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Abstract: The composite discrete chaotic system (CDCS) is a complex chaotic system that combines
two or more discrete chaotic systems. This system holds the chaotic characteristics of different
chaotic systems in a random way and has more complex chaotic behaviors. In this paper, we
aim to provide a novel image encryption algorithm based on a new two-dimensional (2D) CDCS.
The proposed scheme consists of two parts: firstly, we propose a new 2D CDCS and analysis the
chaotic behaviors, then, we introduce the bit-level permutation and pixel-level diffusion encryption
architecture with the new CDCS to form the full proposed algorithm. Random values and the total
information of the plain image are added into the diffusion procedure to enhance the security of
the proposed algorithm. Both the theoretical analysis and simulations confirm the security of the
proposed algorithm.

Keywords: CDCS; image encryption; bit-level permutation; pixel-level diffusion

1. Introduction

With the rapid development of Internet and information technology, the secure transmission
of image data becomes one of the most important problems. Due to some intrinsic features of
image data, such as bulk data capacity, high redundancy and high correlation among adjacent
pixels, traditional cryptosystems, for example, International Data Encryption Algorithm(IDEA), Data
Encryption Standard (DES), and Advanced Encryption Standard (AES), are unsuitable for image
data encryption [1–3]. It is well known that chaos theory has many unique characteristics, such as
ergodicity, pseudo randomness, sensitivity to initial conditions and control parameters [4], and these
characteristics meet the requirements of diffusion and mixing in the sense of cryptography. Hence,
chaotic system has become a good choice for image encryption. Since the first chaos-based image
encryption scheme was proposed by Fridrich [1], many chaos-based image encryption schemes can be
found in recent literatures. Because low dimensional chaotic maps have the advantages of simplicity
and efficiency, researchers in [5] realized an encryption scheme for color images permutated by using
zigzag path scrambling with a spatiotemporal chaotic system. A RGB image encryption based on total
image characteristics and modified Logistic map are presented in [6]. In [7], the authors presented a
novel image encryption algorithm based on Henon map and compound spatiotemporal chaos with
s superiority key sensitivity, plaintext sensitivity, and execution efficiency. Zhou et al. provided
an image encryption algorithm with a simple structure and integrates the Logistic, Sine and Tent
maps into one single system in [8]. However, these algorithms have some limitations, such as small
key size and weak security. Recently, the purpose of using high dimensional chaotic maps and
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hyper chaotic systems is to enlarge the key space of the algorithms and resist brute force attack.
For instance, a fast image encryption algorithm with a new two-dimensional Sine iterative chaotic
map with infinite collapse (ICMIC) modulation map where the confusion and diffusion processes
are combined for one stage with hyper chaotic behavior was introduced in [9]. Hua et al. proposed
two new 2-dimensional (2D) Sine-Logistic modulation maps which were derived from the Logistic
and Sine maps with wider chaotic range, better ergodicity, hyper chaotic property and relatively
low implementation cost in [10,11]. In [12], Mollaeefar et al. provided a novel method for color image
encryption based on high level chaotic maps Cosinus-Arcsinus and Sinus-Power Logistic map, which
have better chaotic behavior against other available chaotic maps. Hyper-chaos has two or more
Lyapunov exponents, and it indicates that the dynamics of this system is expanded in more than one
direction instability [13–16]. Wang et al. in [13] proposed an effective image encryption algorithm
based on genetic recombination and hyper-chaotic system. A new lossless encryption algorithm for
color images based on a 6D hyper chaotic system and the 2D discrete wavelet transform in both the
frequency domain and the spatial domain with key streams depend on the hyper chaotic system and
the plain image is shown in [14]. Wu et al. in [15] introduced a novel color image cryptosystem based
on synchronization of two different 6D hyper chaotic systems. Zhu et al. in [16] permutated the plain
image twice by a discrete 2D hyper-chaos system to obtain good permutated effect. Moreover, many
researchers suggested that composite chaotic system could be utilized to enhance the complexity and
security level of the algorithm, because composite chaotic system may possess better randomness
and complex chaotic character so that the cryptosystem can obtain higher security. Tong et al. in [17]
adopted the Feistel network and constructed a Cubic function in the encryption algorithm and its
key space was larger which was more efficiency and low resource depletion. A novel color image
encryption algorithm was proposed based on the complex Chen and complex Lorenz systems, where
One pixel in a channel may appear in any position and any channel in [18]. In [19–21], the authors
provided several image encryption schemes with compound chaotic system by exploiting two 1D
chaotic functions which switch randomly. All these references show the compound chaotic system
has a better performance in speed, complexity, and security and can solve the problem that unable to
resist short periods and low precision of low dimensional chaotic function by perturbation.

Besides the classic substitution-diffusion architecture, there are also other proposed chaos-based
image encryption algorithms with their own structures. For example, the basic unit of an image can
also be represented as bit (for example, a pixel value 54 can be represented as “00110110”). Some
bit-level image encryption algorithms can be found in [22–25], which can play a permutation and
diffusion effect simultaneously by a bit-level permutation. Zhu et al. in [22] proposed an image
cryptosystem employing the 2D Arnold map for bit-level permutation, and this cryptosystem can
obtain diffusion effect and save some encryption time. A new 3D bit matrix permutation algorithm
was proposed where an image was considered as a natural three dimensional bit matrix (width,
height, and bit length) in [23]. Fu et al. in [24] studied a symmetric chaos-based image cipher
with a 3D cat map-based spatial bit-level permutation strategy where the diffusion effect of the new
method was superior as the bits were shuffled among different bit-planes rather than within the same
bit-plane. Zhu et al. in [25] arranged the positions of each bit by the generalized Arnold map in both
row and column directions in a random way to get permutation and diffusion effect, then used affine
cipher to obtain better diffusion effect to avoid the similarity existing in the bit-level permutation
stage. Moreover, in [26], a novel image encryption scheme was proposed based on reversible cellular
automata combining chaos. In [27,28], image encryption schemes based on DNA sequence operations
rule and some improved chaotic systems were proposed, and an image encryption algorithm based
on wave function and chaotic system was given in [29] where keystream was dependent on both
the plain image and the secret key. However, some chaos-based image encryptions had been
broken [30–34]. According to the Kerckhoff’s principle, the security level of cryptographic keys
decides the security level of the cipher algorithms. To improve the security level of the chaos-based
image encryption scheme, researchers have also attempted to generate good keystream providing
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cryptographic keys used in image encryption schemes. As an illustration, Seyedzadeh et al. in [35]
designed a fast color image encryption algorithm based on a coupled two-dimensional piecewise
chaotic map by a 256-bit external secret key as session keys. A 256-bit long hash value that depended
on the three plain images was used to generate three random sequences to design a triple image
encryption algorithm in [36].

In this paper, we aim to provide a novel image encryption method based on a composite discrete
chaotic system with high chaotic behaviors, and a single permutation and double-diffusion operation
are realized with scanning the plain image one time, which will lead to good encryption effect.
Moreover, random values and the total information of the plain image are added into the diffusion
procedure. As a result, the obtained cipher images are totally different even using the same secret key
to encrypt a plain image several times. The rest of this paper is organized as follows.

In Section 2, we design a new composite discrete chaotic system (CDCS) that combines different
chaotic systems in a random way, which can enhance the chaotic behaviors of the single chaotic
system. In Section 3, we employ CDCS to perform the bit-level permutation and pixel-level
diffusion operation to form the full proposed algorithm, and obtain a better diffusion effect. In
Section 4, we analyze the security of the proposed scheme and evaluate its performance with several
comparable algorithms through key size analysis, histogram analysis, chi-square test, correlation
analysis, information entropy analysis, local Shannon entropy analysis, key sensitivity analysis,
chosen/known plaintext attacks analysis, differential attack analysis, speed performance analysis,
and the robustness of the proposed algorithm in noise and data loss. Finally, we summarize the main
results in Section 5.

2. Composite Discrete Chaotic System

2.1. Two-Dimensional Composite Discrete Chaotic System

CDCS is a specific chaotic system combining two or more discrete chaotic systems. The merit of
the new CDCS is that it can choose different chaotic system in the iteration procedure in a random
way. The definition of the CDCS is given below:

Definition 1. Let xi = fq(xi−1), q = 0, 1, · · · , m − 1, i = 1, 2, · · · be m different discrete chaotic
systems. For a random composite sequence S = {s1, s2, · · · } ∈ {0, 1, · · · , m − 1}∞, we call the
following functions an m-dimensional CDCS

xi = fsi (xi−1), i = 0, 1, · · · , m− 1. (1)

We denote this system as ( f0, f1, · · · , fm−1, S).

Definition 1 implies that the chaotic behavior of CDCS relies on the random composite chaotic
sequence S and every discrete chaotic system in CDCS. Generally, the chaotic characteristics of CDCS
is more complicated than that in every single chaotic system. Note that, if m = 1 or si is a constant,
CDCS degenerates to an ordinary single chaotic system.

Theorem 2. Let fq(x), q = 0, 1, · · · , m − 1, be m functions in Definition 1. If | f ′q(x)| > 1, then for any
random composite chaotic sequence S, the m-dimensional CDCS is chaotic.

Proof of Theorem 2. Let S = {s1, s2, · · · } ∈ {0, 1, · · · , m − 1}∞ be a random composite chaotic
sequence, {xn} is iterated by Equation (1) with initial value x0, with a simple computation. The
Lyapunov exponent of the CDCS is

λ = lim
n→∞

1
n

log|∏ f
′
sn(xn)| > 0. (2)
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We know that positive Lyapunov exponent means chaos. Thus, the m-dimensional CDCS is chaotic.
This completes the proof.

According to Theorem 2, we design a 2-dimensional CDCS by the following
Equations (3) and (4):

f0(x) =

{ √
1− kx 0 < x < 1

k ,
1−
√

kx− 1 1
k ≤ x ≤ 1,

(3)

f1(x) =

{
1−
√

1− kx 0 < x < 1
k ,√

kx− 1 1
k ≤ x ≤ 1,

(4)

where k ≥ 2, k ∈ N.
Note that

f
′
0(x) =

{
− k

2
√

1−kx
0 < x < 1

k ,

− k
2
√

kx−1
1
k ≤ x ≤ 1,

(5)

f
′
1(x) =

{ k
2
√

1−kx
0 < x < 1

k ,
k

2
√

kx−1
1
k ≤ x ≤ 1,

(6)

and, | f ′i (x)| > 1, i = 0, 1. Thus, the new CDCS is chaotic by Theorem 2.

2.2. Sensitivity Analysis of the Initial Values and Control Parameters in CDCS

A good chaotic system must be sensitive to initial values and control parameters, respectively.
First, we generate a chaotic random sequence X by Chebyshev map xn+1 = F(xn) = cos(β× arccos(xn)),
n = 0, 1, · · · , xn ∈ [−1, 1]. with initial value β = π, x0 = 0.436879342, then, we quantify it by
y = dx ∗ 109e (mod 2), and obtain the composite random sequence S.

Now, we consider the initial value sensitivity of the proposed CDCS, with the help of the
composite random sequence S, we set the initial value x0 = 0.65382364, 0.65382365 from the
Chebyshev chaotic sequence X and k = 2 in Equations (3) and (4), and iterate it 2010 times and
get two chaotic sequences, respectively. The first 2000 iterated random real numbers are discarded to
avoid the harmful effect of CDCS, and the last 10 iterated random real numbers are shown in Table 1.
From Table 1, we know that the two chaotic sequences are very different though the initial values are
just a trivial difference (10−8). So, CDCS is very sensitive to initial value.

Table 1. Chaotic sequences generated by CDCS with different initial value.

Chaotic Sequence x0 = 0.65382364 x0 = 0.65382365

y2001 0.6916087935 0.5510774642
y2002 0.6190457067 0.3196168464
y2003 0.4879461173 0.3993617501
y2004 0.8447332446 0.5513615043
y2005 0.8303411884 0.3205043035
y2006 0.8128237059 0.4008410954
y2007 0.7909787683 0.5546711225
y2008 0.7250674640 0.3306693894
y2009 0.6974535701 0.4180539361
y2010 0.6709209552 0.595164073

Notice that the different control parameter k in Equations (3) and (4) means different CDCS. In
order to see the sensitivity of the control parameter k in CDCS, we diffuse the plain image (lena) with
the following steps:
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Step 1: Get 6 different CDCS by setting k = 2, 3, 4, 5, 6, 7, respectively. Then, we obtain 6 chaotic
sequences with the initial value x0 = 0.65382364 by Equations (3) and (4), respectively. If

the output |yi| is larger than 1, then we let yi =
√

k−1−yi√
k−1

in Equation (3) and yi =
√

k−1−1+yi√
k−1−1

in Equation (4), and if the output yi < 0, then yi = |yi|. Next, we turn them into 6 binary
sequence by y = dx ∗ 109e mod 2.

Step 2: Extend the plain gray image matrix to an 1-dimensional integer sequence, and transform
the integer sequence into a binary sequence.

Step 3: Do exclusive OR for the binary sequence with the 6 chaotic binary sequences, respectively,
then get 6 diffused binary sequences

Step 4: Transform the 6 diffused binary sequences into 6 integer sequences, and reshape them into
6 diffused images. The diffusion effect is shown in Figure 1. From Figure 1, we know that
each CDCS can get good diffuse effect.

   

            (a)                       (b)                        (c) 

   

           (d)                        (e)                        (f) 

  

          (g) 

Figure 1. The diffused images by different control parameter k of CDCS. (a) Lena image; (b) k = 2;
(c) k = 3; (d) k = 4; (e) k = 5; (f) k = 6; (g) k = 7.

We also list the differences of the six diffused images in Table 2.
The computation results show that the diffuse effect is very sensitive to the control parameter k

in CDCS even with the same initial value. Therefore, CDCS is very sensitive to the initial values and
control parameters.
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Table 2. The differences among diffused images by CDCS with different k.

Control Parameter k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

k = 2 0 0.99607849 0.99603271 0.99586487 0.99604797 0.99598694
k = 3 0.99607849 0 0.99621582 0.99627686 0.99639893 0.9962616
k = 4 0.99603271 0.99621582 0 0.99629211 0.99645996 0.9962616
k = 5 0.99586487 0.99627686 0.99629211 0 0.99615479 0.99568176
k = 6 0.99604797 0.99639893 0.99645996 0.99615479 0 0.99591064
k = 7 0.99598694 0.9962616 0.9962616 0.99568176 0.99591064 0

2.3. Trajectory

For a chaotic system, the trajectory means the movement of the outputs, Figure 2 shows the
trajectories of different chaotic maps: the CDCS of Equations (3) and (4); the single chaotic map
Equation (3), and the Logistic map. Their parameters are set to the values that ensure both the maps
to have excellent chaotic behaviors. The initial value are set to the same. From Figure 2, the trajectory
of the CDCS distributes in much larger regions in the whole plane than that of the comparable chaotic
maps. It means the CDCS is more random and has better ergodicity properties.

  

!"#                        !$#                        !%# 

 
Figure 2. Trajectories of different chaotic maps. (a) CDCS; (b) single discrete dynamic chaotic system
Equation (3); (c) Logistic map.

2.4. Gottwald and Melbourne Test

In 2004, Georg Gottwald and Ian Melbourne introduced a new test for chaos [37]. The input is
any time series from a discrete map, a differential equation etc. The output is a real number in [0,1],
which in theory is either 0, for non-chaotic data, or 1, for chaotic data. In practice, the result is close
to 0 means non-chaotic, and close to 1 means chaotic, we use different parameters paris (x0, k) to
generate different CDCS sequences, and do the Gottwald and Melbourne test in Table 3, and we
conclude that the CDCS has good chaotic behaviors.
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Table 3. The Gottwald and Melbourne test.

Initial Value x0 Control Parameters k Test Results

0.12345678 k = 2 0.99823000
0.12345679 k = 2 0.99839183
0.12345677 k = 2 0.99790976
0.12345676 k = 2 0.99798716
0.21345678 k = 3 0.99782871
0.21345678 k = 4 0.99831404
0.21345678 k = 5 0.99842179
0.21345678 k = 6 0.99854142

0.321345678 k = 7 0.99735072

3. The Proposed Scheme

Base on the discussion in Section 2, we are now ready to describe the proposed image encryption
algorithm. The diagram of the proposed algorithm is shown in Figure 3.

 

 

 

 

 

 

 Divide the bit sequence into 8 

different bit planes 

Extend the original 

image to a bit sequence 

The bit-level permutation 

by multiple-CDCS 

 

The pixel-level diffusion 

by CDCS 

 

Cipher image 

 

Plain image 

 n rounds 

Figure 3. The proposed image encryption architecture.

3.1. Secret Key Generation

The secret keys of the proposed scheme actually are consisted of the following parts: (1) the
initial value x

′
0 and control parameter k

′
0 of Chebyshev map for generating composite sequence S;

(2) the 8 initial values x
′
1, x

′
2, · · · , x

′
8 and 8 control parameters k

′
1, k

′
2, · · · , k

′
8 of CDCS used in

permutation stage; (3) the initial values and control parameters x
′
9, x

′
10, k

′
9 and k

′
10 of CDCS for

generating random sequences rand1 and rand2 in the diffusion stage. We represent them K = (A, B),
where A = (x

′
0, x

′
1, x

′
2, · · · , x

′
10), B = (k

′
0, k

′
1, k

′
2, · · · , k

′
10). In order to satisfy the security requirement,

we set a random key with the length of 505 bits to generate the secret key K = (A, B) used in the
proposed algorithm of the proposed algorithm, the detailed procedure is shown in the Algorithm 1:
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Algorithm 1. The generation of the secret key

Input: Random key K with length of 505 bits
Output: Secret key (A, B) used in the proposed algorithm.
1: i = 1;
2: for j = 0 : 1 : 10;
3: xj = (∑24

t=0 K[i + t]× 2t)/225;
4: i = i + 25;
5: end for
6: for j = 0 : 1 : 10;
7: k j = (∑9

t=0 K[i + t]× 2t)/210;
8: i = i + 10;
9: end for
10: for j = 0 : 1 : 10;
11: sj = (∑9

t=0 K[i + t]× 2t)/210;
12: i = i + 10;
13: end for
14: a = (∑9

t=0 K[496 + t]× 2t)/210;
15: k

′
0 = (k0 ×mod 1) + 3;

16: for j = 0 : 1 : 10
17: x

′
j = (xj + a× sj)mod 1

18: end for
19: for j = 1 : 1 : 10
20: k

′
j = (round((k j + a× sj)mod 1× 109)mod 32;

21: end for

3.2. Encryption Process

There are two parts in the encryption algorithm: one is a bit-level permutation stage, and the
other is a pixel-level diffusion procedure. Permutation in an image encryption architecture can be
classified into pixel-level permutation and bit-level permutation. In this paper, we denote a plain
image by a 3× 3 matrix M to show the bit-level permutation effect:

M =

 p1 p2 p3

p4 p5 p6

p7 p8 p9

 . (7)

If we do a pixel-level permutation, only the position of the pixel is changed and the value of the pixel
remains unchanged. However, if we consider the bit-level permutation, we extend M to a column
vector (p1, p2, · · · , p9)

T , and change each pixel pi into a 8-bits binary sequence {pi1 , pi2 , · · · , pi8},
i = 1, 2, · · · , 9, and get a new 2-dimensional binary matrix M1:

M1 =



p11 p12 p13 p14 p15 p16 p17 p18

p21 p22 p23 p24 p25 p26 p27 p28

p31 p32 p33 p34 p35 p36 p37 p38

p41 p42 p43 p44 p45 p46 p47 p48

p51 p52 p53 p54 p55 p56 p57 p58

p61 p62 p63 p64 p65 p66 p67 p68

p71 p72 p73 p74 p75 p76 p77 p78

p81 p82 p83 p84 p85 p86 p87 p88

p91 p92 p93 p94 p95 p96 p97 p98


. (8)
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Then, we extend M1 to a binary sequence and do the bit-level permutation. Moreover, we
reshape the shuffled binary sequence to form the permutated binary matrix:

M2 =



p94 p61 p57 p58 p93 p43 p53 p62

p95 p66 p12 p44 p54 p63 p96 p67

p72 p32 p87 p18 p13 p45 p84 p51

p55 p64 p97 p68 p73 p33 p75 p35

p25 p88 p21 p14 p77 p37 p46 p27

p85 p24 p83 p17 p11 p52 p92 p56

p42 p65 p73 p98 p71 p31 p86 p48

p74 p34 p76 p26 p23 p82 p16 p91

p41 p28 p47 p22 p81 p15 p38 p78


. (9)

From M2, we can see that both the positions of the bits and the value of the pixels are changed. Hence,
a significant diffusion effect occurs in the bit-level permutation procedure. Finally, we turn every row
of M2 into an integer according to the normal order and get nine integers p

′
1, p

′
2, · · · , p

′
9, then we

reshape them into the permutated image as follows: p
′
1 p

′
2 p

′
3

p
′
4 p

′
5 p

′
6

p
′
7 p

′
8 p

′
9

 . (10)

3.2.1. Bit-Level Permutation Stage

In this subsection, we denote a plain image with size h ∗w as (aij)h×w, and we use multiple-CDCS
mentioned in Equations (3) and (4) to do the bit-level permutation operation. The detailed process is
stated as follows:

Step 1: Extend the plain image gray value matrix (aij)h×w to a binary sequence:
E = {E1, E2, · · · , Eh∗8w}. Then, turn E into 8 different bit planes: B1, B2, · · · , B8 by
the following rules: B1 = {Ei|i ≡ 1 mod 8, i = 1, 2, · · · , h ∗ 8w}, B2 = {Ei|i ≡
2 mod 8, i = 1, 2, · · · , h ∗ 8w}, B3 = {Ei|i ≡ 3 mod 8, i = 1, 2, · · · , h ∗ 8w},
B4 = {Ei|i ≡ 4 mod 8, i = 1, 2, · · · , h ∗ 8w}, B5 = {Ei|i ≡ 5 mod 8, i = 1, 2, · · · , h ∗ 8w},
B6 = {Ei|i ≡ 6 mod 8, i = 1, 2, · · · , h ∗ 8w}, B7 = {Ei|i ≡ 7 mod 8, i = 1, 2, · · · , h ∗ 8w},
B8 = {Ei|i ≡ 0 mod 8, i = 1, 2, · · · , h ∗ 8w}.

Step 2: Get 8 chaotic sequences of size w ∗ h by Equations (3) and (4) with 8 pairs parameters (x0, k),
and denote them as Fi = {Fi1, Fi2, · · · , Fiw∗h}, i = 1, · · · , 8. If the output |yi| is larger than 1,

we let yi =
√

k−1−yi√
k−1

in Equation (3) and yi =
√

k−1−1+yi√
k−1−1

in Equation (4), and if the output
yi < 0, then yi = |yi|. Then, sort Fi in ascending order and get 8 index order sequences
Ii = {Ii1, Ii2, · · · , Iih∗w}, i = 1, 2, · · · , 8.

Step 3: Permutate the binary sequence Bi by Ii in the following way to get a shuffled binary
sequence Ti = {Tij|j = 1, 2, · · · , h ∗ w}:

Tij = BIij , i = 1, · · · , 8, j = 1, · · · , h ∗ w

Step 4: Rearrange the 8 permutated binary sequences Ti, i = 1, 2, · · · , 8 into the permutated
sequence J with size h ∗ 8w in the following way:

J = {T11, T21, · · · , T81, T12, T22, · · · , T82, · · · , T1h∗w, T2h∗w, · · · , T8h∗w}

Step 5: Divide the intermediate binary sequence J into h ∗ w blocks: K1 = {J1, J2, · · · , J8},
K2 = {J9, J10, · · · , J16}, · · · , K(h∗w) = {Jh∗8w−7, Jh∗8w−6, · · · , Jh∗8w}, then change each block
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into an integer, and get the permutated integer sequence Int = {Int(1), Int(2), · · · , Int(h ∗ w)},
and reshape to the permutated image.

The permutated image of plain image lena and the histogram distribution image are shown in
Figure 4c–d. From Figure 4c–d, we note that the bit-level permutation process hides the information
and changes the statistical characters of the plain image. Unfortunately, the image has some similarity
in the histogram distribution and it is not absolutely uniform, thus, the attacker will find some useful
information with this similarity and break this scheme. Therefore, we do the pixel-level diffusion
operation to overcome this defect.

     

 !" # # # # # # # # # # # # # # # # # # # # # #  $"#
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Figure 4. The histogram distribution analysis. (a) Plain image; (b) The histogram distribution of (a);
(c) Permutated image; (d) The histogram distribution of (c); (e) Cipher image; (f) The histogram
distribution of (e).

3.2.2. Pixel-Level Diffusion Stage

In the bit-level permutation phase, we obtain a shuffled integer sequence
Int = {Int(1), Int(2), · · · , Int(h ∗ w)}, now we do the pixel-level diffusion operation in the
following steps:

Step 1: Obtain 2 CDCS chaotic sequences by Equations (3) and (4), and quantify with
y = dx ∗ 109e mod 256, then name rand1 and rand2, respectively.
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Step 2: For each Int(k) ∈ Int, k = 1, 2, · · · , h ∗ w, do the following operations:
tem2 = Int(k)⊕ tem1 ⊕ rand2(k)
C(k) = (rand1(tem0) + tem2), mod 256
tem0 = k; tem1 = C(k)

(11)

In Equation (11), the initial value tem0 = dcos(πarccos(x0 + ∑ aij/109)) ∗ 109e mod 256,
tem1 = dcos(πarccos(x1 +∑ aij/109)) ∗ 109e mod 256, where x0 and x1 are random value, aij
is the i-th row and the j-th pixel of the plain image, respectively. C(k) is the final encrypted
value of the k-th pixel value.

Step 3: Reshape the encrypted integer sequence C back to the 2-dimensional gray value matrix of
size h ∗ w to form the finally encrypted image.

3.3. Decryption Process

Note that the decryption procedure is just the inverse of the encryption procedure, hence, we
introduce it briefly as follows:

3.3.1. Pixel-Level Diffusion Decryption Stage

Step 1: For the encrypted image, turn it into an integer sequence: C = {C(1), C(2), · · · , C(h ∗ w)}.
Step 2: Obtain 2 CDCS chaotic sequences again by Equations (3) and (4) with the same

parameters used in the encryption procedure, respectively. Then they are quantified by
y = dx ∗ 109e mod 256 and named rand

′
1, rand

′
2, respectively.

Step 3: Let the initial value tem
′
0 = h ∗ w− 1, tem

′
1 = C(h ∗ w− 1). For each C(k) ∈ C, k = h ∗ w,

h ∗ (w− 1), · · · , 2, do the following operations to get the permutated sequence Int
′
:

tem
′
2 = (C(k)− rand

′
1(tem

′
0)), ( mod 256),

Int
′
(k) = tem

′
2 ⊕ tem

′
1 ⊕ rand

′
2(k− 1),

tem
′
0 = k− 1; tem

′
1 = C(k− 1).

(12)

Note that when k = 1, in order to get Int
′
(1), in Equation (12), we let

tem
′
0 = dcos(πarccos(x0 + ∑ aij/109) ∗ 109e mod 256, tem

′
1 = dcos(πarccos(x1 + ∑ aij/109) ∗

109e mod 256, where x0, x1 are the same used in the encryption procedure.

3.3.2. Bit-Level Permutation Decryption Stage

With the decryption of pixel-level diffusion, we get the decrypted sequence Int
′
. Now, we depict

the bit-level permutation decryption.

Step 1: Extend the decrypted sequence Int
′

to a binary sequence G = {g1, g2, · · · , gh∗8w}, where
h ∗ w is the length of Int

′
, respectively. Then, turn binary sequence G into 8 different bit

planes T1, T2, · · · , T8 by the following rules: T1 = {gi|i ≡ 1 mod 8, i = 1, 2, · · · , h ∗ 8w},
T2 = {gi|i ≡ 2 mod 8, i = 1, 2, · · · , h ∗ 8w}, T3 = {gi|i ≡ 3 mod 8, i = 1, 2, · · · , h ∗ 8w},
T4 = {gi|i ≡ 4 mod 8, i = 1, 2, · · · , h ∗ 8w}, T5 = {gi|i ≡ 5 mod 8, i = 1, 2, · · · , h ∗ 8w},
T6 = {gi|i ≡ 6 mod 8, i = 1, 2, · · · , h ∗ 8w}, T7 = {gi|i ≡ 7 mod 8, i = 1, 2, · · · , h ∗ 8w},
T8 = {gi|i ≡ 0 mod 8, i = 1, 2, · · · , h ∗ 8w}.

Step 2: Get the 8 chaotic sequences of size w × h again by Equations (3) and (4) with the
8 pairs same parameters (x0, k) used in the encryption procedure, and denote them
as Hi = {Hi1, Hi2, · · · , Hiw∗h}, i = 1, · · · , 8. If the output |yi| is larger than 1, we let

yi =
√

k−1−yi√
k−1

in Equation (3) and yi =
√

k−1−1+yi√
k−1−1

in Equation (4), and if the output
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yi < 0, then yi = |yi|. Then, sort Hi in ascending order and get 8 index order sequences
I
′
i = {I

′
i1, I

′
i2, · · · , I

′
ih∗w}, i = 1, 2, · · · , 8.

Step 3: Permutate the binary sequence Ti by I
′
i , in the following way to obtain the original binary

sequence B
′
i :

B
′

I′ij
= Tij =, i = 1, · · · , 8, j = 1, · · · , h ∗ w

Step 4: Rearrange the 8 permutated binary sequences B
′
1, · · · , B

′
8 into the permutated sequence P of

size h ∗ 8w in the following way: Q = {B′1(1), B
′
2(1), · · · , B

′
8(1), B

′
1(2), B

′
2(2), · · · , B

′
8(2), · · · ,

B
′
1(h ∗ w), B

′
2(h ∗ w), · · · , B

′
8(h ∗ w)}.

Step 5: Divide the intermediate binary sequence Q into (h ∗ w) blocks: Y1 = {B′1, B
′
2, · · · , B

′
8},

Y2 = {B′9, B
′
10, · · · , B

′
16}, · · · , Yh∗w = {B′h∗8w−7, B

′
h∗8w−6, · · · , Bh∗8w}, then turn each block

into an integer, and get the decrypted integer sequence P = {P(1), P(2), · · · , P(h ∗ w)}.
Step 6: Reshape the decrypted integer sequence P back to the 2-dimensional gray value matrix of

size h ∗ w to get the finally decrypted image.

4. Simulation Results and Security Analyses

In this section, we use test images from the USC-SIPI “Miscellaneous” image [38]. Simulation
results performance analyses for the proposed scheme and four comparable algorithms are provided.
They include key size analysis, histogram analysis, chi-square test, correlation analysis, information
entropy analysis, local shannon entropy analysis, key sensitivity analysis, chosen/known plaintext
attacks analysis, differential attack analysis, speed performance analysis, and the robustness of
the proposed algorithm in noise and data loss. All the simulations are performed on a personal
computer (Hewlett-Packard, Shenyang, China) with an Intel Core 3.1 HZ CPU, 4G memory, and
450 GB hard disk with a Windows 7 Ultimate operating system, and the compile platform is Matlab
(Version 2013a).

4.1. Gray and Color Image Encryption

Because of the spectrum of digital images around the world, the proposed algorithm must
encrypt any image with similar results in security and performance. In this subsection, we use some
images (include gray and color image) with different histogram for encryption and security analysis
to verify the algorithm capabilities. Figure 4a,b,e,f shows the gray plain image and its histogram, the
encrypted image and the corresponding histogram; Figure 5a–d shows two color plain images and
the cipher images with their corresponding histograms. As a result, the gray cipher image, the RGB
components of cipher images, and the uniform histograms verify the proposed algorithm’s ability to
encrypt any gray and color image.
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Figure 5. Color image encryption effect. (a) House image; (b) The corresponding cipher image of (a);
(c) Peppers image; (d) The corresponding cipher of (c).

4.2. Key Size Analysis

According to the Kerckhoff’s principle, the security level of an image encryption scheme relies
on the randomness of the cryptographic keys. As we know, to provide an encryption algorithm with
high security, the key space should be more than 2100 to make brute force attack ineffective. In this
subsection, we use 505 bits random hexadecimal digits as secret key, and generate the key used in the
proposed algorithm in Section 3.1. From the generation procedure, with a simple computation, we
can conclude that the proposed algorithm has large enough key size to resist the brute force attack.

4.3. The Chi-Square Test Analysis of Cipher Image

The histogram distribution contains the information distribution of pixel values in an image. An
ideal encrypted image should have a uniform histogram distribution to prevent the opponent from
extracting any useful information from the fluctuating histogram. Figure 4a,b depicts the original
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lena image and its histogram, Figure 4e,f shows the encrypted image and corresponding histogram
distribution obtained by the proposed scheme. Figure 5a–d shows 2 color plain images and the
cipher image with their corresponding histograms. It is clear that the gray value and RGB component
histogram of the encrypted images are fairly uniform and significantly different from that of the plain
images. Hence, it does not provide any clue to employ statistical attack on the proposed algorithm.

Except for the cipher image histogram distribution analysis graphically, in order to show
the uniform of the cipher image more precise, we also use the chi-square test to show that the
cipher image is a uniform histogram distribution. The chi-square test produces a p-value which
is a real number in [0,1]. If the p-value of a test image is greater than a significant level α, the
test image passes the test successfully. In our experiment, we compute the p-value of some test
images from the USC-SIPI “Miscellaneous” image dataset, and set α = 0.05, the results are listed
in Table 4. From Table 4, all the test images pass the chi-square test, so, the cipher image is a uniform
histogram distribution.

Table 4. Chi-square test analysis (α = 0.05).

Image Name p-value

5.2.08 0.257198003
5.2.09 0.22534446
5.2.10 0.220229861
7.1.01 0.200104753
7.1.02 0.115958523
7.1.03 0.478716242
7.1.04 0.477272383
7.1.05 0.536532281
7.1.06 0.681580846
7.1.07 0.492913738
7.1.08 0.919338576
7.1.09 0.101262279

boat.512 0.631836356
elaine 0.52057636
lena 0.224053673

goldhill 0.883876476
peppers 0.13530398
baboon 0.763747416

house(R) 0.099225363
house(G) 0.412077954
house(B) 0.285299456

4.4. Correlation Analysis

In this subsection, correlation analysis is performed on the plain image and encrypted image to
examine the encryption effect of our scheme. It is well known that the correlation between plain image
adjacent pixels is high and should be reduced in the encrypted image for a good encryption scheme.
Thus, we randomly select 2000 pairs of pixel values among two horizontally, two vertically, and two
diagonally adjacent pixels in the plain image and cipher image, respectively, then we calculate the
correlation coefficient rxy in Table 5 by the following formula:

rxy =
|E((x− E(x))(y− E(y)))|√

D(x)D(y)
(13)

where E(x) and D(x) are the expectation and variance of variable x, respectively.
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Table 5. Correlation coefficients analysis. (Numbers in bold face means the crresoponding encryption scheme has the smallest correlation coefficients.)

Test Image Direction Plain Image Proposed Scheme Ref. [16] Ref. [22] Ref. [8] Ref. [25]

horizontal 0.98727175 0.00911870 −0.01598859 0.00921633 −0.03444986 0.0255741
lena vertical 0.99060282 −0.02799349 −0.00928994 0.00438226 0.0162397 −0.0060722

diagonal 0.98232025 −0.008005781 0.00955705 0.00984828 0.05472108 0.03712793

horizontal 0.98359562 0.00984443 −0.01681935 0.02161067 0.04823954 0.00106722
goldhill vertical 0.97498297 0.01843329 0.03527012 0.03929575 −0.01953583 0.01852442

diagonal 0.96849169 0.002687612 0.006798479 0.02047153 −0.01473057 0.01321081

horizontal 0.98486792 0.06072394 0.0237943 0.02161067 −0.00350778 −0.0115003
peppers vertical 0.97916019 −0.00116499 −0.011170982 −0.037837 −0.021423 −0.00237434

diagonal 0.97515696 −0.00571419 0.00664635 0.02047153 0.02345089 −0.00098435

horizontal 0.74954747 −0.03856932 −0.02999071 0.0161014 0.00289877 −0.00547718
house(R) vertical 0.80262072 0.002023 −0.0154941 −0.04053886 0.018131106 −0.01215746

diagonal 0.60609133 0.00207905 −0.01487206 −0.00227398 0.018180302 −0.01803246

horizontal 0.76294284 0.00181239 −0.0161565 0.0485065 −0.00423018 −0.03230305
house(G) vertical 0.86429319 −0.01279169 −0.00183728 0.01576013 0.00157326 0.0002708

diagonal 0.66868095 0.00241394 0.00156149 −0.03474189 -0.003761 −0.00867577

horizontal 0.90852712 −0.00921239 0.02068469 0.015610986 −0.04302791 0.02820804
house(B) vertical 0.9477393 0.0034053 −0.02170484 −0.00567228 0.0137757 0.0107359

diagonal 0.86744223 −0.0217718 −0.0075945 0.01271975 0.00921989 0.03581673
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From Table 5, we see that, in the 9 correlation coefficients of the 3 gray test images, 5 correlation
coefficients are smaller than that in the comparable algorithms, and 5 correlation coefficients of the
color image are smaller than the comparable algorithm. Moreover, the correlation coefficients in
the 3 directions of the encrypted image are close to 0, thus, the high correlation in the plain image
is significantly reduced by the proposed scheme. To show this feature graphically, the correlation
distributions of adjacent pixels of plain image lena and encrypted image in the 3 directions can be
seen in Figure 6a–f. The results show that the dots of plain image lena are focused on the diagonal,
while those of the encrypted image are scattered uniformly over the entire plane. In summary, all
of data and graphs show that the high correlations in plain gray and color image are significantly
reduced in the encrypted image by the proposed scheme.

   

(a)                                    (b) 

   

(c)                                     (d) 

   

                   (e)                                     (f) 

Figure 6. The correlation analyses of the proposed algorithms. (a) Horizontal direction of plain
image lena; (b) Horizontal direction of cipher image; (c) Vertical direction of plain image; (d) Vertical
direction of cipher image; (e) Diagonal direction of plain image; (f) Diagonal direction of cipher image.
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4.5. Information Entropy Analysis

Global information entropy is the measure on the uncertainty of an information source.
Obviously, the ideal information entropy value for a 8 bits true randomly message is 8. Here, we
use H(X) to represent the information entropy of the information source X = (x0, x1, · · · , xL−1) by
the following Equation (14):

H(X) = −
L−1

∑
i=0

p(xi)log2 p(xi). (14)

The information entropy of some different test images are listed in Table 6. The average entropy
values of 21 test images of our scheme is larger than that of the comparable algorithms, and it can
arrive 7.9993039, which is very close to the theoretical value 8. This means that the encrypted image
can be considered as random, and information leakage in the encryption process can be negligible.

Table 6. Information entropy analysis.

Test Image Plain Image The Proposed Scheme Ref. [16] Ref. [22] Ref. [8] Ref. [25]

5.2.08 7.201008 7.9992989 7.9970096 7.9993075 7.999206 7.9993742
5.2.09 6.9939942 7.9992833 7.9968423 7.9992492 7.9991342 7.9992579
5.2.10 5.7055602 7.9992883 7.9969656 7.9993485 7.9992213 7.9993323
7.1.01 6.0274148 7.9993239 7.9972729 7.9993146 7.9991445 7.9993389
7.1.02 4.0044994 7.9993947 7.9931779 7.999289 7.9989956 7.9993285
7.1.03 5.49574 7.9992167 7.997577 7.9993951 7.9991431 7.9993135
7.1.04 6.1074181 7.9991862 7.9970146 7.9993017 7.999126 7.9993481
7.1.05 6.5631956 7.9992767 7.9969023 7.9993046 7.9991403 7.9993864
7.1.06 6.6952834 7.999398 7.9975578 7.999246 7.9992993 7.9992284
7.1.07 5.9915988 7.9992502 7.997237 7.9992476 7.9989706 7.9992728
7.1.08 5.053448 7.9992442 7.9967758 7.9993288 7.9989898 7.9991881
7.1.09 6.1898137 7.99938 7.9972559 7.9991956 7.9991552 7.9992166

boat.512 7.1913702 7.9993893 7.997026 7.99931 7.9991832 7.9993511
lena 7.4455676 7.9993283 7.9973605 7.9993589 7.999155 7.9992604

goldhill 7.4777796 7.9993354 7.9974798 7.9992933 7.9992657 7.999319
baboon 7.3735278 7.9992275 7.9970364 7.9993183 7.9991787 7.9993072
peppers 7.5714776 7.9992535 7.9974015 7.9991921 7.9992645 7.9992152
elaine 7.4664262 7.9993301 7.9972385 7.9993498 7.9991789 7.9992656

house(R) 7.415627 7.9992942 7.9970608 7.999344 7.9992396 7.9992674
house(G) 7.2294792 7.9993214 7.9974495 7.9992617 7.9991642 7.9993073
house(B) 7.4353838 7.9992996 7.9973264 7.9992621 7.999225 7.9992576
average 6.6016959 7.9993039 7.9971971 7.9992913 7.9991954 7.9992817

4.6. Local Shannon Entropy Analysis

Considering the randomness of the cipher image, except for the global entropy analysis in
Section 4.5, the local Shannon entropy (LSE) is another index for testing randomness from the local
view point [39]. It can be defined by Equation (15)

Hm,n(X) = −
m

∑
i=1

H(Xi)

m
(15)

where, X1, Xi, · · · , Xm are m are chosen image blocks. n is number of pixels in each block. An test
image can pass the LSE test if Hm,n falls into the interval of (7.901515698, 7.903422936) with a
signification level α = 0.001. Table 7 shows the LSE results of the proposed algorithm and four
comparable algorithm, and 16 out of 21 test images by the proposed algorithm pass the test.
The pass rate is higher than other comparable algorithms, it means the proposed algorithm has
good randomness.
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Table 7. Local Shannon entropy analysis. (Numbers in bold face means the test image can pass the
LSE test.)

Test Image The Proposed Scheme Ref. [16] Ref. [22] Ref. [8] Ref. [25]

5.2.08 7.9028691 7.9055763 7.9053199 7.902356 7.9028432
5.2.09 7.9037385 7.9029891 7.900893 7.899853 7.9025761
5.2.10 7.9030217 7.9041229 7.9026793 7.902654 7.9016977
7.1.01 7.9031848 7.9031774 7.9031721 7.902634 7.9027515
7.1.02 7.9018403 7.8976268 7.9003936 7.901634 7.902448
7.1.03 7.9035924 7.9011942 7.901988 7.905423 7.9039657
7.1.04 7.902570 7.9060551 7.9023579 7.902125 7.9055074
7.1.05 7.9050477 7.9018336 7.9022384 7.883653 7.9044964
7.1.06 7.9025262 7.9058613 7.9008032 7.902356 7.9009599
7.1.07 7.9018694 7.9028083 7.9000806 7.902364 7.9044062
7.1.08 7.9031321 7.9028933 7.9032622 7.904456 7.9024535
7.1.09 7.9030009 7.8998789 7.9017465 7.90312 7.9025151

boat.512 7.9026992 7.9000555 7.9017958 7.901879 7.9009823
Elaine 7.9009196 7.9006208 7.9046929 7.902989 7.9029109
Lena 7.903462 7.902938 7.900975 7.904512 7.904671

Goldhill 7.9025015 7.9009052 7.902251 7.9015092 7.9020145
peppers 7.9024452 7.9016155 7.9040266 7.9053045 7.9007481
baboon 7.9033626 7.9004801 7.9001366 7.902999 7.9013492

house(R) 7.9019456 7.9007318 7.9029686 7.9010447 7.905035
house(G) 7.9019228 7.904166 7.9023234 7.9058879 7.9033633
house(B) 7.9026658 7.9014576 7.8998792 7.1993477 7.9046128
pass rate 16/21 8/21 11/21 13/21 10/21

4.7. Key Sensitivity Analysis

According to the Kerckhoff’s principle, the randomness of cryptographic keys decides the
security level of the image encryption algorithms. So, in order to hold the high security, the proposed
image encryption algorithm must be very sensitive to the cryptographic keys. It means a trivial
change in the cryptographic keys must get enormously different encrypted or decrypted image. In
this section, we provide key sensitivity analysis through trivial change in the encrypted key and
decrypted key, respectively.

4.7.1. Encrypted Key Sensitivity Analysis

Here, we represent the secret key of the proposed algorithm as (A, B), where
A = (x

′
0, x

′
1, x

′
2, · · · , x

′
10), B = (k

′
0, k

′
1, k

′
2, · · · , k

′
10). In the following, we make a slight modification on

the 12 groups encrypted keys to one of the parameters with others remain unchanged, the detailed 12
groups encrypted keys are listed as follows:

Key1: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key2: A = (0.34556789,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key3: A = (0.34556788, 0.13456791, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key4: A = (0.34556788,0.13456790, 0.24567982, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key5: A = (0.34556788,0.13456790, 0.24567981, 0.34567931, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key6: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345680, 0.53456794, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).
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Key7: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456795, 0.64567958,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key8: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567959,
0.76456793, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10).

Key9: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456794, 0.86456797,0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10)

Key10: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456798, 0.754712846, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10)

Key11: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797, 0.754712847, 0.567889322), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10)

Key12: A = (0.34556788,0.13456790, 0.24567981, 0.34567932, 0.42345679, 0.53456794, 0.64567958,
0.76456793, 0.86456797, 0.754712846, 0.567889323), B = (π, 8, 7, 6, 5, 4, 3, 2, 13,11,10)

Then, we encrypt the plain image with the 12 groups keys by the proposed scheme, respectively,
and the encrypted images are listed in Figure 7a–l.

   

(a)                         (b)                       (c) 

   

           (d)                         (e)                       (f) 

   

           (g)                          (h)                      (i) 

     

           (j)                          (k)                       (l) 

  

Figure 7. Encrypted key sensitivity analysis. (a) Key1; (b) Key2; (c) Key3; (d) Key4; (e) Key5; (f) Key6;
(g) Key7; (h) Key8; (i) Key9; (j) Key10; (k) Key11; (l) Key12.

Moreover, we compute the differences among Figure 7a–l in Table 8. All the graph and
computation results demonstrate that the proposed algorithm is quite sensitive to the encrypted key.
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Table 8. The encrypted key sensitivity analysis.

Key Key1 Key2 Key3 Key4 Key5 Key6 Key7 Key8 Key9 Key10 Key11 Key12

Key1 0 0.99617 0.99600 0.99207 0.98381 0.96877 0.93839 0.97691 0.97549 0.97625 0.99577 0.99630
Key2 0.99617 0 0.99631 0.99622 0.99599 0.99621 0.99612 0.99609 0.99616 0.99599 0.99588 0.99615
Key3 0.99600 0.99631 0 0.99613 0.99635 0.99619 0.99614 0.99597 0.99611 0.99609 0.99611 0.99604
Key4 0.99207 0.99622 0.99613 0 0.99246 0.99254 0.99178 0.99192 0.99210 0.99217 0.99598 0.99597
Key5 0.98381 0.99599 0.99635 0.99246 0 0.98441 0.98413 0.98443 0.98447 0.98463 0.99611 0.99612
Key6 0.96877 0.99621 0.99619 0.99254 0.98441 0 0.96814 0.96885 0.96847 0.96888 0.99614 0.99615
Key7 0.93839 0.99612 0.99614 0.99178 0.98413 0.96814 0 0.93682 0.93850 0.93759 0.99593 0.99614
Key8 0.97691 0.99609 0.99597 0.99192 0.98443 0.96885 0.93682 0 0.95173 0.90193 0.99608 0.99616
Key9 0.97549 0.99616 0.99611 0.99210 0.98447 0.96847 0.93850 0.95173 0 0.95015 0.99604 0.99623
Key10 0.97625 0.99599 0.99609 0.99217 0.98463 0.96888 0.93759 0.90193 0.95015 0 0.99617 0.99622
Key11 0.99577 0.99588 0.99611 0.99598 0.99611 0.99614 0.99593 0.99608 0.99604 0.99617 0 0.99606
Key12 0.99630 0.99615 0.99604 0.99597 0.99612 0.99615 0.99614 0.99616 0.99623 0.99622 0.99606 0
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4.7.2. Decrypted Key Sensitivity Analysis

Furthermore, because the proposed algorithm is a symmetric cipher, so, we decrypt Figure 7a
with the same secret keys Key1 in Figure 8a. In order to show that the proposed algorithm is sensitive
to the decrypted key, we also use Key2, · · · , Key12 to decrypt Figure 7a, respectively, and draw
the decrypted images in Figure 8b–l, respectively. The results of the differences between the right
decrypted image (Figure 1a) and the wrong decrypted images ( Figure 1b–l are 0.996090, 0.996162,
0.996437, 0.996117, 0.995964, 0.996193, 0.996142, 0.995922, 0.992017, 0.991432, 0.996262, respectively.
So, we can see that the proposed algorithm is also highly sensitive to the decrypted key.

   

(a)                         (b)                       (c) 

   

           (d)                         (e)                       (f) 

   

           (g)                          (h)                      (i) 

     

           (j)                          (k)                       (l) 

  

Figure 8. Decrypted key sensitivity analysis. (a) Key1; (b) Key2; (c) Key3; (d) Key4; (e) Key5; (f) Key6;
(g) Key7; (h) Key8; (i) Key9; (j) Key10; (k) Key11; (l) Key12.

Note that in the key sensitivity analysis, we do not test the sensitivity of the secret keys B because
the sensitivities of B have been tested in Section 2.2. In conclusion, the proposed algorithm is highly
sensitive to secret keys.
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4.8. Chosen/Known Plaintext Attacks Analysis

Chosen/known plaintext attacks analysis is efficient and widely used security attack models in
cryptanalysis. The former assumes that the attackers have the ability to choose arbitrary plaintexts
and obtain the corresponding cipher texts. So, the attackers can disclose the relation between
the plaintexts and ciphertexts, and even deduce the secret key if the encryption structure is not
sufficiently secure. Many successful cryptanalysis cases using the chosen/known plaintext attack
were reported in [31–33,40]. In the proposed algorithm, special structures are designed to resist the
chosen or known plaintext attacks: Firstly, the principle of confusion and diffusion introduced by
Shannon are fulfilled. A bit of a pixel in the plain image can be permuted to any position and a small
change can be spread overall pixels in the cipher image. Moreover, better diffusion effect are realized
with the proposed bit-level permutation and pixel-level diffusion. Most important, random values
and the total information of the plain image are added into the diffusion procedure. As a result, the
obtained cipher images are totally different even using the same secret key to encrypt different plain
image several times.

4.9. Differential Attack Analysis

The encryption scheme should be sensitive to a trivial change (e.g., modify only one pixel value
or a bit) in the plain image. Two common measures are used: one is the number of pixels change
rate (NPCR) and the other is the unified average changing intensity (UACI). NPCR measures the
percentage of different pixel numbers between the two encrypted images, and UACI measures the
average intensity of differences between two encrypted images. Let C1, C2 be two encrypted images,
whose corresponding plain images have only one different pixel value. The NPCR and UACI are
defined by the following Equations (16)–(18):

NPCR = ∑
i,j

d(i, j)
h× w

(16)

d(i, j) =

{
1 C1(i, j) 6= C2(i, j)
0 otherwise

(17)

UACR =
1

h× w ∑
i,j

|c1(i, j)− c2(i, j)|
255

(18)

where h and w are the height and width of the plain image, respectively.
Two plain images are used in the test. The first image is the original Lena image, and the other

is obtained by changing the pixel value in the top left corner from “10100010” to “10100001’ (just a bit
change). Then the two images are encrypted with the same secret keys for a few rounds to generate
the corresponding cipher images C1 and C2. The results are listed in Tables 9 and 10, respectively.

Table 9. NPCR Performance.

Round The Proposed Scheme Ref. [16] Ref. [22] Ref. [8] Ref. [25]

1 0.6696014404 0.000015259 0.00654386 0.9960098267 0.9963431625
2 0.995967865 0.000015259 0.80495842 0.9960746765 0.9959527564
3 0.9961090088 0.000015259 0.99615466 0.9961242676 0.9965357538
4 0.9961585999 0.000015259 0.99595247 0.9961776733 0.9960346326
5 0.9961013794 0.000015259 0.99616793 0.9959716797 0.9961644326
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Table 10. UACI Performance.

Round The Proposed Scheme Ref. [16] Ref. [22] Ref. [8] Ref. [25]

1 0.2630562577 0.000012087 0.00321365 0.3326689627 0.3360676146
2 0.3353189655 0.000012087 0.24366436 0.3348488303 0.335123463
3 0.3346790837 0.000012087 0.33401162 0.3351597805 0.3350163487
4 0.3342736338 0.000012087 0.33389708 0.3346462175 0.3344254165
5 0.3340085647 0.000012087 0.33441636 0.3348087535 0.3343425278

They indicate that NPCR and UACI of the proposed scheme can reach 0.995967865 and
0.3353189655 in the second encryption round, respectively, We note that it is a little lower than Ref. [8],
which has good performance in the first encryption round, but it is better than that of Refs. [16], [22]
and [25]. Therefore, the proposed scheme is very sensitive to even 1 bit modification in the plain
image. Furthermore, to show these growing trends graphically, the NPCR and UACI data with 5
rounds are plotted in Figures 9 and 10, respectively.

 

Figure 9. NPCR analysis.

 

Figure 10. UACI analysis.
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4.10. Randomness Analysis of CDCS

As we know, according to the Kerckhoff’s principle, the randomness level of cryptographic
keystream decides the security level of the cipher algorithms. In this subsection, we evaluate the
performances of CDCS by the NIST SP 800-22 tests [41]. In NIST SP 800-22 tests, each test produces a
p-value which is a real number in [0, 1]. If the p-value is greater than a predefined significant level α,
it means the random sequence can pass the test successfully. In our experiment, we set α = 0.01. The
test results are listed in Table 11. From Table 11, CDCS pass NIST SP 800-22 tests and exhibit excellent
statistical properties. Thus, CDCS provides a better choice for image encryption algorithm.

Table 11. The test result of NIST SP 800-22 tests for CDCS.

Test Name p-value Results

Frequency test 0.5731 Success
Block Frequency test 0.6825 Success
Cusum-Forward test 0.9293 Success
Cusum-Reverse test 0.3514 Success

Runs test 0.5536 Success
Long Runs test of Ones 0.6154 Success
Binary Matrix Rank Test 0.7635 Success

Spectral DFT test 0.4674 Success
Non-overlapping test Templates (m = 9, B = 000000001) 0.8710 Success

Overlapping test Templates (m = 9) 0.9241 Success
Maurer’s Universal test (L = 7, Q = 1280) 0.3533 Success

Approximate Entropy test (m = 5) 0.9987 Success
Random Excursions test (x = +1) 0.2085 Success

Lempel Ziv compression test 0.6784 Success
Linear complexity test 0.2314 Success

Random Excursions Variant test (x = −1) 0.5811 Success
Serial test (m = 5,∇ϕ2

m) 0.8989 Success

4.11. Speed Performance

Except for the security consideration, the running speed is another important factor for a good
image encryption algorithm. Obviously, the proposed algorithm is the classic permutation-diffusion
framework, and it consist of a bit-level permutation procedure and a pixel-level diffusion procedure.
So, we show speed performance with permutation time and diffusion time, respectively. From
Table 12, the bit-level permutation time of the proposed algorithm is lower than the two bit-level
permutation algorithms in [22,25]. Because the bit-level operation need more time than the pixel-level
operation, so, the permutation operation time is larger than the pixel-level permutation algorithms
in [8,16], and the diffusion time is acceptable.

Table 12. Speed Performance (seconds).

Time (s) The Proposed Scheme Ref. [16] Ref. [22] Ref. [8] Ref. [25]

permutation time 10.647093 0.603354 9.789038 0.758742 14.161442
diffusion time 0.648852 0.55907 1.018693 – 2.8315003

total time 10.3959 1.1624 10.8077 0.758742 16.9929

4.12. Robustness of the Proposed Algorithm in Noise and Data Loss

Digital images are usually transmitted in the public networks, and the encryption algorithm is
usual open. So, the attackers can choose special plain images for encryption and try to find the secret
key. So, a secure image encryption algorithm should resist this attacks. The secret key of the proposed
algorithm consist of some random values and the total information of the plain image, so, even the
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attackers choose some special image to encrypt, and get some information of the secret key, but it can
not get the right decrypted image, because the initial value of tem0, tem1 are different, so the random
sequence used in the diffusion procedure Equation (12) will be absolutely different.

Moreover, the attackers can disguise the legal user to obtain the cipher image, tamper with the
intermediate form of the proposed algorithm more convenient, then information loss and pixel value
modification of digital images may happen. Here we show the robustness of the proposed algorithm
in noise and data loss, which means that if a portion of pixels in the cipher image are modified or
lost, the original image can still be reconstructed with a acceptable visual quality. Figure 11 shows the
proposed algorithm can resist the noise and data loss attacks in a high level.

         

         

(a)           (b)           (c)            (d)          (e) 

    Figure 11. Robustness analysis results. (a) 3.6% data loss with a black square; (b) 3.6% data
modification with a square; (c) 5% Salt and Pepper noise; (d) 60.12% data loss with a white square;
(e) 94.23% data loss with a black square.

5. Conclusions

In this paper, we propose a new two dimensional composite discrete chaotic system-based
image encryption scheme, and use the new CDCS to accomplish the bit-level permutation and
pixel-level diffusion. Simulation results show the security and the validity of the proposed scheme
with the several characters: (1) The CDCS has excellent chaotic behaviors because it combines two
single chaotic system in a random way. (2) It has a bit-level permutation and pixel-level diffusion
architecture where the image is encrypted with a single-permutation and double-diffusion effect with
only scan the plain image one time. (3) the value of the ciphered pixel influenced the next pixel’s
permutation and diffusion effect, and a pixel in the plain image can be permuted to any position and
a small change can be spread overall pixels in the cipher image.

However, in the bit-level permutation stage, the proposed image encryption algorithm need
to change each pixel value into a 8 bits sequence, which means that the operation time is longer
than the pixel-level image encryption algorithms. The speed performance in Section 4.11 verifies
this conclusion.

In future, considering the excellent chaotic behaviors of the high-dimensional chaos map and
hyper chaos. With the good structure of the composite discrete chaotic system, we can design
composite discrete high-dimensional chaotic system and composite hyper-chaotic dynamical system
to enhance the complex of the chaotic system and obtain excellent chaos, but we should consider the
time consuming and convenience when use these systems in image encryption.
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