
entropy

Article

Entropy Generation through Non-Equilibrium
Ordered Structures in Corner Flows with Sidewall
Mass Injection
LaVar King Isaacson

Mechanical Engineering, University of Utah, 2067 Browning Avenue, Salt Lake City, UT 84108, USA;
lkisaacson1@mac.com; Tel.: +1-801-583-1756

Academic Editor: Brian Agnew
Received: 22 June 2016; Accepted: 25 July 2016; Published: 28 July 2016

Abstract: Additional entropy generation rates through non-equilibrium ordered structures are
predicted for corner flows with sidewall mass injection. Well-defined non-equilibrium ordered
structures are predicted at a normalized vertical station of approximately eighteen percent of the
boundary-layer thickness. These structures are in addition to the ordered structures previously
reported at approximately thirty-eight percent of the boundary layer thickness. The computational
procedure is used to determine the entropy generation rate for each spectral velocity component at
each of several stream wise stations and for each of several injection velocity values. Application of
the procedure to possible thermal system processes is discussed. These results indicate that cooling
sidewall mass injection into a horizontal laminar boundary layer may actually increase the heat
transfer to the horizontal surface.

Keywords: corner flow mass injection; non-equilibrium ordered structures; empirical entropies;
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1. Introduction

Entropy generation rates for corner flows with sidewall mass injection were reported by the author
in a previous article [1]. These computations indicated the generation of non-equilibrium ordered
structures at a normalized vertical station of approximately thirty-eight percent of the normalized
laminar boundary layer thickness. The present article presents additional computations for entropy
generation rates predicted at a normalized vertical station of approximately eighteen percent of
the normalized laminar boundary layer thickness for corner flows with a variety of injection mass
velocities. The flow configuration considered consists of a corner flow environment, with sidewall mass
injection, with the mass injection uniform in the steam wise direction, along the vertical sidewall at the
intersection of the sidewall with the horizontal surface. A schematic diagram for this configuration is
shown in Figure 1.

The first computational component is the calculation of the steady flow laminar velocity profiles
along the horizontal surface in the stream wise-vertical (x-y) plane and the steady flow orthogonal
boundary layer profile in the span wise-vertical (z-y) plane. These profiles are computed using the
program listings provided by Cebeci and Bradshaw [2] and Cebeci and Cousteix [3]. The similarity
characteristics for these orthogonal profiles proved by Hansen [4] justify the simultaneous use of these
profiles in our three-dimensional flow configuration.

The next computational component casts the time-dependent spectral equations of Townsend [5]
and Hellberg et al. [6] into a Lorenz format (Sparrow [7]) to yield the nonlinear time series solutions
for the fluctuating components of the spectral velocity field.
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Figure 1. Schematic of the corner flow boundary layer configuration is shown [1]. 

The nonlinear time series solutions of the modified Lorenz equations yield both smooth 
trajectories and trajectories with fluctuating spectral velocity components within the series. Statistical 
analysis of the fluctuating spectral time-series solutions yields the entropy generation rates for the 
given flow configurations. The correspondence of the peaks of the spectral power density analysis 
and the empirical modes of the singular value decomposition analysis is brought about by the 
Weiner–Khintchine theorem relating the power density spectrum and the autocorrelation function 
for the nonlinear time series data [8] (pp. 354–355). 

The power spectral densities within the nonlinear time series solutions for the fluctuating 
spectral velocity components are computed using Burg’s method [9], providing the spectral peaks of 
the ordered structures within the time series solutions [10] (pp. 572–574). The singular value 
decomposition method [10] (pp. 59–70) is also used to compute the empirical modes within the same 
time series, corresponding to the power spectral density peaks found from Burg’s method. These 
results yield the values for the empirical entropies for the ordered structures as defined by  
Rissanen [11]. The empirical entropy for each of the modes from the singular value decomposition 
process yields a corresponding entropic index of the format postulated by Tsallis [12]. Then, from 
each of these entropic indices, the method of Arimitsu and Arimitsu [13] yields a corresponding value 
for the intermittency exponent. Combining these computational components into an overall 
computational procedure, we then compute the entropy generation rate for each of the ordered 
structures identified in the nonlinear time series solutions of the non-equilibrium spectral equations. 
The specific computational components are more fully described in Isaacson [1,14]. This article 
includes the following sections: 

In Section 2, the thermodynamic and transport processes of the working substance required for 
the computational procedures are discussed. In this study, the working substance is the flow of air at 
a specified temperature and pressure. In Section 3, the mathematical and computational bases for the 
computation of the steady three-dimensional boundary layer environment are reviewed. In  
Section 4, the fluctuation equations of Townsend [5] are transformed into the spectral plane and 
written in the Lorenz format. Section 5 presents computational results for the time-dependent 
spectral velocity components for various sidewall mass injection velocities at various stream wise 
locations. Section 6 discusses the extraction of empirical entropies, empirical entropic indices, and 
intermittency exponents from the nonlinear time series solutions of the modified Lorenz equations. 
Section 7 presents the results for the computation of the entropy generation rates through ordered 
structures in the boundary layer environment for various sidewall injection velocities and various 
stream wise locations. Section 8 includes a comparison of the entropy generation rates for two vertical 
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Figure 1. Schematic of the corner flow boundary layer configuration is shown [1].

The nonlinear time series solutions of the modified Lorenz equations yield both smooth trajectories
and trajectories with fluctuating spectral velocity components within the series. Statistical analysis
of the fluctuating spectral time-series solutions yields the entropy generation rates for the given
flow configurations. The correspondence of the peaks of the spectral power density analysis
and the empirical modes of the singular value decomposition analysis is brought about by the
Weiner–Khintchine theorem relating the power density spectrum and the autocorrelation function for
the nonlinear time series data [8] (pp. 354–355).

The power spectral densities within the nonlinear time series solutions for the fluctuating
spectral velocity components are computed using Burg’s method [9], providing the spectral peaks
of the ordered structures within the time series solutions [10] (pp. 572–574). The singular value
decomposition method [10] (pp. 59–70) is also used to compute the empirical modes within the
same time series, corresponding to the power spectral density peaks found from Burg’s method.
These results yield the values for the empirical entropies for the ordered structures as defined by
Rissanen [11]. The empirical entropy for each of the modes from the singular value decomposition
process yields a corresponding entropic index of the format postulated by Tsallis [12]. Then, from
each of these entropic indices, the method of Arimitsu and Arimitsu [13] yields a corresponding
value for the intermittency exponent. Combining these computational components into an overall
computational procedure, we then compute the entropy generation rate for each of the ordered
structures identified in the nonlinear time series solutions of the non-equilibrium spectral equations.
The specific computational components are more fully described in Isaacson [1,14]. This article includes
the following sections:

In Section 2, the thermodynamic and transport processes of the working substance required for
the computational procedures are discussed. In this study, the working substance is the flow of air at a
specified temperature and pressure. In Section 3, the mathematical and computational bases for the
computation of the steady three-dimensional boundary layer environment are reviewed. In Section 4,
the fluctuation equations of Townsend [5] are transformed into the spectral plane and written in the
Lorenz format. Section 5 presents computational results for the time-dependent spectral velocity
components for various sidewall mass injection velocities at various stream wise locations. Section 6
discusses the extraction of empirical entropies, empirical entropic indices, and intermittency exponents
from the nonlinear time series solutions of the modified Lorenz equations. Section 7 presents the
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results for the computation of the entropy generation rates through ordered structures in the boundary
layer environment for various sidewall injection velocities and various stream wise locations. Section 8
includes a comparison of the entropy generation rates for two vertical locations within the laminar
boundary layer and compares these values with the entropy generated in a corresponding turbulent
boundary layer. The article closes with a discussion of the results and final conclusions.

2. Selection of Heated Air as the Working Substance

The flow configuration we are simulating in this exploratory study is shown in Figure 1.
The figure is intended to represent the corner flow in the entrance to a square channel in, for example,
an industrial heating unit. In this section, we describe the characteristics of the working gas we use in
our computational procedure.

The working gas is assumed to be heated air with the following thermodynamic and
transport properties:

Air temperature, T : 1068.0 K (1)

Static pressure, p : 0.912ˆ 105 N{m2 (2)

Kinematic viscosity, ν : 1.51634ˆ 10-4 m2{s (3)

It should be noted that the value for the kinematic viscosity used in this study is very similar
to the values used in previous studies. The explanation for this is that a series of coupled, nonlinear
time-dependent differential equations are included in the computational procedure. The solutions
for such equations are very sensitive to the initial conditions imposed on the equations and are
also sensitive to the control parameters applied in the solution. The solution of the steady-state
boundary-layer equations that provides these control parameters is dependent on the particular value
of the kinematic viscosity applied in the calculations. We have found that only a narrow range of
kinematic viscosities yields the prediction of ordered structures from the computational procedure [1].
The choice of air at the given temperature and pressure yields an appropriate value for the kinematic
viscosity. The range of appropriate values of kinematic viscosities has not been delineated and remains
as work to be done.

A fundamental feature of the computational procedure discussed in this article is the embedding
of the time-dependent Lorenz-format equations in the reservoir of steady-state boundary layer velocity
gradients obtained from the time independent boundary layer equations.

To clarify the essential nature of this feature, the next section presents a summary of the
mathematical and computational methods used for the determination of the reservoir steady-state
laminar boundary-layer velocity gradients. These boundary layer mean velocity gradients are time
independent but vary with the stream wise distance x. The mean velocity gradients serve as control
parameters for the time-dependent initiation of instabilities within the boundary layer for each stream
wise station, as summarized in Section 4 of the article.

3. Steady-Flow Laminar Boundary-Layer Environment

The boundary-layer configuration considered in this article consists of a laminar boundary layer
in the x-y plane produced by the stream wise velocity along the horizontal surface and a laminar
boundary layer in the z-y plane produced by mass injection from the sidewall in the z-direction.
The momentum equation for the thin-shear boundary layer approximation may be written ([2],
pp. 39–45) as:

u
Bu
Bx
` v

Bu
By
“ ´

1
ρ

dp
dx
`

1
ρ

B

By

„

µ
Bu
By
´ ρu1v1



. (4)

The boundary conditions for Equation (4) are:

y “ 0, u “ v “ 0, (5)
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y “ δpxq, u “ ue pxq. (6)

The Reynolds shear stress for the computation of turbulent boundary layers is modeled with the
“eddy viscosity”, εm, having the dimensions of (viscosity)/(density), by:

´ ρu1v1 “ ρεm
Bu
By

. (7)

The computer program we have chosen to implement for the solution of the boundary
layer equation (Equation (4)) is based on the Keller–Cebeci box method presented by Cebeci
and Bradshaw [2] and Cebeci and Cousteix [3]. One of the basic aspects of this method is to
transform Equation (4) into a system of first-order ordinary differential equations. The Falkner–Skan
transformation, in the form:

η “
´ ue

νx

¯1{2
y, (8)

is introduced into the transformation process. The dimensionless stream function, f px, ηq,
is defined by:

Ψ px, yq “ pueνxq1{2 f px, ηq . (9)

These definitions yield the results for the mean boundary layer velocities u and v as:

u “ ue f 1, v “ ´
B

B x
rpue ν xq1{2 f s `

η

2

´ueν

x

¯1{2
f 1. (10)

Differentiation with respect to η is indicated by the prime in these expressions.
From Bernoulli’s equation, the pressure gradient term is given by dp

dx “ ´ρue
due
dx . To simplify the

resulting equations, the parameter m is defined as:

m “
x
ue

due

dx
. (11)

Through the application of the transformation process, (we refer the reader to Cebeci and
Bradshaw [2] for the details) the basic partial differential equation for the boundary layer (Equation (4))
is replaced with three first-order partial nonlinear differential equations in the following form:

f 1 “ u, (12)

u1 “ v, (13)

pbvq1 `
ˆ

m` 1
2

˙

f v`mp1´ u2q “ x
ˆ

u
Bu
Bx
´ v

B f
Bx

˙

. (14)

In Equation (14), b “ p1 ` ε`m
˘

and ε`m “
εm
ν . The corresponding boundary conditions for

Equations (12)–(14) are:
fpx, 0q “ 0, upx, 0q “ 0, upx, η8q “ 1 (15)

Note that in Equation (13), v is not the y-component velocity.
Cebeci and Bradshaw [2] present computer program listings for the numerical solutions for both

laminar and turbulent boundary layers over flat plate surfaces. The program listings used in the study
reported here are those presented in [2].

Hansen [4] has indicated that orthogonal laminar boundary layer profiles in a three-dimensional
coordinate system possess the characteristic of similarity. We therefore use the boundary layer
computations for both the profiles in the x-y plane and in the z-y plane. The steady state boundary
layer equations and the corresponding velocity gradients serve as the thermodynamic steady state
reservoir that provides the control parameters for the time-dependent development of the spectral
fluctuations within the boundary layer environment [8] (pp. 26–31).
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4. Modified Time-Dependent Lorenz Equations in the Spectral Plane

4.1. Transformation of the Townsend Equations to the Modified Lorenz Format

The crosswind velocity of the mass injected in the z-direction from the sidewall produces a laminar
boundary layer along the horizontal surface in the z-y plane. This boundary layer is orthogonal to
the laminar boundary layer in the x-y plane. The nonlinear interactions of this z-y boundary layer
within the laminar boundary layer in the x-y plane generate instabilities within the three-dimensional
laminar boundary layer flow. The methods of Townsend [5] are used to obtain a set of non-equilibrium,
time-dependent equations in the spectral domain for these non-equilibrium instabilities, separate from
the equations for the steady boundary layer flow.

Separating the equations of motion into steady and unsteady equations, the equations for the
velocity fluctuations may then be written as [5,6]:

Bui
Bt
`Uj

Bui
Bxj

` uj
BUi
Bxj

` uj
Bui
Bxj

“ ´
1
ρ

Bp
Bxi

` ν
B2ui
BujBuj

. (16)

In these equations, ρ is the density and ν is the kinematic viscosity, Ui represent the mean
boundary layer velocity components with i = 1, 2, 3 indicating the x, y, and z components, and xj, with
j = 1, 2, 3, designate the x, y and z directions. The pressure term is eliminated by taking the divergence
of Equation (16) and invoking incompressibility, yielding:

´
1
ρ

B2 p
Bx2

l
“ 2

BUl
Bxm

Bum

Bxl
`
Bul
Bxm

Bum

Bxl
. (17)

We wish to transform these equations into the spectral plane for the computational solutions
for the time-dependent fluctuating spectral components. The solutions of the spectral equations
yield the spectral wave vector components and the spectral velocity wave components. Through
Parseval’s theorem, the products of the spectral velocity components represent the products of the
fluctuating velocity components in the physical plane. The statistical analysis of the spectral velocity
component time series solutions then yields the entropy generation rates within the boundary layer
non-equilibrium ordered structures.

The fluctuating velocity and pressure fields of Equations (16) and (17) may be expanded in terms
of the Fourier components (Mathieu and Scott [15]) as:

uipx, tq “
ÿ

k

aipk, tqexppik ‚ xq (18)

and:
ppx, tq
ρ

“
ÿ

k

bpk, tqexppik ‚ xq. (19)

The pressure component in Equation (16) is transformed into a function of spectral velocity
components and boundary layer velocity gradients through Equations (17) and (19). Substituting the
resulting equations and Equation (18) into Equation (16) yields an expression for the fluctuations of
the spectral components with time. The equations for the time-dependent three spectral velocity wave
components, ai(k), are then given as:

daipkq
dt “ ´νk2aipkq ´

BUi
Bxi

aipkq ` 2 kikl
k2
BUl
Bxm

aipkq

`i
ř

k1`k2“k
pkl

kikm
k2 ´ δimklqalpk1qampk2 q

. (20)
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The general equations for the balance of transferable properties give the equations for the spectral
wave numbers, ki as:

dki
dt
“ ´

BUl
Bxi

kl . (21)

The set of equations for the time-dependent wave number components, including the gradients
of the mean velocities in the x-y and z-y boundary layers, may be written:

dkx

dt
“ ´

BU
Bx

kx ´
BVx

Bx
ky, (22)

dky

dt
“ ´

BU
By

kx ´
BVx

By
ky ´

BW
By

kz, (23)

dkz

dt
“ ´

BVz

Bz
ky ´

BW
Bz

kz. (24)

The nonlinear products of the spectral velocity components in Equations (20) are retained in our
series of equations by characterizing the coefficients:

klpδim ´
kikm

k2 q (25)

as a projection matrix [15]. This coefficient represents the projection of a given velocity wave vector
component, ai, normal to the direction of the corresponding wave number component, ki. A model
equation for this expression in the form:

1´K¨ cospkptqq (26)

is introduced to retain the effect of the projection matrix on the nonlinear interactive terms in our
equations. K is an empirical weighting amplitude factor [14] and k(t) is given by:

kptq “
b

pk2
xq. (27)

With F = Kcos(k(t)), the equations for the spectral velocity components, Equations (20), are written
in Lorenz format as [14]:

dax

dt
“ σyay ´ σxax, (28)

day

dt
“ ´p1´ Fqaxaz ` r1ax ´ s1ay, (29)

daz

dt
“ p1´ Fqaxay ´ b1az. (30)

From Equations (20), the coefficients of the velocity wave component terms have the following
forms [14]:

σy “

„ˆ

2kxky

k2 ´ 1
˙

BU
By
`

2kxky

k2
BVx

By
`

2kxkz

k2
BW
By



, (31)

σx “

"

υk2 ´

„ˆ

2kxkx

k2 ´ 1
˙

BU
Bx
`

2kxky

k2
BVx

Bx
`

2kxkz

k2
BW
Bx

*

, (32)

r1 “

„

2kykx

k2
BU
Bx
`

ˆ

2kyky

k2 ´ 1
˙

BVx

Bx
`

2kykz

k2
BW
Bx



, (33)

s1 “

"

υk2 ´

„

2kykx

k2
BU
By
`

ˆ

2kyky

k2 ´ 1
˙

BVz

By
`

2kykz

k2
BW
By

*

, (34)

b1 “

"

υk2 ´

„

2kzkx

k2
BU
Bz
`

2kzky

k2
BVz

Bz
`

ˆ

2kzkz

k2 ´ 1
˙

BW
Bz

*

. (35)
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The nonlinear time series solutions for the spectral velocity wave number components in
the spectral domain for each of the seven downstream stations make up the non-equilibrium
thermodynamic system. Solutions of the overall set of equations are obtained at each of the seven
stations along the x-axis.

The application of these equations at the initial station requires that additional assumptions be
applied to the modified Lorenz equations. Isaacson [14], Mathieu and Scott [15], and Manneville [16]
have discussed both the format and justification for the particular choice of these assumptions for
the initial station. These solutions contain the spectral velocity component fluctuations that we wish
to study.

We apply our computational procedure to the six stations following the initial station at x = 0.08
along the stream wise direction. However, as Attard [8] (pp. 42–45) points out, we must take into
account that the nonlinear time series solutions obtained for the second and subsequent stations will
be influenced by the fluctuations produced in the first and following stations. To accomplish this,
we use the synchronization properties of the modified Lorenz set of equations describing the nonlinear
solutions for the spectral components [1,14].

4.2. Synchronization Properties of the Modified Lorenz Equations

Pecora and Carroll [17], Pérez and Cerdeiral [18], and Cuomo and Oppenheim [19] have used the
synchronization properties of systems of Lorenz-type equations to extract messages masked by chaotic
signals. The synchronization properties of Lorenz-type equations are adapted here to extract ordered
signals from the nonlinear time series generated for each of the spectral components in the solutions of
the modified Lorenz equations.

As indicated previously, the solutions are obtained for a sequence of stations along the x-axis.
We apply the transformation of the projection matrix (Equation (26)) to the initial station at
x = 0.080. We then apply the synchronization properties to each of the following downstream stations.
The various boundary layer coefficients at each of these stations are computed in the same manner as in
the initial station. Following the results in [14], the time-dependent output for the x-direction spectral
velocity component from the initial station is used as input to the nonlinear coupled terms in the
modified Lorenz equations at the next station, which we denote as the second station in the x-direction.
Then, the input to the nonlinear-coupled terms at the next downstream station is made up of the sum
of the stream wise velocity wave component output from the initial station plus the x-direction spectral
velocity wave component output from the next downstream station. This process is repeated for each
of the six downstream stations. With this method, the memory of the initial velocity fluctuations and
the influence of subsequent fluctuations are retained in the overall computational procedure.

4.3. Deterministic Results for the Modified Lorenz Equations

The stream wise velocity has been chosen as ue = 1.00 for all of the cases considered in this study.
We have chosen to present the results obtained at the station of x = 0.140 since the results for this station
indicate the clearest power spectral density peaks in the overall set of statistical results. However,
it turns out that the results for this station also indicate the lowest level of entropy generation rates
at the normalized boundary layer location of η = 1.40 for the crosswind velocity of we = 0.0800.
This choice for the presentation of the results should therefore be kept in mind in the comparison of
entropy generation rates for the overall set of crosswind velocities.

Figure 2 presents the deterministic three-dimensional spectral velocity wave trajectory for the
downstream station of x = 0.140, for a sidewall mass injection velocity of we = 0.0800. Figure 3 shows
the corresponding phase diagram for az4–ay4, where ay4 is the normal spectral velocity wave component
and az4 is the span wise spectral velocity wave component, again at the station x = 0.140.
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Figure 2. Shown is a three-dimensional deterministic trajectory of the spectral velocity components,
ax4, ay4, and az4, at x = 0.140 for η = 1.40 and we = 0.0800.
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Figure 3. The phase diagram of the span wise and normal spectral velocity components, az4–ay4, is
shown for x = 0.140, η = 1.40 and we = 0.0800.
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Figure 4. A three-dimensional representation of the deterministic trajectories of the spectral velocity
components, ax4, ay4, and az4, is shown for x = 0.140, η = 1.40 and we = 0.0925.
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Figure 4 presents the deterministic three-dimensional trajectory of the spectral velocity wave
components for the downstream station of x = 0.140, for a sidewall mass injection rate of we = 0.0925.
Figure 5 shows the corresponding phase diagram for az4–ay4, where ay4 is the normal spectral velocity
wave component and az4 is the span wise spectral velocity wave component, again at the station
x = 0.140 and crosswind velocity of we = 0.0925.
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Figure 5. The phase diagram of the span wise and normal spectral velocity components, az4–ay4, is
shown for x = 0.140, η = 1.40 and we = 0.0925.

5. Power Spectral Density within the Non-Equilibrium Spectral Velocity Fluctuations

5.1. Power Spectral Densities Indicating Ordered Structures

The Lorenz synchronization procedure yields the nonlinear time series solution for each of the
six stations in the x-direction, following the initial station. These solutions indicate the generation
of deterministic spiral structures, with significant non-equilibrium velocity fluctuations embedded
within some of the solutions. Entropy generation comes about through the dissipation of these
fluctuations into equilibrium thermodynamic states. We have found that Burg’s method [9] for the
power spectral density of the time-series data is an effective method for extracting the underlying
structural characteristics of the velocity fluctuations within the nonlinear time series solutions.

The resulting power spectral density results for the normal spectral velocity wave component, ay4

at the fourth station at x = 0.140, are presented in Figure 6. For each of the power spectral density results,
we have assigned empirical mode numbers to these peaks, starting with mode j = 1 representing the
highest peak in the distribution, continuing to mode j = 16, representing the corresponding lowest
peak among the sixteen peaks.

The peaks of the spectral power density analysis and the empirical modes of the singular
value decomposition analysis are computed from the same set of time series data. Therefore, we
can relate each power spectral density peak with a corresponding empirical mode through the
Weiner´Khintchine theorem relating the power density spectrum and the autocorrelation function for
the nonlinear time series data [8] (pp. 354–355).

The resulting power spectral density results for the span wise spectral velocity wave component,
ay4 at the fourth station at x = 0.140, are presented in Figure 7.
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Figure 6. The power spectral density for the normal spectral velocity component is shown for x = 0.140,
η = 1.40 and we = 0.0800.
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Figure 7. The power spectral density for the span wise spectral velocity component is shown for
x = 0.140, η = 1.40 and we = 0.0800.
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Figure 8. The power spectral density for the normal spectral velocity component is shown for x = 0.140,
η = 1.40 and we = 0.0925.
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The power spectral density results for the normal spectral velocity wave component, ay4 at the
fourth station at x = 0.140 for a crosswind velocity of we = 0.0925, are presented in Figure 8. The
resulting power spectral density results for the span wise spectral velocity wave component, ay4 at the
station at x = 0.140, for a crosswind velocity of we = 0.0925, are presented in Figure 9.
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Figure 9. The power spectral density for the span wise spectral velocity component is shown
for x = 0.140, η = 1.40 and we = 0.0925.

A significant advantage of Burg’s method (the maximum entropy method) is the enhancement of
the spectral peaks in the power spectral density distribution. Press et al. [10] (pp. 572–575) present
computer program listings for the prediction of the power spectral density using the maximum
entropy method. The results indicate that the power spectral density is distributed over a selection of
well-defined spectral peaks. These spectral peaks represent a collection of ordered structures embedded
within the fluctuating time series solutions of the modified Lorenz equations, each identified with a
corresponding mode number.

These spectral peaks have been organized in descending order into sixteen empirical modes.
Simpson’s integration rule is used to obtain the kinetic energy available for dissipation for each of the
power spectral density modes. The total spectral energy available for dissipation is then obtained as
the sum of the individual contributions across the modes. This value is then used to get the fraction of
dissipation energy in each mode that is eventually available for dissipation into the internal energy of
the final equilibrium thermodynamic state.

5.2. Empirical Entropies from Singular Value Decomposition

The singular value decomposition procedure [20] can also serve as a means of identifying
fundamental characteristics of the nonlinear time series solutions of the coupled nonlinear spectral
equations. We have incorporated into our numerical procedure the singular value decomposition
computer program listings presented by Press et al. [10] (pp. 59–65). The computational procedure
is made up of two parts, the computation of the autocorrelation matrix and the singular value
decomposition of that matrix [10]. The overall computational procedure yields the empirical
eigenvalues for each of the empirical eigenfunctions for the given nonlinear time series data segment.

The application of the singular value decomposition procedure to a specified segment of
the nonlinear time-series solution for each of the spectral velocity wave components yields the
distribution of the component eigenvalues λj across the empirical modes, j, for the flow conditions
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listed in Equations (1)–(3). The empirical entropy, Sempj, is defined from these eigenvalues by the
expression [11]:

Sempj “ ´lnpλjq. (36)

Here, λj is the empirical eigenvalue computed from the singular value decomposition procedure
applied to the nonlinear time-series solution. The distribution of the empirical entropy across
the decomposition empirical modes has been shown in [14]. We have applied the singular value
decomposition procedure to the nonlinear time-series solutions of the modified Lorenz non-equilibrium
equations. Again, invoking Parseval’s formula [14], the empirical eigenvalues produced by the singular
value decomposition procedure represent twice the kinetic energy associated with the fluctuating
velocity fields [20].

5.3. Empirical Entropic Indices for the Ordered Structures

The empirical entropies for the fluctuating spectral velocity wave component time series indicate
different characteristics for the various non-equilibrium collections embedded within the time series.
These results indicate that the majority of the kinetic energy is contained within the first six empirical
modes of the singular value decompositions, with relatively low empirical entropy. The following
three empirical modes indicate a transition into non-equilibrium ordered structures. These structures
have been classified as coherent [20] with well-defined structural boundaries. We wish to find a way
to follow these structures through the process of transition from ordered structures into equilibrium
thermodynamic states. For this, we turn to the concept of the Tsallis entropic format (Tsallis [12]).

The Tsallis entropic format is applicable to a variety of microscopic and macroscopic sub-systems.
We are working with a collection of statistical sub-systems spread over a limited number of empirical
modes, j. Note that this is not a sequence over time, but is a sequence in phase space [8] (pp. 409–412).
The empirical entropy, Sempj is introduced to describe the entropy of an ordered structure described
by the empirical eigenvalue, λj, for the singular value decomposition empirical mode, j. Hence, we
simply adopt, in an ad hoc fashion, an expression from which we may extract an empirical entropic
index, qj, from the empirical entropy, Sempj. This expression is written as [14]:

Sempj “ ´lnpλjq “
1´ pλjq

qj

pqj ´ 1q
. (37)

This expression includes the effects of the nonlinear, non-equilibrium nature of the ordered
structures we are following. It has the format of an entropic index; hence, we simply call qj the
empirical entropic index or simply entropic index. The empirical entropic indices for the normal
spectral velocity wave component, ay4 at the fourth station at x = 0.140, with a crosswind velocity
of we = 0.08000 are presented as a function of the empirical mode j in Figure 10. The empirical
entropic indices for the normal spectral velocity wave component, ay4 at the fourth stream wise station
at x = 0.140, and a crosswind velocity of 0.0925 are presented as a function of the empirical mode, j in
Figure 11.

5.4. Empirical Intermittency Exponents for the Ordered Structures

In this section, we introduce a heuristic method to connect the non-equilibrium results for the
entropic indices with the final phase of the dissipation of fluctuating kinetic energy into thermodynamic
internal energy. We explore this computational connection through the concept of intermittency
exponents and a relaxation process into the final thermodynamic entropy state.

The non-equilibrium ordered structures discussed in previous sections are of a macroscopic
nature embedded within the nonlinear time series solutions of the nonlinear equations for the
fluctuating spectral velocity wave field. Singular value decomposition of the time series solutions
provides empirical entropies for these non-equilibrium structures. The empirical entropic indices
of the Tsallis form extracted from the empirical entropies using Equation (37) have been used to
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obtain the intermittency exponents for the ordered structures. We heuristically apply a relationship,
found by Arimitsu and Arimitsu [13], connecting the entropic index of Tsallis to the intermittency
exponent, ζj. This intermittency exponent describes the fraction of fluctuating kinetic energy within
the non-equilibrium ordered structure that is dissipated into thermodynamic internal energy [13].
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Figure 10. The empirical entropic index for the normal spectral velocity component is shown as a
function of the empirical mode, j, for x = 0.140, η = 1.40 and we = 0.0800.
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function of the empirical mode, j, for x = 0.140, η = 1.40 and we = 0.0925.

We will substitute the absolute value of the empirical entropic index discussed in the previous
section into the original equation derived by Arimitsu and Arimitsu [13]. This expression is written as:

ˇ

ˇqj
ˇ

ˇ “ 1´
1` ζj ´ log2p1`

a

1´ 2´ζjq ¨ log2p1´
a

1´ 2´ζjq

log2p1`
a

1´ 2´ζjq ´ log2p1´
a

1´ 2´ζjq
(38)
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Figure 12 shows the results for the intermittency exponents obtained from Equation (38) for the
stream wise location of x = 0.140 with a crosswind velocity of we = 0.0800. These results indicate
a dominant intermittency exponent at empirical mode j = 3 and intermittency exponents for the
remaining empirical modes close to the observed value of 0.24 [13]. The intermittency exponents
for the stream wise location of x = 0.140 with a crosswind velocity of we = 0.0925 are shown in
Figure 13. These results again indicate a dominant intermittency exponent at empirical mode j = 3 and
intermittency exponents for the remaining empirical modes close to the observed value of 0.24 [13].
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Figure 12. The empirical intermittency exponent for the normal spectral velocity component is shown
as a function of the empirical mode, j, for x = 0.140, η = 1.40 and we = 0.0800.
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Figure 13. The empirical intermittency exponent for the normal spectral velocity component is shown
as a function of the empirical mode, j, for x = 0.140, η = 1.40 and we = 0.0925.

6. Entropy Generation Rates through the Ordered Structures

6.1. Kinetic Energy Available for Dissipation

The local mean flow kinetic energy, u2/2, at the normalized vertical distance, η = 1.40 in the x-y
plane boundary layer, is considered as the source of kinetic energy to be dissipated through the spiral
structures. This available kinetic energy is distributed over the stream wise component, the normal
component and the span wise component. The fraction of kinetic energy in the x-direction velocity
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component is denoted as κx, the fraction of kinetic energy in the y-direction velocity component
is denoted as κy in the z-direction velocity component denoted as κz. The fraction of dissipation
kinetic energy within each empirical mode of the power spectral energy distribution is denoted as ξj.
Then the total rate of dissipation of the available fluctuating kinetic energy for the stream wise, normal
and span wise velocity components is the summation, over the empirical modes, j, of the product of
the kinetic energy fraction of each mode times the intermittency exponent for that mode, ζj [1].

The empirical intermittency exponent for each of the empirical modes within the ordered
structures has been extracted from the empirical expression (Equation (38)) given by Arimitsu and
Arimitsu [13]. At this point in the computational procedure, values are available for the input energy
source for the non-equilibrium ordered structures, the fraction of the fluctuation kinetic energy
available in each of the empirical modes within the non-equilibrium ordered structures, and the
fraction of the energy in each of the empirical modes that dissipates into background thermal energy,
thus increasing the thermodynamic entropy. We consider the dissipation process for the ordered
structures as a general relaxation process and use concepts from non-equilibrium thermodynamics to
describe this dissipation process.

6.2. Entropy Generation Rates for Relaxation Processes

From the concepts of non-equilibrium thermodynamics, de Groot and Mazur [21] (pp. 221–230)
write the equation for the entropy generation rate in an internal relaxation process as:

Bs
Bt
“ ´

Jpxq
ρT

Bµpxq
Bx

. (39)

Here, s is the entropy per unit mass, ρ is the density, T is the temperature, µ is the mechanical
potential for the transport of the ordered structures in an external context and J(x) is the flux of
dissipation energy through the ordered structures available for dissipation into thermal internal energy.

The dissipation of the ordered structures into background thermal energy may be considered as a
two-stage process from the transition of the ordered structures into equilibrium thermodynamic states
and a relaxation process of the downstream velocity in the initial state to the final equilibrium state of
the velocity over the internal distance x. At the final equilibrium state, the dissipated ordered structure
vanishes into thermal equilibrium with the reservoir. The local boundary layer steady state velocity is
written as u = ue f’, where f” is the derivative of the Falkner–Skan stream function f with respect to the
normalized distance η. The expression for the entropy generation rate (in J/(m3¨K¨ s)) through the
non-equilibrium ordered structures is then written as [1]:
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In this expression, ρ is the density of the working substance, in this case air at the given pressure and
temperature. The first two terms within the brackets in Equation (40) represent the source of total
kinetic energy available from the local steady boundary layer velocity in the stream wise direction.
The first factor in each of the three terms within the braces represents the fraction within each of the
velocity components of the total kinetic energy from the boundary layer. The first factor in each of
the summation terms represents the fraction of kinetic energy within the given spectral mode from
the power spectral density distribution. The second factor in each summation is the corresponding
intermittency exponent obtained from the empirical entropic index for that mode. The final factor
within the brackets is the overall mechanical turnover rate that transports the ordered structures in the
given flow environment.

The kinetic energy in each spectral mode available for final dissipation into equilibrium internal
energy is computed for each of the spectral peaks. The empirical entropy for each of the structures
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indicated by the spectral peaks is found from the singular value decomposition process applied to
the given time series data segment. The connecting parameter, the empirical entropic index, is then
extracted from the resulting value of the empirical entropy.

Glandsdorff and Prigogine [22] find that for the general evolution criterion for non-equilibrium
processes, dSempj/dt < 0. When the Tsallis entropic index is negative, Mariz [23] found that the empirical
entropy change is also negative, dSempj/dt < 0. The results presented in Figures 10 and 11 indicate that
significant non-equilibrium structures exist within the specified time frame of the particular nonlinear
time series solution. These regions may therefore be classified as ordered, non-equilibrium structures.
Therefore, the significant negative nature for the extracted empirical entropic indices at the fourth
station at x = 0.140 is in agreement with both the Prigogine criterion and the Mariz results for the Tsallis
entropic index. The ad hoc introduction of an empirical entropy index thus provides a representation
of the nonlinear, non-equilibrium ordered structures in a significant way.

Given the absolute value of the empirical entropic index, qj, the intermittency exponent, ζj for the
mode, j, is extracted from Equation (38) [13] by the use of Brent’s method [10] (pp. 397–405).

We consider the entropy generation rate to be a phase transition of the dissipation of the
non-equilibrium ordered structure into background thermal energy and a relaxation process of the
global mechanical transport process of the stream wise velocity, ue over the distance x. At the final
equilibrium state, the stream wise velocity of the dissipated structure vanishes. The entropy generation
rates through the non-equilibrium ordered structures are then determined from Equation (40) [1].

The entropy generation rates as a function of the downstream stations are shown in Figure 14,
with the four values of sidewall injection velocities as the imposed crosswind parameters. Note that
each crosswind velocity is constant in the x-direction.
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Figure 14. The entropy generation rates for the non-equilibrium ordered structures at a normalized
vertical station η = 1.40 are shown as a function of the x-direction stations for several applied
crosswind velocities.

Figure 14 shows only the entropy generation rates at various stream wise stations, excluding the
initial station at x = 0.080. It is interesting to note that the rate of entropy generation for the stream
wise station at x = 0.140 is considerably lower than the rates for the other stations. Also, as indicated
in Figure 14, at x = 0.010, entropy generation rates were obtained for only the two lowest crosswind
velocity values. These results indicate that the deterministic spiral structures for the larger crosswind
velocity values are primarily smooth functions, with much lower levels of fluctuation energy than for
the following stream wise stations.
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Figure 15 shows the entropy generation rates at various stream wise stations, for a normalized
boundary layer distance of η = 3.00 [1]. Also, as indicated in Figure 15, at x = 0.080 and x = 0.100,
entropy generation rates were obtained for only two of the crosswind velocity values. Again, these
results indicate that the deterministic spiral structures for the other two crosswind velocities at this
station are primarily smooth functions, with much lower levels of fluctuation energy than for the other
stream wise stations.
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Figure 15. The entropy generation rates for the non-equilibrium ordered structures at a normalized
vertical station η =3.00 are shown as a function of the x-direction stations for several applied crosswind
velocities [1].

The abrupt increases in the entropy generation rates at the third station at x = 0.120 for the
normalized distances of η = 1.40 and η = 3.00 indicate a burst of fluctuation energy in the nonlinear
time series solutions for the spectral velocity wave components at this station.

6.3. Entropy Generation Rates for a Turbulent Boundary Layer

For a comparison of these values for the entropy generation rates, the entropy generation rates
within a turbulent boundary layer are computed for each given stream wise location. Moore and
Moore [24] give the entropy generation rate near the wall in a turbulent boundary layer as:
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Introducing the skin friction coefficient as:
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and applying the Falkner–Skan transformation (Equation (8)) to the velocity gradient, we may write:
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The often-quoted expression for the skin friction coefficient for a turbulent boundary layer on a
flat plate may be written as [25]:

C f “ 0.0592pRexq
´1{5 (44)

Substituting this expression for the skin friction coefficient into Equation (43) yields:

‚

Stbl “ ρ

ˆ

1
2

u2
e

Te

˙

p
ue

x
q

´

0.0592pRexq
0.30

¯

p f 2 q. (45)

This expression is used to compute the entropy generation rates across a hypothetical turbulent
boundary layer as a function of the normalized distance η along the horizontal surface of the corner
flow configuration. The computation of the turbulent boundary layer begins at the initial station
x = 0.02 with transition enforced at this location. Hence, the turbulent boundary layer for our
calculations at the stream wise location x = 0.140 is much smaller than for a naturally occurring
transition further along the x-direction. The distribution of the entropy generation rates across a flat
plate turbulent boundary layer is shown in Figure 16.
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Figure 16. The entropy generation rates for various crosswind velocities are shown at normalized
distances of η = 1.40 and η = 3.00 at a distance of x = 0.140. Also shown is the distribution of the entropy
generation rate at a distance of x = 0.140 for a turbulent boundary layer initiated at x = 0.02 on the
horizontal surface.

The contrast in the fundamental meaning of entropy generation rates between the two sets of
data shown in Figure 16 should be clarified. The entropy generation rates computed for the turbulent
boundary layer use a well-established empirical relation for the turbulent skin friction coefficient
(Equation (44)) and an empirical eddy viscosity expression for the computation of the mean turbulent
velocity profile across the boundary layer. These types of results are useful to the designer of thermal
power equipment for the estimation of the loss in stagnation pressure due to turbulent irreversible
processes within the system.

On the other hand, the computation of the entropy generation rates for the ordered structures
proceeds from the identification of time-dependent instabilities within the laminar boundary layer
due to nonlinear interactions with an imposed crosswind velocity, through to the evaluation of
the dissipation of energy within non-equilibrium ordered structures. With the availability of
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an appropriate turbulent boundary layer velocity profile, the enhanced skin friction coefficient
produced by these ordered structures may then be obtained from the resulting entropy generation
rate values. This approach thus introduces basic physical processes into the evaluation of
time-dependent non-equilibrium entropy generation processes occurring in this three-dimensional
laminar flow environment.

7. Discussion

It has previously been found that a crosswind velocity in a corner boundary layer flow could
trigger instabilities in the three-dimensional laminar boundary layer along the horizontal surface [1].
This flow into the boundary layer provides the development of an additional boundary layer profile in
the z–y plane along the horizontal surface, thus providing a three-dimensional orthogonal boundary
layer environment.

Application of coupled, nonlinear modified Lorenz equations in the spectral plane of the flow
environment indicates the generation of non-equilibrium spiral structures in the three-dimensional
environment. Fluctuating spectral velocity components are found within the three spectral velocity
component time-series solutions for these equations. Statistical processing of the solutions indicates
the presence of ordered structures embedded within the fluctuating time-series environment. The
transition of these ordered structures into equilibrium thermodynamic states yields the entropy
generation rates for the overall process.

For the results reported here, the effects of four sidewall injection velocity values are evaluated,
we = 0.0800, 0.0830, 0.0921, 0.925, at seven stream wise stations along the x-axis. Each value of crosswind
velocity is applied uniformly through the sidewall along the edge of the stream wise boundary layer.
The synchronization properties of the modified Lorenz equations are applied from the second to
the seventh x-direction stations. Computational results for the initial x-direction station and for the
subsequent synchronized stations indicate significant non-equilibrium ordered structure generation
at each station at the normalized vertical distance of η = 1.40 in the laminar boundary layer. The
intensity of the power spectral densities within these non-equilibrium structures varies from station to
station, indicating the triggering of significantly enhanced structures for several stations. It should
also be noted that not all of the spectral velocity component time series solutions exhibit fluctuating
content. Only the contributions from fluctuating time series solutions from the synchronized stream
wise stations are included in the computation of the respective rates of entropy generation.

For example, only the fluctuating spectral velocity components for the two lowest injection
velocities contribute to the entropy generation at the second downstream station. At the second stream
wise station, x = 0.100, only fluctuations from the lowest injection velocity and the highest injection
velocity contribute to the entropy generation, yielding a significantly lower rate of entropy generation.

At the third stream wise station, x = 0.120, the four crosswind velocities indicate high rates
of entropy production. The following station, x = 0.140, indicates a significant decrease in entropy
generation rates. However, at this station, the power spectral density distribution indicates sharper
spectral peaks. We have presented in this article the sequence of the statistical analysis yielding the
entropy generation rates for the ordered structures predicted at the stream wise station x = 0.140 at the
normalized boundary layer distance of η = 1.40.

To gain a perspective on the magnitude of the predicted rates of entropy generation through the
transition of ordered structures, a comparison is made with the rates of entropy generation in a flat
plate turbulent boundary layer for the same given flow conditions. The distribution of the entropy
generation rates across a turbulent boundary layer at the distance of x = 0.140 is computed for a
turbulent boundary layer initiated at x = 0.02 from the leading edge of the horizontal surface. The
entropy generation rates through the ordered structures at normalized vertical distances of η = 1.40
and η = 3.0 are then compared with the turbulent boundary layer distribution. At the normalized
vertical distance of η = 1.40, the entropy generation rates through the ordered structures are of the
same magnitude as the values generated in the turbulent boundary layer. However, at the vertical
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distance of η = 3.00, the entropy generation rates for the ordered structures considerably exceed those
predicted for the turbulent boundary layer. Thus, the influence of the crosswind velocity on the
horizontal laminar boundary layer is to initiate instabilities within the laminar boundary layer and to
considerably enhance the resulting skin friction coefficient and resulting heat transfer to the horizontal
surface [26].

Although the results presented in this article are obtained for the flow configuration of corner
flows with sidewall mass injection, the computational procedure is quite generic in its application
to general dynamic flow environments. For example, consider the first of three components in
the formation of turbulent spots in the transition of laminar to turbulent flows [27]. Initially,
a stream wise counter-rotating vortex is formed from a point-wise initiating obstacle. A stream
wise laminar boundary layer is initiated on the right side of this vortex, along the floor of the cavity.
The counter-rotating vortex produces a crosswind surface boundary layer orthogonal to the stream
wise boundary layer [28]. The computational procedure used in the present study appears to be
directly applicable to this dynamic flow configuration. The remaining components in the dynamic
processes of the transition of laminar to turbulent flows should also be amenable to analysis with the
present computational procedure.

However, there are several significant issues concerning the computational procedure discussed in
this article. First, the range of kinematic viscosity values for which instabilities have been observed in
three-dimensional boundary layer configurations is very narrow [1]. The range of kinematic viscosities
that may yield instabilities should be explored to delineate the applicability of the procedure.

Second, there has been no validation of the computational procedure by independent computational
results. Inclusion of the time-dependent modified Lorenz equations in the computational procedure
should yield additional insight into the process of the transition of laminar to turbulent flow.
An independent computational validation would be welcome.

A third issue is that experimental verification of the predicted results is sparse. Results presented
in Boiko et al. [29] (pp.120–121) indicate that small amplitude vortices of approximately ten percent
of the free-stream velocity in a flat plate boundary layer have been observed. In our calculations,
the amplitude of each of the injection crosswind velocities is less than ten percent of the free-stream
velocity. In an important experimental measurement, Boiko et al. [29] (pp.115–118) reported the
observation of turbulent spots at two vertical locations within a laminar boundary layer, similar to
our prediction of the generation of two regions of non-equilibrium ordered structures within the
three-dimensional laminar boundary layer in a corner flow with sidewall mass injection. The vertical
locations within the boundary layer of the turbulent spots reported in [29] correspond to the vertical
locations of the ordered structures reported in this study. This is an important experimental consistency
for the results obtained through our computational procedure.

8. Conclusions

An innovative computational procedure for the three-dimensional laminar boundary layer in a
corner flow with sidewall mass injection indicates the generation of two regions of non-equilibrium
ordered structures within the horizontal laminar boundary layer configuration. The entropy generation
rates through the dissipation of these ordered structures are compared. The vertical locations of
these ordered structures in the laminar boundary layer are compared with reported experimental
observations. Detailed results for the entropy generation rates generated through the dissipation
of the ordered structures near the wall are reported. Comparison of the entropy generation rates
through the ordered structures with a simulated turbulent boundary layer indicates that the ordered
structures near the wall are of similar magnitude, but the dissipation rates for the structures further
out are quite strong. These results indicate that transpiration cooling from sidewall injection into a
laminar boundary layer may actually increase the heat transfer to the horizontal surface through the
generation of these ordered structures. The inclusion of time-dependent non-equilibrium equations
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into a reservoir of steady laminar boundary layer profiles may provide additional insight into the
transition of laminar to turbulent flow.
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Nomenclature

ai Fluctuating i-th component of velocity wave vector
b Coefficient in Equation (14)
b Fluctuating Fourier component of the static pressure
b1 Coefficient in modified Lorenz equations defined by Equation (35)
Cf Skin-friction coefficient
F Time-dependent feedback factor
j Mode number empirical eigenvalue
J Net source of kinetic energy dissipation rate, Equation (39)
k Time-dependent wave number magnitude
k Dimensional constant, Equation (27)
ki Fluctuating i-th wave number of Fourier expansion
K Adjustable weighting factor
m Pressure gradient parameter, Equation (11)
p Local static pressure
qj Empirical entropic index for the empirical entropy of mode, j
r1 Coefficient in modified Lorenz equations defined by Equation (33)
s Entropy per unit mass
s1 Coefficient in modified Lorenz equations defined by Equation (34)
Sempj Empirical entropy for empirical mode, j
‚

Sgen Entropy generation rate through kinetic energy dissipation
‚

Stbl Entropy generation rate in a turbulent boundary layer
t Time
u Mean stream wise velocity in the x-direction in Equation (4)
u’ Fluctuating stream wise velocity in Equation (4)
ue Stream wise velocity at the outer edge of the x-y plane boundary layer
ui The i-th component of the fluctuating velocity
Ui Mean velocity in the i-th direction in the modified Lorenz equations
v Mean normal velocity in Equation (4)
v’ Fluctuating normal velocity in Equation (4)
we Span wise velocity at the outer edge of the z-y plane boundary layer
x Stream wise distance
xi i-th direction
xj j-th direction
y Normal distance
z Span wise distance

Greek Letters

δ Boundary layer thickness
δlm Kronecker delta
εm Eddy viscosity
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ε`m Normalized eddy viscosity
ζj Intermittency exponent for the j-th mode in Equation (38)
η Transformed normal distance parameter
λj Eigenvalue for the empirical mode, j
µ Mechanical potential in Equation (39)
ν Kinematic viscosity of the gas mixture
ξj Kinetic energy dissipation rate in the j-th empirical mode
ρ Density
σy Coefficient in modified Lorenz equations defined by Equation (31)
σx Coefficient in modified Lorenz equations defined by Equation (32)
τw Wall shear stress

Subscripts

E Outer edge of the laminar boundary layer
i, j, l, m Tensor indices
x Component in the x-direction
y Component in the y-direction
z Component in the z-direction

References

1. Isaacson, L.K. Entropy Generation through Non-equilibrium Spiral Structures in Corner Flows with Sidewall
Surface Mass Injection. Entropy 2016, 18, 47. [CrossRef]

2. Cebeci, T.; Bradshaw, P. Momentum Transfer in Boundary Layers; Hemisphere: Washington, DC, USA, 1977;
pp. 319–321.

3. Cebeci, T.; Cousteix, J. Modeling and Computation of Boundary-Layer Flows; Horizons: Long Beach, CA,
USA, 2005.

4. Hansen, A.G. Similarity Analyses of Boundary Value Problems in Engineering; Prentice-Hall: Englewood Cliffs,
NJ, USA, 1964; pp. 86–92.

5. Townsend, A.A. The Structure of Turbulent Shear Flow, 2nd ed.; Cambridge University Press: Cambridge,
UK, 1976.

6. Hellberg, C.S.; Orszag, S.A. Chaotic behavior of interacting elliptical instability modes. Phys. Fluids 1988, 31,
6–8. [CrossRef]

7. Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors; Springer: New York, NY,
USA, 1982.

8. Attard, P. Non-Equilibrium Thermodynamics and Statistical Mechanics: Foundation and Applications;
Oxford University Press: Oxford, UK, 2012.

9. Chen, C.H. Digital Waveform Processing and Recognition; CRC Press: Boca Raton, FL, USA, 1982; pp. 131–158.
10. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific

Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992.
11. Rissanen, J. Information and Complexity in Statistical Modeling; Springer: New York, NY, USA, 2007.
12. Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009; pp. 37–43.
13. Arimitsu, T.; Arimitsu, N. Analysis of fully developed turbulence in terms of Tsallis statistics. Phys. Rev. E

2000, 61, 3237–3240. [CrossRef]
14. Isaacson, L.K. Transitional Intermittency Exponents through Non-equilibrium Boundary-Layer Structures

and Empirical Entropic Indices. Entropy 2014, 16, 2729–2755. [CrossRef]
15. Mathieu, J.; Scott, J. An Introduction to Turbulent Flow; Cambridge University Press: Cambridge, UK, 2000;

pp. 251–261.
16. Manneville, P. Non-equilibrium Structures and Weak Turbulence; Academic Press: San Diego, CA, USA, 1990.
17. Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. In Controlling Chaos: Theoretical and Practical

Methods in Nonlinear Dynamics; Kapitaniak, T., Ed.; Academic Press: San Diego, CA, USA, 1996; pp. 142–145.

http://dx.doi.org/10.3390/e18020047
http://dx.doi.org/10.1063/1.867010
http://dx.doi.org/10.1103/PhysRevE.61.3237
http://dx.doi.org/10.3390/e16052729


Entropy 2016, 18, 279 23 of 23

18. Pérez, G.; Cerdeiral, H.A. Extracting messages masked by chaos. In Controlling Chaos: Theoretical and Practical
Methods in Nonlinear Dynamics; Kapitaniak, T., Ed.; Academic Press: San Diego, CA, USA, 1996; pp. 157–160.

19. Cuomo, K.M.; Oppenheim, A.V. Circuit implementation of synchronized chaos with applications
to communications. In Controlling Chaos: Theoretical and Practical Methods in Nonlinear Dynamics;
Kapitaniak, T., Ed.; Academic Press: San Diego, CA, USA, 1996; pp. 153–156.

20. Holmes, P.; Lumley, J.L.; Berkooz, G.; Rowley, C.W. Turbulence, Coherent Structures, Dynamical Systems and
Symmetry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012.

21. De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland: Amsterdam, Holland, 1962.
22. Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley: London,

UK, 1971.
23. Mariz, A.M. On the irreversible nature of the Tsallis and Renyi entropies. Phys. Lett. A 1992, 165, 409–411.

[CrossRef]
24. Moore, J.; Moore, J.G. Entropy Production Rates from Viscous Flow Calculations: Part I—A Turbulent

Boundary Layer Flow. In Proceedings of the 28th ASME International Gas Turbine Conference and Exhibit,
Phoenix, AZ, USA, 27–31 March 1983.

25. White, F.M. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974.
26. Bayley, F.J.; Turner, A.B. The Transpiration-Cooled Gas Turbine. J. Eng. Power 1970, 92, 351–358. [CrossRef]
27. Cantwell, B.J. Organized Motion in Turbulent Flow. Ann. Rev. Fluid Mech. 1981, 13, 457–515. [CrossRef]
28. Ersoy, S.; Walker, J.D.A. Viscous flow induced by counter-rotating vortices. Phys. Fluids 1985, 28, 2687–2698.

[CrossRef]
29. Boiko, A.V.; Grek, G.R.; Dovgal, A.V.; Kozlov, V.V. The Origin of Turbulence in Near-Wall Flows; Springer:

Berlin/Heidelberg, Germany, 2010.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0375-9601(92)90339-N
http://dx.doi.org/10.1115/1.3445364
http://dx.doi.org/10.1146/annurev.fl.13.010181.002325
http://dx.doi.org/10.1063/1.865226
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Selection of Heated Air as the Working Substance 
	Steady-Flow Laminar Boundary-Layer Environment 
	Modified Time-Dependent Lorenz Equations in the Spectral Plane 
	Transformation of the Townsend Equations to the Modified Lorenz Format 
	Synchronization Properties of the Modified Lorenz Equations 
	Deterministic Results for the Modified Lorenz Equations 

	Power Spectral Density within the Non-Equilibrium Spectral Velocity Fluctuations 
	Power Spectral Densities Indicating Ordered Structures 
	Empirical Entropies from Singular Value Decomposition 
	Empirical Entropic Indices for the Ordered Structures 
	Empirical Intermittency Exponents for the Ordered Structures 

	Entropy Generation Rates through the Ordered Structures 
	Kinetic Energy Available for Dissipation 
	Entropy Generation Rates for Relaxation Processes 
	Entropy Generation Rates for a Turbulent Boundary Layer 

	Discussion 
	Conclusions 

