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Abstract: The Boltzmann–Gibbs and Tsallis entropies are essential concepts in statistical physics,
which have found multiple applications in many engineering and science areas. In particular, we
focus our interest on their applications to image processing through information theory. We present
in this article a novel numeric method to calculate the Tsallis entropic index q characteristic to a given
image, considering the image as a non-extensive system. The entropic index q is calculated through
q-redundancy maximization, which is a methodology that comes from information theory. We find
better results in the image processing in the grayscale by using the Tsallis entropy and thresholding q
instead of the Shannon entropy.

Keywords: Shannon entropy; Tsallis entropy; entropic index q; information theory; redundancy;
maximum entropy principle; image thresholding

1. Introduction

Image segmentation is a fundamental stage in image processing, which consists of dividing an
image in regions with common characteristics, for example separating the object from the background.
There is a great variety of segmentation procedures, as is shown in [1], and it is a previous stage of the
image classification. Due to its easier implementation and low requirement of CPU resources [2], image
segmentation by thresholding based on gray level histogramming is the most intuitive and common
approach, and it is performed as follows: for a given image, the thresholding consists of finding a gray
threshold level, so it can allow the histogram division in two sets; the less than or or equal levels to this
threshold will be zero, and the greater than gray levels will be one. This process changes the original
image into a binary image. In this procedure, there are several ways to find the optimal threshold
to separate the image into two sets. The methods described in [2–5] explain image segmentation
procedures based on the Shannon and Tsallis entropy. Particularly, in [6], a nonextensive information
theoretic divergence was proposed called Jensen–Tsallis divergence; in [7], image registration is carried
out by maximizing a Tsallis entropy-based divergence using a modified simultaneous perturbation
stochastic approximation algorithm. However, in such examples and many more, the entropic index q
is chosen “by eye”.

The Boltzmann–Gibbs entropy and the Tsallis entropy [8,9] are essential concepts in statistical
physics. Recently, in [9], it has been shown how the dynamics of the standard map exhibits the crossing
from the Tsallis and Boltzmann–Gibbs statistics. In statistical physics, there has been a concerted
research effort to explore the properties of Tsallis entropy, leading to a statistical mechanics that
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satisfies many of the properties of the standard theory [6]. These entropies have found multiple
applications in many engineering and science areas [10–12], such as in the image processing through
information theory [5,13,14]. The Tsallis entropy is a generalization of the Boltzmann–Gibbs entropy.
The Tsallis approach entropy considers the systems as non-extensive, which are characterized by
the entropic index q [10,15]. Although for certain particular cases, methods to calculate q are
well known [10,11], there does not exist a general methodology to estimate q for a given system
(physical, biological, economical, etc.). In the case of our interest, when images are processed with the
Tsallis entropy, also there is not a general method to know the entropic index q, which is a characteristic
parameter of the image, and it is usually estimated in an empiric way [5,13].

Our main goal here is to provide a methodology to calculate the entropic index q based on the
maximization of the image redundancy and the maximum entropy principle of information theory.
An image is considered as a system with information that can be measured; this can be Shannon or
Tsallis entropy information. Redundancy, information and maximum entropy can also be measured
in a given system. When these concepts are applied in images, the entropic index q can be estimated.
Finally, in order to implement our methodology, it is necessary to implement a segmentation image
procedure based on the Shannon and Tsallis thresholding procedure [5,13,16]. A better segmentation
and edge detections are obtained when the images are considered as non-extensive systems with their
entropic index q previously calculated, so we show that in image processing, Tsallis entropy is better
than Shannon entropy.

In Section 2 of this paper, a brief and general review of Boltzmann–Gibbs and Tsallis physical
entropies is given, along with corresponding information theory analogies. In Section 3, we explain
our methodology to calculate the entropic index q and segmenting the images. Then, in Section 4, an
explanation of the digital processing image using entropy is given, to emphasize the gray level picture
thresholding using the Tsallis entropy of the histogram. Results and the corresponding discussion are
presented in Section 5. Finally, a brief summary is given in Section 6. The Supplementary Materials
present a step by step resume of all procedures and algorithms used to calculate the Shannon and
Tsallis entropies of our images.

2. Boltzmann–Gibbs and Tsallis Entropy

In thermodynamics, at the end of the 19th century, Ludwig Boltzmann [10] proposed the following
entropy definition:

SB = k ln(Ω) (1)

where k = 1.3806504× 10−23J·K−1 is Boltzmann’s constant and Ω represents the total number of
accessible microstates of the system. Equation (1) is essential in classical statistical physics. This entropy
is a particular case where all microstates probabilities are the same, i.e., pi = 1/Ω, ∀i. Nevertheless,
if these probabilities are not the same, then Equation (1) is generalized to Boltzmann–Gibbs entropy,
given by:

SBG = −k
Ω

∑
i=1

pi ln(pi) (2)

For each i, where pi satisfies the normalization condition:

Ω

∑
i=1

pi = 1 (3)

In fact, SBG is maximum when the microstates are equiprobable, i.e., pi = 1/Ω, ∀i, as a
consequence SBG max = SB = k ln(Ω).
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In 1988, Tsallis proposed a new kind of entropy [8], able to describe extensive and non-extensive
systems, defined as:

ST =
k

q− 1

(
1−

Ω

∑
i=1

pq
i

)
(4)

where Ω represents the total number of accessible microstates of the system, each one with probability
pi, where (1 ≤ i ≤ Ω) and probabilities pi satisfy Equation (3). The number q ∈ R is an entropic index
that characterizes the degree of non-extensivity of the system [10,17]. It is used to describe systems with
non-extensive properties, and it is also used to characterize the non-extensivity degree of a particular
system. A system is considered extensive if it satisfies the equation SBG(A + B) = SBG(A) + SBG(B);
it is non-extensive if it does not.

The Tsallis entropy has four important properties [18]:

1. When limq→1 ST the Boltzmann–Gibbs entropy SBG is recovered; this can be proven by using the
L’Hôpital theorem. Then ST is a generalization of SBG, i.e., the non-extensive statistical physics
includes Boltzmann–Gibbs statistical physics as a particular case.

2. ST is zero only when some pi = 1.
3. Pseudo-extensivity or non-extensivity of ST . Let A and B be two independent systems in the

probability theory sense, i.e., pA+B
ij = pA

i + pB
j , ∀ij, then the next equation can be verified:

ST(A + B) = ST(A) + ST(B) +
1− q

k
ST(A)ST(B) (5)

4. ST has a maximum when each microstate is equiprobable, i.e., pi = 1/Ω, ∀i, and it is given by:

ST max = k
1−Ω1−q

q− 1
(6)

If q > 0, then ST max will be maximum; if q < 0, then ST max will be a minimum.
If q > 1, ST max approaches 1/(q− 1) when Ω→ ∞. If q ≤ 1, ST max, it diverges when Ω→ ∞. On the
other hand, if q→ ∞, then ST max → 0; it coincides with the x axis; but if q→ −∞, then ST max → ∞,
i.e., it coincides with the y axis.

Figure 1 shows the ST max as a function of number of microstates Ω, for several numeric entropic
index values [10].

Figure 1. Maximum entropy ST max as a function of microstates, for several values of q.
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Tsallis entropy ST does not necessarily pretend to replace the successful Boltzmann–Gibbs entropy
SBG, but to face the problems where the classical statistical physics fails. The Tsallis entropy concept
originates a completely new non-extensive statistical physics, which is really interesting and has many
applications in theoretical and experimental physics. It is able to be applied to complex systems that
are out of the Boltzmann–Gibbs statistics domain. As soon as Tsallis entropy appeared, a mathematical
formalism was developed [19]. For example, q-exponential and q-logarithm functions were created:

expT(x) = expq(x) =
x1−q − 1

1− q
and lnT(x) = lnq(x) = [1 + (1− q)x]

1
1−q (7)

These functions become the ordinal functions when q→ 1. In the notation used here, the sub-index
of entropy is the first letter of the name of such entropy; some authors use q as a sub-index instead of T.

2.1. Shannon Entropy and Information Theory

The information theory is a mathematical theory that studies the transmission and the processing
of the information; such a theory was consolidated by Claude E. Shannon in 1948 [17]. In this theory,
the self-information or information is defined by:

I = − log(p) (8)

so, Shannon entropy SS is defined by:

SS = −
Ω

∑
i=1

pi log(pi) (9)

Last equation represents the mean information of a system. Here, Ω represents the system total
number of events and pi the probability of the occurrence of each event, with (1 ≤ i ≤ Ω) that satisfies
Equation (3). The information theory is based on Shannon entropy SS, which is Boltzmann–Gibbs
entropy SBG, but with k = 1. The concept of redundancy represents a repetitive signal that does not
generate new information, and it is defined by:

RS = SS max − SS (10)

In information theory, the maximum entropy principle states that if inferences are to be made
based on incomplete information, they should be drawn from the probability distribution that has
maximum entropy permitted by the information that is already available [18–22]. This principle means
that absolutely for any system, its entropy is bounded by a maximum entropy. From this point of view,
the smaller the redundancy, the greater the information in the signal. This theory has a wide variety of
technological repercussions, which have influenced all science an engineering areas, particularly for
the area of image processing; see [3,4,13,16,23].

2.2. Tsallis Entropy and Information Theory

An alternative approach to information theory is the one that uses Tsallis entropy ST instead
of Shannon entropy SS [3,13,19,22]. From this point of view, the information I, Equation (8),
becomes q-information given by IT = − lnT(pi), with lnT(pi) as in Equation (7); the redundancy
R becomes q-redundancy given by RT = ST max − ST ; and the maximum entropy SS max becomes
ST max = lnT(Ω) [5,13,16]. Under this approach, estimating the value of q becomes an important
question. In the next section and for the goals of our research, we show a methodology to solve
this problem.
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3. Methodology to Calculate the Entropic Index q and Image Segmentation

The entropic index q is correlated with the complex internal interactions within the system.
For digital images, we can also consider that the intensities of pixels have long-range correlations [24].
Originally, one of our goals was to segment images by using the entropy concept in a similar way
to [3,5,16]. Here, it was important to know the entropic index, but usually it is estimated in an empirical
way. Then, for the problem of our interest: when an image is given, what is the optimal value of its
entropic index q? This, as far as we know, is not explicitly solved and reported in the literature, and
instead, in image processing, usually most of the papers just use those values that give acceptable
results often obtained by trial and error tests. Anyway, we do not agree to use a value for the entropic
index q obtained in this “practical” way. That is why we started to search for a formal methodology
to determine the entropic index q for a given image. We consider that each system has its own
entropic index, and it must not be chosen “by eye”. Our research started by understanding physical
systems already known. What we found was that there did not exist general procedures to solve the
problem [10]. After that, we looked at information theory and did not find general procedures, but
we focused our attention on two fundamental concepts: the redundancy concept and the maximum
entropy principle.

Then, we looked for the entropic index q in an image by considering it as a non-extensive system.
What we do is to consider images in grayscale in order to maximize their q-redundancy, that is:

RT = 1− ST
ST max

(11)

From an information theory point of view, the smaller the redundancy, the greater the information
in the signal. This is something very well known and allows one to calculate the entropic index q.

Then, we can calculate the redundancy RT , as a function of the entropic index q, where q is
evaluated from −∞ to ∞, since that q is a real number. The obtained graphic has an extreme value,
which is associated with the optimal q, which is characteristic of the given image.

The procedure is applied as follows:

1. Given an eight-bit grayscale image, we build its histogram, and then, we normalize it; the result
is the probability distribution of the image, pi = {p1, p2, . . . , p256}. If pi = 0, remove it from the
distribution, since such events give information I = ∞ and can be proven using L’Hôpital’s rule
that the product 0 · loga 0 = 0 · Ii = 0; that is why these cases are discarded.

2. Once the probability distribution is known, the ST and ST max are calculated using
Equations (4) and (6). In this case, Ω = 256, and a fixed q is used.

3. Using the previous q, the redundancy RT is calculated through the Equation (11), then the (RT , q)
data of this type are obtained.

4. Steps 2 and 3 are repeated with a different q to the one previously used, as many times as necessary,
in order to get a reasonable curve (RT versus q). In our case, q ∈ [−2, 10] are considered, i.e., 1201
different values were considered for q.

5. RT versus q is plotted, and the q value that maximizes the redundancy RT is identified. Such q will
be q characteristic of the given image.

The previous procedure can work for any image represented as a pixel matrix or for any system in
which we know a priori the probability distribution; that is, why we consider our procedure important.

Digital Image Processing Using Entropy: Segmentation

In general, image processing looks to give a better visual aspect or to make evident some
information in the images through computing tools. The image processing procedure involves four
areas: image formation, image visualization, image analysis, as well as image management. The
analysis includes: feature extraction, segmentation, classification and enhancement [1]. Our main
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interest is image segmentation, which has many and important applications. Image segmentation
means to divide into regions with common characteristics; for example, to separate the image into
two regions as the background and the object. Segmentation is a stage that generally precedes
classification [1], as mentioned before.

Furthermore, as mentioned above, image segmentation using thresholding based on its histogram
is one of the most common approaches due to its easy implementation and requires less computing
resources to run. There are two thresholding methods: the first is called global if a single threshold
is calculated for the entire image; the second is called local or adaptive if the image is divided into
regions and a threshold is calculated for each region [2].

The major disadvantage of the histogram-based thresholding methods is their disregard of
the spatial context within which the intensity value occurs. In other words, they do not consider
the intensity values of the surrounding pixels. Methods based on 2D histograms consider, up
to some degree, contextual information. Thresholding methods are also frequently used for the
initial segmentation of images prior to the application of a more sophisticated segmentation method
for the purpose of reducing the convergence time [1,2].

4. Image Thresholding Using Tsallis Entropy

A method of segmentation is carried out by thresholding. There are several procedures to
thresholding an image, such as the ones shown in [1]. The most intuitive approach is the global
thresholding, where only one gray threshold level is selected from the histogram [25]. The threshold
separates the histogram into two sets; gray levels less than or equal to the threshold will be zero,
and the gray levels greater than the threshold will be one. The thresholding transforms the original
image (in grayscale) into a binary image (black and white). There are several ways to find the optimal
threshold in an image. We consider procedures based on Tsallis entropy and the Shannon entropy
as [2–4]. This methodology is not the same one that was used to calculate the index q.

Below, we will show how to use the Tsallis entropy for image thresholding. Let the image be
considered as a pixel matrix of size m × n with x ∈ 1, 2, . . . , m and y ∈ 1, 2, . . . , n of eight bits in
grayscale. Let f (x, y) be the gray level in the (x, y) pixel of the image. Let h(a) be the image histogram
with a ∈ {0, 1, 2, . . . , 255} = D.

From the h(a) histogram, the probability distribution {pi} = {p1, p2, . . . , pk} can be calculated,
where ∑k

i=1 pi = 1 (k represents the gray levels).
At this point, our goal is to calculate an optimal threshold t∗ (with t∗ ∈ D), which divides

the histogram h(a) in such a way that it separates the two most representative objects of the image,
for example the background and the object. This optimal threshold t∗ is calculated considering the
image as a non-extensive system, i.e., with the Tsallis entropy. Of the distribution {pi}, two probability
sub-distributions are built: the one from object A and the one from the background B as follows:

PA =
t

∑
i=1

pi, PB =
k

∑
i=t+1

pi (12)

where conditions 0 ≤ PA ≤ 1 and 0 ≤ PB ≤ 1 must be held, so that both distributions must
be normalized:

PA :
{

p1

PA
,

p2

PA
, . . . ,

pt

PA

}
, PB :

{
pt+1

PB
,

pt+2

PB
, . . . ,

pk
PB

}
(13)

with pA + pB = 1. Next, the Tsallis entropy is calculated for each set A and B:

SA
T (t) =

1
q− 1

(
1−

t

∑
i=1

pq
i

)
, SB

T(t) =
1

q− 1

(
1−

k

∑
i=t+1

pq
i

)
(14)
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The Tsallis entropy ST is parametrically dependent over the threshold value t to the object and
background. The pseudo-additivity property is applied to the sub-sets A and B, which are supposed
to be statistically independent, that is:

SA+B
T (t) = SA

T (t) + SB
T(t) + (1− q)SA

T (t)S
B
T(t) (15)

The next step is to maximize the quantity of information SA+B
T (t) between the two

sub-distributions previously created in order to obtain the maximum information between the
two created regions. This works because the maximum of possible information is transferred when the
total entropy of both systems is maximum [23]. Then, we must consider the t that maximizes SA+B

T (t);
such a t will just be the t∗ that is given by:

t∗(q) = arg max
t∈G

[
SA

T (t) + SB
T(t) + (1− q) SA

T (t) SB
T(t)

]
(16)

Notice that t depends on the entropic index q, which is estimated empirically in many
papers [5,16,24]. Nevertheless, we use the q calculated through the previously-described method,
and it characterizes the image.

Remember that the Tsallis entropy (Shannon entropy generalization) includes the extensivity
and non-extensivity of a system, so that it is reasonable to think that Tsallis entropy is better than
Shannon entropy.

Once the threshold t∗ is obtained, the next step is to create a binary thresholding image g(x, y).
This image is created with the following criteria: g(x, y) = 0 if f (x, y) ≤ t∗, and in the opposite
case, g(x, y) = 1.

4.1. Image Thresholding Using Shannon Entropy

When q→ 1 in Tsallis entropy, Shannon entropy is obtained, so that the method considers now
the following expression, according to [16]:

t∗(q) = arg max
t∈G

[
SA

T (t) + SB
T(t)

]
(17)

This expression is the function that allows one to find t∗.

4.2. Image Binarization and Edge Detection

In this part of the work, images are segmented by using Tsallis entropy and Shannon entropy,
in order to compare both of them. The purpose is to show the advantages when using the Tsallis
entropy. These procedures are already known, but the main point here is to show the benefit of
knowing a priori the entropic index q of an image, according to the method in [3]. The binarized image
is generated using the optimal threshold t∗ obtained by Tsallis or Shannon entropy.

Generally after segmentation, a detection of edges procedure is applied. Even though there are
sophisticated methods to detect edges, we simply apply a Sobel filter to the segmented images.

All of these procedures mentioned above were implemented in the software MATLAB R© R2015a
and are summarized in the algorithms, described in the Supplementary Materials.

5. Results and Discussion

As was mentioned before, from the information theory point of view, which uses SS, the smaller
the redundancy, the greater the information in the signal. The previous claim is something well known
in information theory; nevertheless, what we did was to generalize this claim, but in Tsallis entropy
terms. Here, the redundancy R becomes q-redundancy RT ; this allows us to find the q, which represents
a given system through the maximum redundancy. Then, q associated with this maximum will be the
one that represents the given image, knowing that any image has a maximum entropy, that is when
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each microstate is equiprobable. Then, from the above, it is possible to construct a general method,
which can be applied whenever the probability distribution of the system is known. Additionally, it is
trivial to know the probability distribution of an image based on its histogram.

We choose three typical images used in image processing (“Lena”, “Owl” and “Moon”), obtained
from [26–29], as well as a cerebral “Angiography” obtained from [30]; cerebral angiography helps
determine the extent of vascular problems within cerebral blood vessels, Figure 5 showing a transverse
projection of the vertebrobasilar and posterior cerebral circulation. Next, we calculated the SS, ST and
q for the “Lena”, “Owl”, “Moon” and “Angiography” images. The index q became a number between
zero and one, i.e., they are sub-extensive systems (q ≥ 1). It was useful to normalize the ST and RT ,
where ST max = ST + RT , so that ST max represents 100% of the total entropy possible. The studied
images, as well as the index q calculated, are shown in Figures 2–5.

The “Moon” image was the one with the most redundancy (36%), which makes sense due to the
fact that it is the image that has the most similar pixels, according to its histogram. The opposite case
happens to the “Owl” image, which has a minimal redundancy (8 %), which makes sense due to the
fact that it has a great variety of colors, almost all of the grayscale, as shown in the original image and
its histogram. The “Lena” image has a redundancy of almost 20%, and the “Angiography” image
has 51%.

The entropic index values q computed are shown in Table 1. All of the procedures were made in
Shannon entropy terms in order to compare them.

Table 1. Numerical results using Shannon and Tsallis entropy with the index q calculated.

Image Shannon Optimal Tsallis Entropic Redundancy Maximum Optimal
Entropy SS Threshold Entropy ST Index q RT Entropy ST max Threshold

Lena 5.16 nats 160 85.04 nats 0.20 19.27 nats 104.31 nats 132
Owl 3.82 nats 172 31.07 nats 0.47 2.69 nats 33.76 nats 89

Moon 5.29 nats 159 8.42 nats 0.73 4.42 nats 12.84 nats 17
Angiography 3.35 nats 105 15.14 nats 0.45 19.99 nats 35.13 nats 151

Segmented Image and Edge Detector Using Tsallis and Shannon Entropy

In order to test the calculated index q, we segmented images by Tsallis and Shannon entropy.
The optimal thresholds obtained by Shannon entropy and Tsallis entropy are also shown in Table 1.
The images segmented by Shannon entropy and Tsallis entropy (include our index q) are shown in
(e) and (g), in Figures 2–4. In Figure 5, these are shown in (d) and (f).

The final step is to apply a Sobel filter to the segmented images in order to detect edges.
The best results were obtained when the Tsallis entropy was used. The results are shown in
(f) and (h), in Figures 2–4. In Figure 5, is shown in (e) and (g).

For the purpose of evaluating the procedure, we can do a qualitative comparison from our
results with the ground-truth edge image (see (d) in Figure 2–4). Ground-truth “Owl” is available
in the dataset [27]. Ground-truth “Lena” and “Moon” were made by a human expert. Ground-truth
“Angiography” is not available. Quantitative and qualitative methods of evaluation can be found
in [31].

All of the procedures mentioned can be generalized relatively easily to color images (RGB),
where each color corresponds to a grayscale level. This is a procedure on which we will be working
later. Such procedures are very important in the artificial vision, as well as in imaging, even though we
only consider now optical images.

All of the procedures can be applied multiple times to the images in order to obtain the
sub-threshold using recursivity, which allow more advanced segmentations.

Another important point that remains for a future work is that it is possible to characterize image
regions through local entropic indices. For example, thinking of a medical image, we could be able to
characterize different tissues by their corresponding entropic indices q.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Lena picture: 512 × 512 pixels, grayscale. Image processing results. (a) Original image in
grayscale; (b) histogram of the original image; (c) entropy, maximum entropy and redundancy vs. q;
(d) ground-truth edge image; (e) thresholding image by Shannon entropy; (f) edge detection in the
previous image; (g) thresholding image by Tsallis entropy; (h) edge detection in the previous image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Owl picture: 481 × 321 pixels, grayscale. Image processing results. (a) Original
image; (b) histogram of the original image; (c) entropy, maximum entropy and redundancy vs. q;
(d) ground-truth edge image; (e) thresholding image by Shannon entropy; (f) edge detection in the
previous image; (g) thresholding image by Tsallis entropy; (h) edge detection in the previous image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Moon picture: 481 × 321 pixels, grayscale. Image processing results, (a) Original
image; (b) histogram of the original image; (c) entropy, maximum entropy and redundancy vs. q;
(d) ground-truth edge image; (e) thresholding image by Shannon entropy; (f) edge detection in the
previous image; (g) thresholding image by Tsallis entropy; (h) edge detection in the previous image.



Entropy 2016, 18, 299 12 of 14

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. Angiography picture: 902 × 973 pixels, grayscale. Image processing results. (a) Original
image; (b) histogram of the original image; (c) entropy, maximum entropy and redundancy vs. q;
(d) thresholding image by Shannon entropy; (e) edge detection in the previous image; (f) thresholding
image by Tsallis entropy; (g) edge detection in the previous image.
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6. Conclusions

Calculating the entropic index q is in general an open topic; q can only be determined in very
particular problems. Considering q-information, q-redundancy and the probability of the distribution
in an image, as well as applying the maximum entropy principle, we propose a method to computing
the entropic index q, where the images are considered as non-extensive systems. This is a numerical
procedure that consists of finding the maximum in the curve given microstates vs. q-redundancy.
This procedure can be applied not only to images, but also to any system only if the probability
distribution is known.

In order to prove the advantages of knowing the entropic index q, a thresholding image procedure
was implemented. It was also used in the Tsallis entropy, finding better results when q is known.
This is better than when Shannon entropy is used. Similarly, edge detection procedures are better
when Tsallis entropy is used with a known q. Our proposal is applied to any kind of images, with a
great variety of applications in computer vision or imaging.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/18/8/299/s1.
Algorithm S1: Procedure index q of an image; Algorithm S2: Procedure Shannon and Tsallis entropy of an image;
Algorithm S3: Procedure image segmentation using Tsallis entropy; Algorithm S4: Procedure edge detection.
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