted to compose the TSEE feature vector.

(3) The normal samples are used to train the SVDD denoted as SVDD0. Through SVDD0,
fault samples are determined. Subsequently, fault sample and I types of known fault
samples are clustered using the FCM method with cluster number I, before the corresponding
SVDDi (1 ≤ i ≤ I) is chosen to judge whether the fault sample belongs to a new type or not.
SVDDi is trained with the ith type of known fault samples.

Figure 7 shows the flow chart of the fault diagnosis method.
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5. Experimental Results and Analysis

The experiment is carried out on a LW9-72.5 series outdoor SF6 HVCB (Siemens High Voltage
Switchgear, Shanghai, China). In the vibration signal acquisition system, a CA-YD-182A piezoelectric
acceleration sensor (Jiangsu United Electronic Technology, Yangzhou, China) is used to collect the
vibration signal. The NI-9234 DAQ device made by National Instruments (NI, Austin, TX, USA) is used
to record the data. Figure 8 shows the vibration signal acquisition system for a HVCB. The sampling
frequency is 25.6 kS/s. When HVCBs receive a related command, the vibration signal acquisition
system receives the command at the same time and starts recording the vibration data. Therefore,
each signal sample takes the same amount time that HVCBs need to receive the startup command
to begin recording data. It is useful for analyzing time-delay faults of HVCBs. With the purpose of
avoiding HVCB damage from excessive opening/closing operation, just 40 samples per fault type and
40 normal samples were collected.
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5.1. Performance Comparison between LMD and Empirical Mode Decomposition (EMD)

The essence of the end effect is that the envelope of the signal is distorted, which will add some
fake components to the original signal. Therefore, the total energy of components will be increased.
The change of energy before and after decomposition can be used to evaluate the influence of the end
effect [34].

In order to make a quantitative evaluation of decomposition results of LMD and EMD, the change
of root mean square (RMS) is regarded as an index to indicate the change of energy before and after
decomposition [37]. The evaluation index θ is defined as:

θ =

∣∣∣∣( d
∑

m=1
RMSPFm + RMSu)− RMSx

∣∣∣∣
RMSx

, (26)

where RMSPFm , RMSu, and RMSx denote the RMS of the mth PF component, the RMS of residue ud
and the RMS of original signal x(t), respectively. The RMS of original signal x(t) can be obtained by:

RMSx =

√√√√[
T

∑
f=1

x2( f )]/T, (27)

in which, f = 1, 2, · · · , T denotes the number of sampling points and T = 3840.
According to the definition of θ, it is nonnegative. Moreover, a higher value of θ indicates the

larger change of energy, the greater influence of end effect and the lower precision.
Three normal signals were chosen as test samples, and then decomposed by LMD and EMD

respectively. The average number of components, average decomposition time and evaluation index θ

obtained by LMD and EMD are shown in Table 1.

Table 1. The contrast of LMD and EMD decomposition result.

Decomposition
Method

Average Number of
Components

Average Decomposition
Time/s

Average Evaluation
Index θ

LMD 8 0.076 0.235
EMD 11 0.242 0.389

Based on Table 1, we find that the average number of components obtained by the LMD method
is less than EMD. This characteristic guarantees that the feature information will not be divided into a
few adjacent decomposition levels which contain similar information. It improves the efficiency and
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precision of the decomposition result of LMD. In terms of decomposition time, the EMD method needs
more time than LMD. This is because cubic spline interpolation is used to create the upper and lower
envelopes in the process of EMD. Furthermore, the value of evaluation index θ obtained by LMD is
smaller than EMD, i.e., the energy of components obtained by LMD has smaller change, which may
reduce the influence of end effect to some extent.

5.2. Feature Extraction of Measured Signals and Analysis

Figure 9 shows the TSEE feature distribution of four types of vibration signals. For the sake
of clarity, only three data samples of each type are listed. Figure 9 shows that feature distributions
of different types of vibration signals have obvious differences. The fourth characteristic value of
the normal signal is the maximum. Compared with the normal signals, the occurrence moments of
the maximum of TSEE extracted from fault type I and fault type II are delayed to different degrees.
The maximum of TSEE extracted from the fault type III is less than the other three signals.
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In the literature [9], the energy entropy of intrinsic mode function (IMF), which was called EMD
energy entropy, was extracted. To validate the superiority of the feature extraction method proposed in
this study, we follow the feature extraction method in the literature [9], and extracted energy entropy
of five PF components to construct a five-dimension feature vector. Here the energy entropy of each
PF component is called LMD energy entropy. Figure 10 shows the LMD energy entropy feature
distribution of four types of vibration signals. For the sake of clarity, only three data samples of each
type is listed. As is evident in Figure 10, there are no significant differences in the LMD energy entropy
feature distribution of four types of signals, especially for normal signal and time-delay fault signals.
This characteristic of the LMD energy entropy method will degrade the performance of a classifier.
A more comprehensive comparison between TSEE and LMD energy entropy in diagnosis ability is
made in the following section.
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5.3. Fault Diagnosis Using Hybrid Classifier Based on SVDD and FCM

To prove the ability to distinguish normal and fault states of different classification methods,
a comparison among SVDD, SVM and BPNN is presented. The TSEE is selected as the input vector
of the classifier. Before using a classifier to classify new content, we first need to train the classifier.
The 20 samples of each type are selected randomly as the train samples. The remaining 20 samples
of each type are taken as test samples. The training samples of the normal state are used to train
SVDD0. A total of 60 training samples of normal state, fault type I and fault type III are used to
train the SVM and BPNN. The remaining 60 samples of those three types are chosen as test samples.
Constant parameters of the SVDD are set as C = 0.33, σ = 0.71 in accordance with the method in the
literature [38]. The discriminant results of the types contained in the training samples are shown in
Table 2, where the state discriminant accuracy is used to reflect the ability of different classifiers to
judge whether there is a fault in the HVCBs.

Table 2. Fault-detection ability of different classifiers with TSEE.

Classifier Test Sample
Discriminant Result

State Discriminant Accuracy/%
Normal State Fault State

SVDD0

Normal state 19 1 95
Fault type I 0 20 100

Fault type III 0 20 100

SVM
Normal state 18 2 90
Fault type I 0 20 100

Fault type III 3 17 85

BPNN
Normal state 18 2 90
Fault type I 0 20 100

Fault type III 4 16 80

As illustrated in Table 2, for the normal and fault-type samples with training samples,
the fault-detection accuracy of SVDD is significantly higher than that of SVM and BPNN. Although
SVDD failed to identify all the normal samples, it has not identified fault samples as normal samples.
The classification ability of SVM approximates with BPNN methods. However, for fault type III, both
of the two methods mistakenly identified some fault samples as normal samples. In fact, for HVCB
fault detection, the impact of misidentifying fault samples as normal is much more serious than
misidentifying normal samples as fault. Thus, for the types contained in the training samples, SVDD
has better fault-detection ability than SVM and BPNN. In order to compare the detection effectiveness
of the TSEE and LMD energy entropy feature, we select LMD energy entropy as input feature vector to
repeat the above experiment, and a comparative result is shown in Table 3.
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Table 3. Fault-detection ability of different classifier with LMD energy entropy.

Classifier Test Sample
Discriminant Results

State Discriminant Accuracy/%
Normal State Fault State

SVDD0

Normal state 16 4 80
Fault type I 2 18 90

Fault type III 1 19 95

SVM
Normal state 14 6 70
Fault type I 7 13 65

Fault type III 2 18 90

BPNN
Normal state 15 5 75
Fault type I 9 11 55

Fault type III 2 18 90

From Tables 1 and 3 it can be seen, when selecting the LMD energy entropy as the input feature
vector, the state detection results of three classification methods are dramatically inferior to those
obtained by using TSEE, especially for the normal states and time-delay faults. Therefore, LMD energy
entropy is not suitable for HVCB mechanical fault detection.

Some new fault types maybe occur in the real power systems. At this point, due to a lack of
training samples, traditional multi-classification methods can misidentify these fault types as normal
state, which will affect the stable operation of the power system. Therefore, it is very important to
identify the new fault types as unknown fault states by accurately using the classifier. A contrast
experiment was designed to compare the unknown fault-detection ability of SVDD, SVM and BPNN.
In this experiment, 20 samples of fault type II are chosen as test samples and not joined in training
samples. The detection results of fault samples without training samples are shown in Table 4.

Table 4. Detection results of the fault type (fault type II) without training samples.

Classifier
Discriminant Results

State Discriminant Accuracy/%
Normal State Fault State

SVDD 0 20 100
SVM 18 2 10

BPNN 19 1 5

As shown in Table 4, SVDD can accurately identify fault types without training samples of fault
states. However, almost all of the fault types without training samples are misidentified as normal
samples by SVM and BPNN. Therefore, SVDD has better ability to distinguish normal and fault states
of HVCBs.

In order to prove the ability to distinguish known and unknown fault types, a comparison among
the new hybrid classifier, SVM and BPNN is presented. Fault type I and fault type III are selected
as the known fault type with training samples. Fault type II is selected as the unknown fault type
without training samples. Twenty samples of each known fault type are randomly selected as the
train samples for SVDD, SVM and BPNN. Two SVDD classifiers denoted as SVDDi (1 ≤ i ≤ 2) are
trained to distinguish known (fault type I and fault type III) and unknown fault types (fault type II).
The remaining 40 samples of two known fault types and 20 samples of unknown fault type are selected
as test samples. In the new method, the number of clusters is two and the threshold ε is set to ε = 0.0001;
corresponding trained SVDDi is used to judge whether the fault sample belongs to a new type or the
known fault type. The diagnosis result is shown in Table 5.
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Table 5. Fault diagnosis results comparison of different methods.

Classifier Test Diagnosis Results Recognition

Sample Fault Type I Fault Type III New Type Accuracy/%

Fault type I 20 0 0 100
Hybrid Classifier Fault type II 0 0 20 100

Fault type III 0 20 0 100

Fault type I 19 1 0 95
SVM Fault type II 0 20 0 0

Fault type III 2 18 0 90

Fault type I 18 2 0 90
BPNN Fault type II 0 20 0 0

Fault type III 2 18 0 90

Table 5 shows that the new method can correctly distinguish the known fault type and unknown
fault type, and its recognition accuracy of a new fault type is 100%, whereas that of SVM and BPNN
is 0. It indicates the new method shows a conspicuous advantage in new-type recognition. For the
known fault samples, the new method can correctly judge their fault types. Furthermore, in a real
power system environment, only a vibration signal of HVCBs can be collected each time. The new
method makes a judgment to only one sample each time, which is more consistent with actual demand
of HVCB fault diagnosis.

6. Conclusions

A novel fault diagnosis method using a hybrid classifier based on Local Mean Decomposition
(LMD) and time segmentation energy entropy (TSEE) is proposed in this paper. The main contributions
of this research are as follows:

(1) LMD is successfully used to process and analyze vibration signals of high-voltage circuit breakers
(HVCBs) with great feature presentation ability and avoids the limitation of empirical mode
decomposition (EMD) such as end effect, mode confusion and high time consumption.

(2) The TSEE is extracted as the feature vectors. Compared to LMD energy entropy, it has
high resolution time-frequency energy distribution character presentation ability especially,
for time-delay fault diagnosis.

(3) The hybrid classifier based on Support Vector Data Description (SVDD) and fuzzy c-means (FCM)
not only detects the fault state accurately, but also determines whether fault samples belong
to new fault types or not. Therefore, the new hybrid classifier can satisfy the high reliability
requirements of the power system.

The comparative experimental results demonstrated the effectiveness and advancement of the
presented method.
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