Supplementary Materials: Determining the Entropic Index *q* of Tsallis Entropy in Images through Redundancy

Abdiel Ramírez-Reyes, Alejandro Raúl Hernández-Montoya, Gerardo Herrera-Corral and Ismael Domínguez-Jiménez

Algorithms S1–S4 summarize the pseudocode of all algorithms applied in our image processing.

Algorithm S1: Procedure index *q* of an image.

input: A digital grayscale image I_1 of 8 bits and size $M \times N$.

output: q-index of I_1

begin

- 1. Let I_1 be the input image.
- 2. Calculate the histogram.
- 3. Normalize this histogram to obtain the probability distribution, where $0 \ge p_i \ge 255$. If $p_i = 0$, remove it from the distribution.
- 4. For each $= -2 + 0.01 \times i$, for i = 0 until i = 1200, calculate S_T and $S_{T \text{max}}$ according to Equations (2) and (4) with k = 1.
- 5. Plot R_T versus q and find the maximum.
- 6. Index $q \in [-2, 10]$ associated with the previous maximum is the characteristic entropic index of the image I_1 .

end

Algorithm S2: Procedure Shannon and Tsallis entropy of an image.

input: A digital grayscale image I_1 of 8 bits and size $M \times N$ and index q.

output: Shannon and Tsallis entropy of I_1 .

begin

- 1. Let I_1 be the input image.
- 2. Calculate the histogram.
- 3. Normalizing the histogram to obtain the probability distribution, where $0 \ge p_i \ge 255$. If $p_i = 0$, remove it from the distribution.
- 4. For the *q* index, calculate S_S and S_T according to Equations (4) and (9) with k = 1.

end

Algorithm S3: Procedure image segmentation using Tsallis entropy.

input: A digital grayscale image I_1 of 8 bits and size $M \times N$ and index q.

output: A digital binarized image I_2 of size $M \times N$.

begin

- 1. Let I_1 be the input image.
- 2. Calculate the histogram.
- 3. Normalizing the histogram to obtain the probability distribution, where $0 \ge p_i \ge 255$.
- 4. For each $t \in \{0, 1, \dots 255\}$
 - (a) Calculate P_A and P_B , and normalize to obtain p_A and p_B .
 - (b) Calculate $t^*(q) = \arg\max_{t \in G} [S_T^A(t) + S_T^B(t)].$
- 5. Thresholding the image I_1 with t^* to obtain I_2 , it is a binarized image by thresholding of size $M \times N$.

end

Algorithm S4: Procedure edge detection.

input : A digital binarized image I_2 of size $M \times N$.

output: A digital binarized image with edge I_3 of size $M \times N$.

begin

- 1. Let I_2 be the input image.
- 2. Convolve I_2 with Sobel filter to obtain I_3 .
- 3. Calculate the complement of I_3 ; it is the image of detected edges of size $M \times N$.

end

Note: the last two algorithms were also used, but the Shannon entropy $S_S(q = 1)$, in order to show the Tsallis entropy advantages.