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Abstract: A new kind of entropy will be introduced which generalizes both the differential entropy
and the cumulative (residual) entropy. The generalization is twofold. First, we simultaneously
define the entropy for cumulative distribution functions (cdfs) and survivor functions (sfs), instead of
defining it separately for densities, cdfs, or sfs. Secondly, we consider a general “entropy generating
function” φ, the same way Burbea et al. (IEEE Trans. Inf. Theory 1982, 28, 489–495) and Liese et al.
(Convex Statistical Distances; Teubner-Verlag, 1987) did in the context of φ-divergences. Combining
the ideas of φ-entropy and cumulative entropy leads to the new “cumulative paired φ-entropy”
(CPEφ). This new entropy has already been discussed in at least four scientific disciplines, be
it with certain modifications or simplifications. In the fuzzy set theory, for example, cumulative
paired φ-entropies were defined for membership functions, whereas in uncertainty and reliability
theories some variations of CPEφ were recently considered as measures of information. With a
single exception, the discussions in the scientific disciplines appear to be held independently of each
other. We consider CPEφ for continuous cdfs and show that CPEφ is rather a measure of dispersion
than a measure of information. In the first place, this will be demonstrated by deriving an upper
bound which is determined by the standard deviation and by solving the maximum entropy problem
under the restriction of a fixed variance. Next, this paper specifically shows that CPEφ satisfies the
axioms of a dispersion measure. The corresponding dispersion functional can easily be estimated
by an L-estimator, containing all its known asymptotic properties. CPEφ is the basis for several
related concepts like mutual φ-information, φ-correlation, and φ-regression, which generalize Gini
correlation and Gini regression. In addition, linear rank tests for scale that are based on the new
entropy have been developed. We show that almost all known linear rank tests are special cases,
and we introduce certain new tests. Moreover, formulas for different distributions and entropy
calculations are presented for CPEφ if the cdf is available in a closed form.

Keywords: φ-entropy; absolute mean deviation; cumulative residual entropy; measure of dispersion;
generalized maximum entropy principle; Tukey’s λ distribution; φ-regression; L-estimator; linear
rank test

1. Introduction

The φ-entropy

Eφ(F) =
∫
R

φ( f (x))dx, (1)

where f is a probability density function and φ is a strictly concave function, was introduced by [1].
If we set φ(u) = −u ln u, u ∈ [0, 1], we get Shannon’s differential entropy as the most prominent
special case.

Shannon et al. [2] derived the “entropy power fraction” and showed that there is a close
relationship between Shannon entropy and variance. In [3], it was demonstrated that Shannon’s
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differential entropy satisfies an ordering of scale and thus is a proper measure of scale (MOS). Recently,
the discussion in [4] has shown that entropies can be interpreted as a measure of dispersion. In the
discrete case, minimal Shannon entropy means maximal certainty about the random outcome of an
experiment. A degenerate distribution minimizes the Shannon entropy as well as the variance of
a discrete quantitative random variable. For such a degenerate distribution, Shannon entropy and
variance both take the value 0. However, there is an important difference between the differential
entropy and the variance when discussing a discrete quantitative random variable with support [a, b].
The differential entropy is maximized by a uniform distribution over [a, b], while the variance is
maximal if both interval bounds a and b have the probability mass of 0.5 (cf. [5]). A similar result
holds for a discrete random variable with a finite number of realizations. Therefore, it is doubtful that
Equation (1) is a true measure of dispersion.

We propose to define the φ-entropy for cumulative distribution functions (cdfs) F and survivor
functions (sf) 1− F instead of for density functions f . Throughout the paper, we define F := 1− F.
By applying this modification we get

CPEφ(F) =
∫
R

φ(F(x)) + φ(F(x))dx, (2)

where cdf F is absolutely continuous, CPE means “cumulative paired entropy”, and φ is the “entropy
generating function” defined on [0, 1] with φ(0) = φ(1) = 0. We will assume that φ is concave on
[0, 1] throughout most of this paper. In particular, we will show that Equation (2) satisfies a popular
ordering of scale and attains its maximum if the domain is an interval [a, b], while a, b occur with a
probability of 1/2. This means that Equation (2) behaves like a proper measure of dispersion.

In addition, we generalize results from the literature, focusing on the Shannon case with
φ(u) = −u ln u, u ∈ [0, 1] (cf. [6]), the cumulative residual entropy

CRE(F) = −
∫
R+

F(x) ln F(x)dx (3)

(cf. [7]), and the cumulative entropy

CE(F) = −
∫
R

F(x) ln F(x)dx (4)

(cf. [8,9]). In the literature, this entropy is interpreted as a measure of information rather than dispersion
without any clarification on what kind of information is considered.

A first general aim of this paper is to show that entropies can rather be interpreted as measures of
dispersion than as measures of information. A second general aim is to demonstrate that the entropy
generating function φ, the weight function J in L-estimation, the dispersion function d which serves
as a criterion for minimization in robust rank regression, and the scores-generating function ϕ1 are
closely related.

Specific aims of this paper are:

1. To show that the cdf-based entropy Equation (2) originates in several distinct scientific areas.
2. To demonstrate the close relationship between Equation (2) and the standard deviation.
3. To derive maximum entropy (ME) distributions under simple and more complex restrictions and

to show that commonly known as well as new distributions solve the ME principle.
4. To derive the entropy maximized by a given distribution under certain restrictions.
5. To formally prove that Equation (2) is a measure of dispersion.
6. To propose an L-estimator for Equation (2) and derive its asymptotic properties.
7. To use Equation (2) in order to obtain new related concepts measuring the dependence of random

variables (such as mutual φ-information, φ-correlation, and φ-regression).
8. To apply Equation (2) to get new linear rank tests for the comparison of scale.
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The paper is structured in the same order as these aims. After this introduction, in the second
section we give a short review of the literature that is concerned with Equation (2) or related measures.
The third section begins by summarizing reasons for defining entropies for cdfs and sfs instead
of defining them for densities. Next, some equivalent characterizations of Equation (2) are given,
provided the derivative of φ exists. In the fourth section, we use the Cauchy–Schwarz inequality
to derive an upper bound for Equation (2), which provides sufficient conditions for the existence
of CPE. In addition, more stringent conditions for the existence are directly proven. In the fifth
section, the Cauchy–Schwarz inequality allows to derive ME distributions if the variance is fixed. For
more complicated restrictions we attain ME distributions by solving the Euler–Lagrange conditions.
Following the generalized ME principle (cf. [10]), we change the perspective and ask which entropy
is maximized if the variance and the population’s distribution is fixed. The sixth section is of key
importance because the properties of Equation (2) as a measure of dispersion is analyzed in detail. We
show that Equation (2) satisfies an often applied ordering of scale by [3], is invariant with respect to
translations and equivariant with respect to scale transformations. Additionally, we provide certain
results concerning the sum of independent random variables. In the seventh section, we propose an
L-estimator for CPEφ. Some basic properties of this estimator like influence function, consistency, and
asymptotic normality are shown. In the eighth section, we introduce several new statistical concepts
based on CPEφ, which are generalizing divergence, mutual information, Gini correlation, and Gini
regression. Additionally, we show that new linear rank tests for dispersion can be based on CPEφ.
The known linear rank tests like the Mood- or the Ansari-Bradley tests are special cases of this general
approach. However, in this paper we exclude most of the technical details for they will be presented
in several accompanying papers. In the last section we compute Equation (2) for certain generating
functions φ and some selected families of distributions.

2. State of the Art—An Overview

Entropies are usually defined on the simplex of probability vectors, which are summing up to
one (cf. [2,11]). Until now it has been rather usual to calculate the Shannon entropy not for vectors
of probability or probability density functions f , but for distribution functions F. The corresponding
Shannon entropy is given by

CPES(F) = −
∫
R

F(x) ln F(x) + F(x) ln F(x)dx. (5)

Nevertheless, we have identified five scientific disciplines directly or implicitly working with an
entropy based on distribution functions or survivor functions:

1. Fuzzy set theory,
2. Generalized ME principle,
3. Theory of dispersion of ordered categorial variables,
4. Uncertainty theory,
5. Reliability theory.

2.1. Fuzzy Set Theory

To the best of our knowledge, Equation (5) was initially introduced by [12]. However, they did not
consider the entropy for a cdf F. Instead, they were concerned with a so-called membership function
µA that quantifies the degree to which a certain element x of a set Ω belongs to a subset A ⊆ Ω.
Membership functions were introduced by [13] within the framework of the “fuzzy set theory”.

It is important to note that if all elements of Ω are mapped to the value 1/2, maximum uncertainty
about x belonging to a set A will be attained.

This main property is one of the axioms of membership functions. In the aftermath of [12]
numerous modifications to the term “entropy” have been made and axiomatizations of the membership
functions have been stated (see, e.g., the overview in [14]).
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Finally, those modifications proceeded parallel to a long history of extensions and parametrizations
of the term entropy for probability vectors and densities. It began with [15] up to [16,17], who provided
a superstructure of those generalizations consisting of a very general form of the entropy, including the
φ-entropy Equation (1) as a special case. Burbea et al. [1] introduced the term φ-entropy. If both φ(x)
and φ(1− x) appeared in the entropy, as in the Fermi-Dirac entropy (cf. [18], p. 191), they used the term
“paired” φ-entropy.

2.2. Generalized Maximum Entropy Principle

Regardless of the debate in the fuzzy set theory and the theory of measurement of
dispersion, Kapur [10] showed that a growth model with a logistic growth rate is yielded as the
solution of maximizing Equation (5) under two simple constraints. This provides an example for the
“generalized maximum entropy principle” postulated by Kesavan et al. [19]. In addition to that, the
simple ME principle introduced by [20,21] derives a distribution which maximizes an entropy given
certain constraints. Furthermore, the generalization of [19] consists of determining the φ-entropy, which
is maximized given a distribution and some constraints. Finally, they used a slightly modified formula
Equation (5). The cdf had to be replaced by a monotonically increasing function with logistic shape.

2.3. Theory of Dispersion

Irrespectively of the discussion on membership functions in the fuzzy set theory and the proposals
of generalizing the Shannon entropy, Leik [22] discussed a measure of dispersion for ordered categorial
variables with a finite number k of categories x1 < x2 < . . . < xk. His measure is based on
the distance between the k− 1-dimensional vectors of cumulated frequencies (F1, F2, . . . , Fk−1) and
(1/2, 1/2, . . . , 1/2). Both vectors only coincide if the extreme categories x1 and xk appear with same
frequency. This represents the case of maximal dispersion. Consider

CPEφ(F) =
k−1

∑
i=1

(φ(Fi) + φ(1− Fi)) (6)

as discrete version of Equation (2). Setting φ(u) = min{u, 1− u}, we get the measure of Leik as a
special case of Equation (6) up to a change of sign. Vogel et al. [23] considered φ(u) = −uln(u)
and the Shannon variation of Equation (6) as measure of dispersion for ordered categorial variables.
Numerous modifications of Leik’s measure of dispersion have been published. In [24–29], the authors
implicitly used φ(u) = 1/4− (u− 1/2)2 or equivalently φ(u) = u(1− u). Most of the discussion
was conducted in the journal “Perceptual and Motor Skills”. For a recent overview of measuring
dispersion including ordered categorial variables see, e.g., [30]. Instead of dispersion, some articles are
concerned with related concepts for ordered categorial variables, like bipolarization and inequality
(cf. [31–35]). A class of measures of dispersion for ordered categorial variables with a finite number of
categories that is similar to Equation (6) has been introduced by Klein and Yager [36,37] independently
of each other. They had obviously not been aware of the discussion in “Perceptual and Motor Skills”.
Both authors gave axiomatizations to describe which functions φ will be appropriate for measuring
dispersion. However, at least Yager [37] recognized the close relationship between those measures
and the general term “entropy” in the fuzzy set theory. He introduced the term “dissonance” to
more precisely characterize measures of dispersion for ordered categorial variables. In the language
of information theory, maximum dissonance describes an extreme case in which there is still some
information. But this information is extremely contradictory. As an example, we could ask in the field
of product evaluation to what degree information, which states that 50 percent of the recommendations
are extremely good and at the same time 50 percent are extremely bad, is useful to make a purchase
decision. This is an important difference to the Shannon entropy, which is maximal if there is no
information at all, i.e., all categories occur with same probability.
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Bowden [38] defines the location entropy function h(x) = −F(x) ln F(x) + F(x) ln F(x), given a
value of x. He emphasizes the possibility to construct measures of spread and symmetry based on
this function. To the best of our knowledge, Bowden [38] is the only one to mention the application of
cumulated paired Shannon entropy to continuous distributions so far.

2.4. Uncertainty Theory

Reference ([6] (first edition 2004) can be considered the founder of the uncertainty theory. This
theory is concerned with formalizing data consisting of expert opinions rather than formalizing
data gathered by repeating a random experiment. Liu slightly modified the Kolmogoroff axioms of
probability theory to receive an uncertainty measure, following which he defined uncertain variables,
uncertainty distribution functions, and moments of uncertain variables. Liu argued that “an event
is the most uncertain if its uncertainty measure is 0.5, because the event and its complement may be
regarded as ‘equally likely’ ” ([6], p. 14). Liu’s maximum uncertainty principle states: “For any event,
if there are multiple reasonable values that an uncertain measure may take, the value as close to 0.5 as
possible is assigned to the event” [6] (p. 14). Similar to the fuzzy set theory, the distance between the
uncertainty distribution and the value 0.5 can be measured by the Shannon-type entropy Equation (5).
Apparently for the first time in the third edition of 2010, he explicitly calculated Equation (5) for
several distributions (e.g., the logistic distribution) and derived upper bounds. He applied the ME
principle to uncertainty distributions. The preferred constraint is to predetermine values of mean and
variance ([6], p. 83ff.). In this case, the logistic distribution maximizes Equation (5). In this context,
the logistic distribution plays the same role in uncertainty theory as the Gaussian distribution in
probability theory. The Gaussian distribution maximizes the differential entropy, given values for
mean and variance. Therefore, in uncertainty theory the logistic distribution is called “normal The
authors of distribution”. [39] provided Equation (5) as a function of the quantile function. In addition to
that, the authors of [40] chose φ(u) = u(1− u), u ∈ [0, 1], as entropy generating function and derived
the ME distribution as a discrete uniform distribution, which is concentrated on the endpoints of
the compact domain [a, b] if no further restrictions are assumed. Popoviciu [5] attained the same
distribution by maximizing the variance. Chen et al. [41] introduced cross entropies and divergence
measures based on general functions φ. Further literature on this topic is provided by [42–44].

2.5. Reliability Theory

Entropies also play a prominent role in reliability theory. They were initially introduced in the
fields of hazard rates and residual lifetime distributions (cf. [45]). In addition, the authors of [46,47]
introduced the cumulative residual entropy Equation (3), discussed its properties, and derived the
exponential and the Weibull distribution by an ME principle, given the coefficient of variation. This
work went into detail on the advantage of defining entropy via survivor functions instead of probability
density functions. Rao et al. [46] refer to the extensive criticism on the differential entropy by [48].
Moreover, Zografos et al. [49] generalized the Shannon-type cumulative residual entropy to an
entropy of the Rényi type. Furthermore, Drissi et al. [50] considered random variables with general
support. They also presented solutions for the maximization of Equation (3), provided that more
general restrictions are considered. Similar to [51], they identified the logistic distribution to be the ME
distribution, given mean, variance, and a symmetric form of the distribution function.

Di Crescenzo et al. [9] analyzed Equation (4) for cdfs and discussed its stochastic properties.
Sunoj et al. [52] plugged the quantile function into the Shannon-type entropy Equation (4) and
presented expressions if the quantile function possesses a closed form, but not the cdf. In recent
papers an empirical version of Equation (3) is used as goodness-of-fit test (cf. [53]).

Additionally, CRE and CE are applied to the distribution function of the residual lifetime
(X− t|X > t) and the inactivity time (t− X|X < t) (cf. [54]). This can directly be generalized to
the CPE framework.
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Moreover, Psarrakos et al. [55] provides an interesting alternative generalization of the Shannon
case. In this paper we focus on the class of concave functions φ. Special extensions to non-concave
functions will be subject to future research.

This brief overview shows that different disciplines are accessing an entropy based on distribution
functions. The contributions of the fuzzy set theory, the uncertainty theory, and the reliability theory all
have the exclusive consideration of continuous random variables in common. The discussions about
entropy in reliability theory on the one hand and fuzzy set theory and uncertainty theory, respectively,
on the other hand were conducted independently of each other without even noticing the results of
the other disciplines. However, Liu’s uncertainty theory benefits from the discussion in the fuzzy set
theory. In the theory of dispersion of ordered categorial variables the authors do not appear to be
aware of their implicit use a concept of entropy. Nevertheless the situation is somewhat different to
that of the other areas since only discrete variables were discussed. Kiesl’s dissertation [56] provides
a theory of measures of the form Equation (6) with numerous applications. However, an intensive
discussion of Equation (2) is missing and will be provided here.

3. Cumulative Paired φ-Entropy for Continuous Variables

3.1. Definition

We focus on absolute continuous cdfs F with density functions f . The set of all those distribution
functions is called F . We call a function “entropy generating function” if it is non-negative and concave
on the domain [0, 1] with φ(0) = φ(1) = 0. In this case, φ(u) + φ(1− u) is a symmetric function with
respect to 1/2.

Definition 1. The functional CPEφ : F → R+
0 with

CPEφ(F) =
∫
R

φ(F(x)) + φ(F(x))dx (7)

is called cumulative paired φ-entropy for F ∈ F with entropy generating function φ.

Up to now, we assumed the existence of CPEφ. In the following section we will discuss some
sufficient criteria ensuring the existence of CPEφ. If X is a random variable with cdf F, we occasionally
use the notation CPEφ(X) instead.

Next, some examples of well established concave entropy generating functions φ and
corresponding cumulative paired φ-entropies will be given.

1. Cumulative paired α-entropy CPEα: Following [57], let φ be given by

φ(u) = u
uα−1 − 1

1− α
, u ∈ [0, 1],

for α > 0. The corresponding so-called cumulative paired α-entropy is

CPEα(F) =
∫
R

F(x)
F(x)α−1 − 1

1− α
+ F(x)

F(x)α−1 − 1
1− α

dx. (8)

2. Cumulative paired Gini entropy CPEG: For α = 2 we get

CPEG(F) = 2
∫
R

F(x)F(x)dx (9)

as a special case of CPEα.
3. Cumulative paired Shannon entropy CPES: Set φ(u) = −u ln u, u ∈ [0, 1]. Thus,

CPES(F) = −
∫
R

F(x) ln F(x) + F(x) ln F(x)dx (10)
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gives the entropy which was already mentioned in the introduction. It is a special case of CPEα

for α→ 1.
4. Cumulative paired Leik entropy CPEL: The function

φ(u) = min{u, 1− u} = 1
2
−
∣∣∣∣u− 1

2

∣∣∣∣ , u ∈ [0, 1],

represents the limiting case of a linear concave function φ. The measure of dispersion proposed
by [22] implicitly makes use of φ such that we call

CPEL(F) = 2
∫
R

min{F(x), F(x)}dx (11)

cumulative paired Leik entropy.

Figure 1 gives an impression of the previously mentioned generating functions φ .

Figure 1. Some entropy generating functions φ.

3.2. Advantages of Entropies Based on Cdfs

The authos of [46,47] list several reasons for better defining an entropy for distribution functions
rather than defining it for density functions. Starting point is the well-known critique of Shannon’s
differential entropy −

∫
f (x) ln f (x)dx that was expressed by several authors like [48,58] and

(p. 58f) in [59].
Transferred to cumulative paired entropies, the advantages of entropies based on distribution

functions (cf. [46]) are as follows:

1. CPEφ is based on probabilities and has a consistent definition for both discrete and continuous
random variables.

2. CPEφ is always non-negative.
3. CPEφ can easily be estimated by the empirical distribution function. This estimation is strongly

consistent, due to the strong consistency of the empirical distribution function.
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Problems of the differential entropy are occasionally discussed in case of grouped data, at which
the usual Shannon entropy is calculated for each group probability. With an increasing amount of
groups, the Shannon entropy not only does not converge to the respective differential entropy, but
it even diverges (cf., e.g., (p. 54) in ([59], (p. 239) in [60]). In the next section we will show that the
discrete version of CPEφ converges to CPEφ as the number of groups approaches infinity.

3.3. CPEφ for Grouped Data

First, we show the notation for characterizing grouped data. The interval [x̃0, x̃k] is divided into k
subintervals with limits x̃0 < x̃1 < ... < x̃k−1 < x̃k. The range of each group is called ∆xi = x̃i − x̃i−1
for i = 1, 2, ..., k. Let X be a random variable with absolute continuous distribution function F,
which is only known at the limits of each group. The probabilities of each group are denoted by
pi = F(x̃i)− F(x̃i−1), i = 1, 2, ..., k. X∗ is the random variable whose distribution function F∗ is yielded
by linear interpolation of the values of F at the limits of successive groups. Finally, X∗ is the result of
adding an independent, uniformly distributed random variable to X. It holds that

F∗(x) = F(x̃i−1) +
pi

∆xi
(x− x̃i−1) if x̃i−1 < x ≤ x̃i (12)

for x ∈ R, F∗(x) = 0 for x ≤ x̃0 and F∗(x) = 1 for x > x̃k.
Let X∗ denote the respective random variable of F∗. The probability density function f ∗ of X∗ is

defined by f ∗(x) = pi/∆xi for x̃i−1 < x ≤ x̃i, i = 1, 2, ..., k.

Lemma 1. Let φ be an entropy generating function with antiderivative Sφ. The paired cumulative φ-entropy of
the distribution function in Equation (12) is given as follows:

CPEφ(X∗) =
k

∑
i=1

∆xi
pi

(
Sφ(F(x̃i))− Sφ(F(x̃i−1)) + Sφ(F(x̃i−1))− Sφ(F(x̃i))

)
. (13)

Proof. For x ∈ (x̃i−1, xi], we have

F∗(x) = ai + bix with bi =
pi

∆xi
and ai = F(x̃i−1)− bi x̃i−1

with ai + bi x̃i−1 = F(x̃i−1), ai + bi x̃i = F(x̃i), 1− ai − bi x̃i−1 = F(x̃i−1), and 1− ai − bi x̃i = F(x̃i),
i = 1, 2, . . . , k. With y = ai + bix and dx = 1/bidy we have

CPEφ(X∗) =
k

∑
i=1

∫ x̃i

x̃i−1

φ(ai + bix) + φ(1− ai − bix)dx

=
k

∑
i=1

1
bi

∫ F(x̃i)

F(x̃i−1)
φ(y) + φ(1− y)dy =

k

∑
i=1

∆xi
pi

(∫ F(x̃i)

F(x̃i−1)
φ(y)dy−

∫ F(x̃i)

F(x̃i−1)
φ(y)dy

)

=
k

∑
i=1

∆xi
pi

(∫ F(x̃i)

F(x̃i−1)
φ(y)dy +

∫ F(x̃i−1)

F(x̃i)
φ(y)dy

)

=
k

∑
i=1

∆xi
pi

(
Sφ (F(x̃i))− Sφ (F(x̃i−1)) +Sφ

(
F(x̃i−1)

)
− Sφ

(
F(x̃i)

))
.

Considering this result, we can easily prove the convergence property for CPEφ(X∗):
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Theorem 1. Let φ be a generating function with antiderivative Sφ and let F be a continuous distribution
function of the random variable X with support [a, b]. X∗ is the corresponding random variable for grouped data
with ∆x = (b− a)/k, k > 0. Then the following holds:

CPEφ(X∗)→
∫ b

a
φ(F(x)) + φ(F(x))dx for k→ ∞.

Proof. Consider equidistant classes with ∆xi = ∆x = (b − a)/k, i = 1, 2, ..., k. Subsequently,
Equation (13) results in

CPEφ(X∗) =
k

∑
i=1

(
Sφ (F(x̃i))− Sφ (F(x̃i−1))

F(x̃i)− F(x̃i−1)

+
Sφ

(
F(x̃i−1)

)
− Sφ

(
F(x̃i)

)
F(x̃i)− F(x̃i−1)

)
∆x.

(14)

With k → ∞ we have ∆x → 0 such that for F continuous we get F(x̃i) − F(x̃i−1) → 0. The
antiderivative Sφ has the derivative φ almost everywhere such that with k→ ∞

k

∑
i=1

Sφ (F(x̃i))− Sφ (F(x̃i−1))

F(x̃i)− F(x̃i−1)
∆x →

∫ b

a
φ(F(x))dx.

An analogue argument holds for the second term of Equation (14).

In addition to this theoretical result we get the following useful expressions for CPEφ for grouped
data and a specific choice of φ as Corollary 1 shows:

Corollary 1. Let φ be s.t.

φ(u) =

{
−u ln u for α = 1
−u uα−1−1

1−α for α 6= 1,

where u ∈ [0, 1]. Then for α = 1

CPES(X∗) = −1
2

k

∑
i=1

∆xi
pi

(
F(x̃i)

2 ln F(x̃i)− F(x̃i−1)
2 ln F(x̃i−1)

)
−1

2

k

∑
i=1

∆xi
pi

(
F(x̃i−1)

2 ln F(x̃i−1)− F(x̃i)
2 ln F(x̃i)

)
+

1
2
(x̃k − x̃0)

and for α 6= 1

CPEα(X∗) =
1

1− α

k

∑
i=1

∆xi
pi

( 1
α + 1

(
F(x̃i)

α+1 − F(x̃i−1)
α+1
)
+

F(x̃i−1)
α+1 − F(x̃i)

α+1
)
− (x̃k − x̃0).

Proof. Using the antiderivatives

Sα(u) =

{
− 1

2 u2 ln u + 1
4 u2 for α = 1

1
1−α

(
1

α+1 uα+1 − 1
2 u2
)

for α 6= 1,
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since pi = F(x̃i)− F(x̃i−1), it holds that

1
pi

(
F(x̃i)

2 − F(x̃i−1)
2 + F(x̃i−1)

2 − F(x̃i)
2
)

=
(F(x̃i)− F(x̃i−1)) (F(x̃i) + F(x̃i−1))

F(x̃i)− F(x̃i−1)

+

(
F(x̃i−1)− F(x̃i)

) (
F(x̃i−1) + F(x̃i)

)
F(x̃i)− F(x̃i−1)

= 2

for i = 1, 2, ..., k. The results follow immediately.

3.4. Alternative Representations of CPEφ

In case φ(0) = φ(1) = 0 holds and φ is differentiable, one can provide several alternative
representations of CPEφ in addition to Eqaution (7). These alternative representations will be useful in
the following to find conditions ensuring the existence of CPEφ and to find some simple estimators.

Proposition 1. Let φ be a non-negative and differentiable function on the domain [0, 1] with derivative φ′ and
φ(0) = φ(1) = 0. In this case, for F ∈ F with quantile function F−1(u), density function f , and quantile
density function q(u) = 1/ f (F−1(u)), for u ∈ [0, 1], the following holds:

CPEφ(F) =
∫ 1

0
φ(u) + φ(1− u)q(u)du, (15)

CPEφ(F) =
∫ 1

0
(φ′(1− u)− φ′(u))F−1(u)du, (16)

CPEφ(F) =
∫
R

x(φ′(F(x))− φ′(F(x))) f (x)dx. (17)

Proof. Apply probability integral transform U = F(X) and partial integration.

Due to φ(0) = φ(1) = 0 it holds that

∫ 1

0
(φ′(1− u)− φ′(u))du = 0.

This property supports the understanding of CPEφ being a covariance for which the
Cauchy–Schwarz inequality gives an upper bound:

Corollary 2. Let φ be a non-negative and differentiable function on the domain [0, 1] with derivative φ′ and
φ(0) = φ(1) = 0. Then if U is uniformly distributed on [0, 1] and X ∼ F:

CPEφ(F) = Cov(φ′(1−U)− φ′(U), F−1(U)), (18)

CPEφ(F) = Cov(φ′(F(X))− φ′(F(X)), X). (19)

Proof. Let µ = E[X], then since E[φ′(1−U)− φ′(U)] = 0,

CPEφ(F) =
∫ 1

0
(φ′(1− u)− φ′(u))F−1(u)du

=
∫ 1

0
(φ′(1− u)− φ′(u))(F−1(u)− µ)du.

Depending on the context, we switch between these alternative representations of CPEφ.
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4. Sufficient Conditions for the Existence of CPEφ

4.1. Deriving an Upper Bound for CPEφ

The Cauchy–Schwarz inequality for Equations (18) and (19), respectively, provides an upper
bound for CPEφ if the variance σ2 = E[(F−1(u)− µ)2] exists and

∫ 1

0
(φ′(1− u)− φ′(u))2du < ∞ (20)

holds. The existence of the upper bound simultaneously ensures the existence of CPEφ.

Proposition 2. Let φ be a non-negative and differentiable function on the domain [0, 1] with derivative φ′

and φ(0) = φ(1) = 0. If Equation (20) holds, then for X ∼ F with Var(X) < ∞ and quantile function F−1,
we have

CPEφ(F) ≤
√

E ((φ′(1−U)− φ′(U))2) E ((F−1(U)− µ)2) (21)

CPEφ(F) ≤
√

E
(
(φ′(F(X))− φ′(F(X)))2

)
σ2. (22)

Proof. The statement follows from(
E
(
(φ′(1−U)− φ′(U))(F−1(U)− µ)

))2
≤

∫ 1

0
(φ′(1− u)− φ′(u))2du

× E
(
(F−1(U)− µ)2

)
.

Next, we consider the upper bound for the cumulative paired α-entropy:

Corollary 3. Let X be a random variable having a finite variance. Then

CPEα(X) ≤ σ

∣∣∣∣ α

1− α

∣∣∣∣
√

2
(

1
2α− 1

− B(α, α)

)
(23)

for α > 1/2, α 6= 1 with
CPES(X) ≤ πσ√

3
(24)

for α = 1.

Proof. For φ(u) = u(uα−1 − 1)/(1− α) and φ′(u) = (αuα−1 − 1)/(1− α), u ∈ [0, 1], we have

∫ 1

0
(φ′(1− u)− φ′(u))2du =

(
α

1− α

)2 (∫ 1

0

(
uα−1 − (1− u)α−1

)2
du
)

= 2
(

α

1− α

)2 (∫ 1

0
u2(α−1)du

−2
∫ 1

0
uα−1(1− u)α−1du

)
= 2

(
α

1− α

)2 ( 1
2α− 1

− B(α, α)

)
.

α > 1/2 is required for the existence of CPEα(X). For α = 1 we have φ(u) = −u ln u and
φ′(u) = − ln u− 1, u ∈ [0, 1], such that

∫ 1

0
(φ′(1− u)− φ′(u))2du =

∫ 1

0

(
ln
(

1− u
u

))2
du =

π2

3
.
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In the framework of uncertainty theory, the upper bound for the paired cumulative Shannon
entropy was derived by [51] (see also [6], p. 83). For α = 2 we get the upper bound for the paired
cumulative Gini entropy

CPEG(X) ≤ σ
2√
3

. (25)

This result has already been proven for non-negative uncertainty variables by [40]. Finally, one
yields the following upper bound for the paired cumulative Leik entropy:

Corollary 4. Let X be a random variable with existing variance. Then

CPEL[X] ≤ 2σ. (26)

Proof. Use ∫ 1

0
(sign(u− 1/2)− sign(1/2− u))2du = 4

to get the result.

4.2. Stricter Conditions for the Existence of CPEα

So far, we only considered sufficient conditions for an existing variance. Following the arguments
in [46,50], which were used for the special case of cumulative residual and residual Shannon entropy,
one can derive stricter sufficient conditions for the existence of CPEα.

Theorem 2. If E(|X|p) < ∞ for p > 1, then CPEα < ∞ for α > 1/p.

Proof. To prepare the proof we first note that

u
uα−1 − 1

1− α
≤ −u ln u ≤ u

uβ−1 − 1
1− β

≤ 1− u (27)

holds for 0 < β < 1 < α and 0 ≤ u ≤ 1.
The second fact required for the proof is that

∫ ∞

0
F(x)dx < ∞ and

∫ 0

−∞
F(x)dx < ∞ (28)

if E(X) < ∞, because

E(X) =
∫ ∞

0
F(x)dx +

∫ 0

−∞
F(x)dx.

Third, it holds that
P(−X ≥ y) ≤ P(|X| ≥ y) for y > 0, (29)

because

P(|X| ≥ y) = 1− P(|X| < y) = 1− (P(X < y)− P(X ≤ −y))

= 1− P(X < y) + P(X ≤ −y)

= 1− P(X < y) + P(−X ≥ y).
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CPEα consists of four indefinite integrals:

CPEα =
∫ ∞

0
F(x)

F(x)α−1 − 1
1− α

dx +
∫ 0

−∞
F(x)

F(x)α−1 − 1
1− α

dx

+
∫ 0

−∞
F(x)

F(x)α−1 − 1
1− α

dx +
∫ ∞

0
F(x)

F(x)α−1 − 1
1− α

dx.

It must be shown separately that these integrals converge.
The convergence of the first two terms follows directly from the existence of E(X).

With Equations (27) and (28) we have for α > 0

∫ ∞

0
F(x)

F(x)α−1 − 1
1− α

dx ≤
∫ ∞

0
F(x)dx < ∞

and ∫ 0

−∞
F(x)

F(x)α−1 − 1
1− α

dx ≤
∫ 0

−∞
F(x)dx < ∞.

For the third term we have to demonstrate that∫ 0

−∞
F(x)

F(x)α−1 − 1
1− α

dx < ∞

for α > 1/p. If p > 1, there is a β with 1/p < β < 1 while β < α. With Equation (27) it is for
−∞ < x ≤ 0 that

F(x)
F(x)α − 1

1− α
≤ F(x)

F(x)β − 1
1− β

≤ 1
1− β

F(x)β

because 1− β > 0.
With F(x) = P(X ≤ x) = P(−X ≥ −x) there exists

1
1− β

F(x)β

{
≤ 1

1−β for 0 ≤ −x ≤ 1
= 1

β−1 P(−X ≥ −x)β ≤ 1
β−1 P(|X| ≥ −x)β for 1 < −x < ∞.

For p > 0 the transformation g(y) = yp is monotonically increasing for y > 1. Using the Markov
inequality we get

P(|X| ≥ y) ≥ E[|X|p]
yp .

Putting these results together, we attain

∫ 0

−∞
F(x)

F(x)α−1 − 1
1− α

dx ≤ 1
1− β

+
1

1− β

∫ ∞

1

E[|X|p]β

ypβ
dy < ∞

for β > 1/p (and thus for pβ > 1) and due to
∫ ∞

1 1/yqdy < ∞ for q > 1.
It remains to show the convergence of the fourth term:

∫ ∞

0
F(x)

F(x)α−1 − 1
1− α

dx < ∞

for α > 1/p. For p > 1, there is a β with 1/p < β < 1 and β < α. Due to Equation (27) and 1− β > 0
for 0 ≤ x < ∞ it is true that

F(x)
F(x)α − 1

1− α
≤ F(x)

F(x)β − 1
1− β

≤ 1
1− β

F(x)β.
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With F(x) = P(X > x) we have

1
1− β

F(x)β

{
≤ 1

1−β for 0 ≤ x ≤ 1
= 1

β−1 P(X ≥ x)β ≤ 1
β−1 P(|X| ≥ x)β for 1 < x < ∞ .

Now, the Markov inequality gives

P(|X| ≥ y) ≥ E(|X|p)
yp .

In summary, we have

∫ 0

−∞
F(x)

F(x)α−1 − 1
1− α

dx ≤ 1
1− β

+
1

1− β

∫ ∞

1

E[|X|p]β

ypβ
dy < ∞

for β > 1/p and by
∫ ∞

1 1/yqdy < ∞ for q > 1. This completes the proof.

Following Theorem 2, depending on the number of existing moments, specific conditions for α

arise in order to ensure the existence of CPEα:

1. If the variance of X exists (i.e., p = 2), CPEα(X) exists for α > 1/2.
2. For p > 1, E[|X|p] < ∞ is sufficient for the existence of CPES (i.e., α = 1).
3. For p = 1, E[|X|p] < ∞ is sufficient for the existence of CPEG (i.e., α = 2).

5. Maximum CPEφ Distributions

5.1. Maximum CPEφ Distributions for Given Mean and Variance

Equality in the Cauchy–Schwarz inequality gives a condition under which the upper bound
is attained. This is the case if an affine linear relation between F−1(U) respectively X and φ′(1−
U)− φ′(U) respectively φ′(F(x))− φ′(F(X)) exists with probability 1. Since the quantile function is
monotonically increasing, such an affine linear function can only exist if φ′(1− u)− φ′(u) is monotonic
as well (de- or increasing). This implies that φ needs to be a concave function on [0, 1]. In order to
derive a maximum CPEφ distribution under the restriction that mean and variance are given, one may
only consider concave generating functions φ.

We summarize this obvious but important result in the following Theorem:

Theorem 3. Let φ be a non-negative and differentiable function on the domain [0, 1] with derivative φ′ and
φ(0) = φ(1) = 0. Then F is the maximum CPEφ distribution with prespecified mean µ and variance σ2 of
X ∼ F iff a constant b ∈ R exists such that

P

(
F−1(U)− µ =

σ√
E ((φ′(1−U)− φ′(U))2)

(φ′(1−U)− φ′(U))

)
= 1.

Proof. The upper bound of the Cauchy–Schwarz inequality will be attained if there are constants
a, b ∈ R such that the first restriction equals

P
(

F−1(U) = a + b(φ′(1−U)− φ′(U))
)
= 1.

The property φ(0) = φ(1) = 0 leads to E (φ′(1−U)− φ′(U)) = 0 such that

µ =
∫ 1

0
F−1(u)du = a + b

∫ 1

0
(φ′(1− u)− φ′(u))du = a.
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This means that there is a constant b ∈ R with

P
(

F−1(U)− µ = b(φ′(1−U)− φ′(U))
)
= 1.

The second restriction postulates that

σ2 =
∫ 1

0
(F−1(u)− µ)2du = b2E

(
(φ′(1−U)− φ′(U))2

)
.

φ is concave on [0, 1] with

−φ′′(1− u)− φ′′(u) ≤ 0, u ∈ [0, 1].

Therefore, φ′(1 − u) − φ′(u) is monotonically increasing. The quantile function is also
monotonically increasing such that b has to be positive. This gives

b =
σ√

E ((φ′(1−U)− φ′(U))2)
.

The quantile function of the Tukey’s λ distribution is given by

Q(u, λ) =
1
λ
(uλ − (1− u)λ), u ∈ [0, 1], λ 6= 0.

Its mean and variance are

µ = 0 and σ2 =
2

λ2

(
1

2λ + 1
− B(λ + 1, λ + 1)

)
.

The domain is given by [−1/λ, 1/λ] for λ > 0.
By discussing the paired cumulative α-entropy, one can prove the new result that the Tukey’s

λ distribution is the maximum CPEα distribution for prespecified mean and variance. Tukey’s λ

distribution takes on the role of the Student-t distribution if one changes from the differential entropy
to CPEα (cf. [61]).

Corollary 5. The cdf F maximizes CPEα for α > 1/2 under the restrictions of a given mean µ and given
variance σ2 iff F is the cdf of the Tukey λ distribution with λ = α− 1.

Proof. For φ(u) = u(uα−1 − 1)/(1− α), u ∈ [0, 1], we have

∫ 1

0
(φ′(1− u)− φ′(u))2du =

(
α

1− α

)2 ∫ 1

0
((1− u)α−1 − uα−1)2du

= 2
(

α

1− α

)2 ( 1
2α− 1

− B(α, α)

)
for α > 1/2. As a consequence, the constant b is given by

b =
1√
2

σ

∣∣∣∣1− α

α

∣∣∣∣ ( 1
2α− 1

− B(α, α)

)−1/2
,

and the maximum CPEα distribution results in

F−1(u)− µ =
σ√
2

∣∣∣∣1− α

α

∣∣∣∣ ( 1
2α− 1

− B(α, α)

)−1/2 α

1− α

(
(1− u)α−1 − uα−1

)
= σ

|α− 1|√
2

(
1

2α− 1
− B(α, α)

)−1/2 (uα−1 − (1− u)α−1)
α− 1

.
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F−1 can easily be identified as the quantile function of a Tukey’s λ distribution with λ = α − 1
and α > 1/2.

For the Gini case (α = 2), one obtains the quantile function of a uniform distribution

F−1(u) = µ + σ

√
1
2

√
6 (2u− 1) = µ + σ

√
3(2u− 1), u ∈ [0, 1],

with domain [µ−
√

3σ, µ +
√

3σ]. This maximum CPEG distribution corresponds essentially to the
distribution derived by Dai et al. [40].

The fact that the logistic distribution is the maximum CPES distribution, provided mean and
variance are given, was derived by Chen et al. [51] in the framework of uncertainty theory and
by ([50], p. 4) in the framework of reliability theory. Both proved this result using Euler–Lagrange
equations. In the interest of completeness, we provide an alternative proof via the upper bound of the
Cauchy–Schwarz inequality.

Corollary 6. The cdf F maximizes CPES under the restrictions of a known mean µ and a known variance σ2 iff
F is the cdf of a logistic distribution.

Proof. Since ∫ 1

0

(
ln
(

1− u
u

))2
du =

π2

3
, (30)

one receives

F−1(u)− µ =
σ

π/
√

3
ln
(

1− u
u

)
, u ∈ [0, 1].

Inverting gives the distribution function of the logistic distribution with mean µ and variance 1:

F(x) =
1

1 + exp
(
− π√

3
x−µ

σ

) , x ∈ R.

As a last example we consider the cumulative paired Leik entropy CPEL.

Corollary 7. The cdf F maximizes CPEL under restrictions of a known mean µ and a known variance σ2 iff for
F holds

F(x) =


0 for x < µ− σ

1/2 for µ− σ ≤ x < µ + σ

1 for x ≥ µ + σ.

Proof. From φ(u) = min{u, 1− u} and φ′(u) = sign(1/2− u), u ∈ [0, 1], follows that

F−1(u)− µ = σsign(u− 1/2), u ∈ [0, 1].

Therefore, the maximization of CPEL with given mean and variance leads to a distribution whose
variance is maximal on the interval [µ− σ, µ + σ].

5.2. Maximum CPEφ Distributions for General Moment Restrictions

Drissi et al. [50] discuss general moment restrictions of the form

∫ ∞

−∞
ci(x) f (x)dx =

∫ 1

0
ci(F−1(U))du = ki, i = 1, 2, . . . , k, (31)

for which the existence of the moments is assumed. By using Euler–Lagrange equations they show that

F(x) =
1

1 + exp(∑r
i=1 λic′i(x))

, x ∈ R,
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maximizes the residual cumulative entropy −
∫
R F(x) ln F(x)dx under constraints Equation (31).

Moreover, they demonstrated that the solution needs to be symmetric with respect to µ. Here, λi,
i = 1, 2, ..., k, are the Lagrange parameters which are determined by the moment restrictions, provided
a solution exists. Rao et al. [47] shows that for distributions with support R+ the ME distribution is
given by

F(x) = exp

(
−

r

∑
i=1

λic′i(x)

)
, x > 0

if the restrictions Equation (31) are again required.
One can easily examine the shape of a distribution which maximizes the cumulative paired

φ-entropy under the constraints Equation (31). This maximum CPEφ distribution can no longer
be derived by the upper bound of the Cauchy–Schwarz inequality if i > 2. One has to solve the
Euler–Lagrange equations for the objective function

∫ 1

0
(φ′(u)− φ′(1− u))F−1(u)du−

k

∑
i=1

λi(ci(F−1(u))− ki) (32)

with Lagrange parameters λi, i = 1, 2, . . . , k. The Euler–Lagrange equations lead to the
optimization problem

k

∑
i=1

λic′i(F−1(u)) = φ′(1− u)− φ′(u), u ∈ [0, 1], (33)

for i = 1, 2, ..., k. Once again there is a close relation between the derivative of the generating function
and the quantile function, provided a solution of the optimization problem Equation (32) exists.

The following example shows that the optimization problem Equation (32) leads to a well-known
distribution if constraints are chosen carefully in case of a Shannon-type entropy.

Example 1. The power logistic distribution is defined by the distribution function

F(x) =
1

1 + exp (−λ sign(x)xγ)
, x ∈ R,

for γ > 0. The corresponding quantile function is

F−1(u) =
(

1
λ

)1/γ

sign(u− 1/2)
∣∣∣∣ln(1− u

u

)∣∣∣∣1/γ

, u ∈ [0, 1].

This quantile function is also solution of Equation (33) given φ(u) = −u ln u, u ∈ [0, 1], under the
constraint E

[
|X|γ+1] = c. The maximum of the cumulative paired Shannon entropy under the constraint

E
[
|X|γ+1] = c is given by

CPES(X) =
∫ 1

0
ln
(

1− u
u

)(
1
λ

)1/γ

sign(u− 1/2) ·
∣∣∣∣ln(1− u

u

)∣∣∣∣1/γ

du

=

(
1
λ

)1/γ ∫ 1

0

∣∣∣∣ln(1− u
u

)∣∣∣∣(γ+1)/γ

du = λE(|X|γ+1).

Setting γ = 1 leads to the familiar result for the upper bound of CPES given the variance.
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5.3. Generalized Principle of Maximum Entropy

Kesavan et al. [19] introduced the generalized principle of an ME problem which describes the
interplay of entropy, constraints, and distributions. A variation of this principle is the aim of finding
an entropy that is maximized by a given distribution and some moment restrictions.

This problem can easily be solved for CPEφ if mean and variance are given, due to the linear
relationship between φ′(1 − u) − φ′(u) and the quantile function F−1(u) of the maximum CPEφ

distribution provided by the Cauchy–Schwarz inequality. However, it is a precondition for F−1(u)
that φ′(1− u)− φ′(u) is strictly monotonic on [0, 1] in order to be a quantile function. Therefore, the
concavity of φ(u) and the condition φ(0) = φ(1) = 0 are of key importance.

We demonstrate the solution to the generalized principle of the maximum entropy problem for
the Gaussian and the Student-t distribution.

Proposition 3. Let ϕ, Φ and Φ−1 be the density, the cdf and the quantile function of a standard Gaussian
random variable. The Gaussian distribution is the maximum CPEφ distribution for a given mean µ and variance
σ2 for CPEφ with entropy generating function

φ(u) = ϕ(Φ−1(u)), u ∈ [0, 1].

Proof. With

φ′(u) =
ϕ′(Φ−1(u))
ϕ(Φ−1(u))

= −Φ−1(u), u ∈ [0, 1],

the condition for the maximum CPEφ distribution with mean µ and variance σ2 becomes

F−1(u)− µ =
σ√∫ 1

0 (2Φ−1(u))2du
2Φ−1(u), u ∈ [0, 1].

By substituting
∫ 1

0 (2Φ−1(u))2du = 4, it follows that

F−1(u)− µ = σΦ−1(u), u ∈ [0, 1],

such that F−1 is the quantile function of a Gaussian distribution with mean µ and variance σ2.

An analogue result holds for the Student-t distribution with k degrees of freedom. In this case, the
main difference to the Gaussian distribution is the fact that the entropy generating function possesses
no closed form but is obtained by numerical integration of the quantile function.

Corollary 8. Let tk respectively t−1
k be the cdf respectively the quantile function of a Student-t distribution

with k degrees of freedom for k > 2. µ + k
k−2 t−1

k is the maximum CPEφ quantile function for a given mean µ

and variance σ2 iff

φ(u) =

√
k− 2

k

∫ u

0
t−1
k (p)dp, u ∈ [0, 1].

Proof. Starting with

φ′(u) = −
√

k− 2
k

t−1
k (u), u ∈ [0, 1],

and the symmetry of the tk distribution around µ, we get the condition

F−1(u)− µ =
σ√∫ 1

0 (2t−1
k (u))2du

2
√

k− 2kt−1
k (u), u ∈ [0, 1].
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With
∫ 1

0 (t
−1
k (u))2du = k/(k− 2) we get the quantile function of the t distribution with k degrees

of freedom and mean µ:

F−1(u)− µ = σ
k− 2

k
t−1
k = t−1

k (u), u ∈ [0, 1].

Figure 2 shows the shape of the entropy generating function φ for several distributions generated
by the generalized ME principle.

Figure 2. Several entropy generating functions φ derived from the generalized maximum entropy (ME)
principle.

6. CPEφ as a Measure of Scale

6.1. Basic Properties of CPEφ

The cumulative residual entropy (CRE) introduced by [46], the generalized cumulative residual
entropy (GCRE) of [50], and the cumulative entropy (CE) discussed by [8,9], have always been
interpreted as measures of information. However, all these approaches do not explain which kind
of information was considered. In contrast to this interpretation as measures of information, Oja [3]
proved that the differential entropy satisfies a special ordering of scale and has certain meaningful
properties of measures of scale. In [4], the authors discussed the close relationship between differential
entropy and variance. In the discrete case the Shannon entropy can be interpreted as a measure
of diversity, which is a concept of dispersion if there is no ordering and no distance between the
realizations of a random variable. In this section, we will clarifying the important role which the
variance plays for the existence of CPEφ.

Therefore, we intend to provide a deeper insight in CPEφ as a proper MOS. We start by showing
that CPEφ has typical properties of an MOS. In detail, a proper MOS should always be non-negative
and attain its minimal value 0 for a degenerated distribution. If a finite interval [a, b] is considered as
support, an MOS should attain its maximum if a and b occur with probability 1/2. CPEφ possesses all
these properties as shown in the next proposition.

Proposition 4. Let φ : [0, 1] → R with φ(u) > 0 for u ∈ (0, 1) and φ(0) = φ(1) = 0. Let X be a random
variable with support D and CPEφ is assumed to exist. Then the following properties hold:
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1. CPEφ(X) ≥ 0.
2. CPEφ(X) = 0 iff there exists an x∗ with P(X = x∗) = 1.
3. CPEφ(X) attains its maximum iff there exist a, b with −∞ < a < b < ∞ such that

P(X = a) = P(X = b) = 1/2.

Proof.

1. Follows from the non-negativity of φ.
2. If there is an x∗ ∈ R with P(X = x∗) = 1, then FX(x) = 0 and FX(x) ∈ {0, 1} for all x ∈ R. Due to

φ(0) = φ(1) = 0 follows φ(FX(x)) = φ(FX(x)) = 0 for all x ∈ R.

Set CPEφ(X) = 0. Due to the non-negativity of the integrand of CPEφ, φ(FX(x)) + φ(FX(x)) = 0
must hold for x ∈ R. Since φ(u) > 0, 0 < u < 1, it follows FX(x), FX(x) ∈ {0, 1} for x ∈ [0, 1].

3. Let CPEφ(X) have a finite maximum. Since φ(u) + φ(1− u) has a unique maximum at u = 1/2,
the maximum of CPEφ(X) is

2
∫

D
φ(1/2)du = 2φ(1/2)

∫
D

du.

In order to attain the assumed finite maximum, the support D has to be a finite interval [a, b]. Here,
2φ(1/2)(b− a) is the maximum. Now, it is sufficient to construct a distribution with support [a, b]
that attains this maximum. Set

F(x) =


0 for x < a

1/2 for a ≤ x ≤ b
1 for x ≥ b,

then CPEφ(F) =
∫ b

a φ(F(x)) + φ(F(x))dx = 2φ(1/2)(b− a). Therefore, F is CPEφ-maximal.

To prove the other direction of statement 3 we consider an arbitrary distribution G with survival
function G and support [a, b]. Due to φ(0) = φ(1) = 0 and φ(u) + φ(1 − u) ≤ 2φ(1/2), it
holds that

CPEφ(G) =
∫ b

a
φ(G(x)) + φ(G(x))dx ≤ 2φ(1/2)(b− a) = CPEφ(F).

6.2. CPEφ and Oja’s Axioms for Measures of Scale

Oja ([3] p. 159) defined a MOS as follows:

Definition 2. Let F be a set of continuous distribution functions and � an appropriate ordering of scale on F .
T : F → R is called MOS, if

1. T(aX + b) = |a|T(X) for all a, b ∈ R, F ∈ F .
2. T(X1) ≤ T(X2), for X1 ∼ F1, X2 ∼ F2, F1, F2 ∈ F with F1 � F2.

Oja [3] discussed several orderings of scale. He showed in particular that Shannon entropy and
variance satisfy a partial quantile based ordering of scale, which has been discussed by [62]. Referring
to [63,64] criticized that this ordering and the location-scale family of distributions focused by Oja [3]
were too restrictive. He discussed a more general nonparametric model of dispersion based on a more
general ordering of scale (cf. [65,66]). In line with [4], we focus on the scale ordering proposed by [62].

Definition 3. Let F1, F2 be continuous cdfs with respective quantile functions F−1
1 and F−1

2 . F2 is said to be
more spread out than F1 (F1 �1 F2) if

F−1
2 (u)− F−1

2 (v) ≥ F−1
1 (u)− F−1

1 (v) for all 0 < u < v < 1. (34)
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If F1, F2 are absolutely continuous with density functions f1, f2, �1 can be characterized
equivalently by the property that F−1

2

(
F−1

1 (x)
)
− x is monotonically non-decreasing or

f1(F−1
1 (u)) ≥ f2(F−1

2 (u)), u ∈ [0, 1] (35)

(cf. [3], p. 160).
Next, we show that CPEφ is an MOS in the sense of [3]. This following lemma examines the

behavior of CPEφ with respect to affine linear transformations, referring to the first axiom of Definition 2:

Lemma 2. Let F be the cdf of the random variable X. Then

CPEφ(aX + b) = |a|CPEφ(X).

Proof. For Y = aX + b, it follows that

∫ ∞

−∞
φ(P(Y ≤ y))dy =


∫ ∞
−∞ P

(
X ≤ y−b

a

)
dy for a > 0∫ ∞

−∞ P
(

X > y−b
a

)
dy for a < 0

.

Substitution of x = (y− b)/a with dy = adx gives

∫ ∞

−∞
φ(P(Y ≤ y))dy =

{
a
∫ ∞
−∞ P (X ≤ x) dx for a > 0

−a
∫ ∞
−∞ P (X > x) dx for a < 0

.

Likewise, we have that

∫ ∞

−∞
φ(P(Y > y))dy =

{
a
∫ ∞
−∞ P (X > x) dx for a > 0

−a
∫ ∞
−∞ P (X ≤ x) dx for a < 0

,

such that
CPEφ(aX + b) = |a|CPEφ(X).

In order to satisfy the second axiom of Oja’s definition of a measure of scale, CPEφ has to satisfy
the ordering of scale �. This is shown by the following lemma:

Lemma 3. Let F1 and F2 be continuous cdfs of the random variables X1 and X2 with F1 �1 F2. Then the
following holds:

CPEφ(X1) ≤ CPEφ(X2).

Proof. One can show with u = Fi(x) that

CPEφ(Fi) =
∫ 1

0
φ(u)

1
fi(F−1

i (u))
du +

∫ 1

0
φ(1− u)

1
fi(F−1

i (u))
du

for i = 1, 2. Therefore,

CPEφ(F1)− CPEφ(F2) =
∫ 1

0
φ(u)

(
1

f1(F−1
1 (u))

− 1
f2(F−1

2 (u))

)
du

+
∫ 1

0
φ(1− u)

(
1

f1(F−1
1 (u))

− 1
f2(F−1

2 (u))

)
du.

If F1 �1 F2 and hence f1

(
F−1

1 (u)
)
≥ f2

(
F−1

2 (u)
)

for u ∈ [0, 1], it follows that
CPEφ(F1)− CPEφ(F2) ≤ 0.
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As a consequence of Lemma 2 and Lemma 3, CPEφ is an MOS in the sense of [3]. Thus, not only
variance, differential entropy, and other statistical measures have the properties of measures of scale,
but also CPEφ.

6.3. CPEφ and Transformations

Ebrahimi et al. ([4] p. 323), the authors considered cdf F1, F2 on domain D1, D2 and density
functions f1, f2, which are connected via F2(x) = F1

(
g−1(x)

)
, x ∈ D1, via a differentiable

transformation g : D1 → D2, that is F2(y) = F1 (g(y)) respectively f2(y) = f1
(

g−1(y)
) ∣∣dg−1(y)/dy

∣∣
for y ∈ D1. Thus, they demonstrated for Shannon’s differential entropy H that the transformation only
affects the difference:

H( f2) = H( f1)−
∫

D2

ln
∣∣∣∣dg−1(y)

dy

∣∣∣∣ f2(y)dy.

For CPEφ, one gets a less explicit relationship between CPEφ(F2) and CPEφ(F1):

CPEφ(F2) =
∫

D1

(
φ(F1(y)) + φ(F1(y))

) dg−1(y)
dy

.

Transformations with |g′(y)| ≥ 1, y ∈ D2, are of special interest since these transformations
do not diminish measures of scale. In Theorem 1, Ebrahimi et al. [4] showed that F1 �1 F2 holds if
|g′(y)| ≥ 1 for y ∈ D2. Hence, no MOS can be diminished by this specific transformation, especially
neither Shannon entropy nor CPEφ.

Ebrahimi et al. [4] considered the special transformation g(x) = ax + b, x ∈ D1. They showed
that Shannon’s differential entropy is moved additively by this transformation, which is not expected
for an MOS. Furthermore, the standard deviation is changed by the factor |a|, which is also true for
CPEφ as shown in Lemma 2.

6.4. CPEφ for Sums of Independent Random Variables

As is generally known, variance and differential entropy behave additively for the sum of
independent random variables X and Y. More general entropies such as the Rényi or the Havrda &
Charvát entropy are only subadditive (cf. [18], p. 194).

Neither the property of additivity nor the property of subadditivity could be shown for cumulative
paired φ-entropies. Instead, they possess the maximum property if φ is a concave function on [0, 1].
This means that, for two independent variables X and Y, CPEφ(X + Y) is lower-bounded by the
maximum of the two individual entropies CPEφ(X) and CPEφ(Y). This result was shown by [46] for
the cumulative residual Shannon entropy. The following Theorem generalizes this result, while the
proof partially follows Theorem 2 of [46].

Theorem 4. Let X and Y be independent random variables and φ a concave function on the interval [0, 1] with
φ(0) = φ(1) = 0. Then we have

CPEφ(X + Y) ≥ max
{

CPEφ(X), CPEφ(Y)
}

. (36)

Proof. Let X and Y be independent random variables with distribution functions FX , FY and densities
fX , fY. Using the convolution formula, we immediately get

P(X + Y ≤ t) =
∫ ∞

−∞
FX(t− y) fY(y)dy = EY[FX(t−Y)], t ∈ R. (37)

Applying Jensen’s inequality for a concave function φ to Equation (37) results in

EY [φ(FX(t−Y))] ≥ φ (EY [FX(t−Y)]) (38)
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and
EY
[
φ(FX(t−Y))

]
≥ φ

(
EY
[
FX(t−Y)

])
. (39)

The existence of the expectation is assumed. To prove the Theorem, we begin with

CPEφ[X + Y] =
∫ ∞

−∞
φ (EY [FX(t−Y)]) + φ

(
EY
[
FX(t−Y)

])
dt.

By using Equations (38) and (39), setting z = t − y, and exchanging the order of integration,
one yields

CPEφ[X + Y] ≥
∫ ∞

−∞

∫ ∞

−∞
φ (FX(t− y)) + φ

(
FX(t− y)

)
dt fY(y)dy

=
∫ ∞

−∞

∫ ∞

−∞
φ (FX(z)) + φ

(
FX(z)

)
dz fY(y)dy

=
∫ ∞

−∞
φ (FX(z)) + φ

(
FX(z)

)
dz = CPEφ[X].

In the context of uncertainty theory, Liu [6] considered a different definition of independence for
uncertain variables leading to the simpler additivity property

CPEφ(X + Y) = CPEφ(X) + CPEφ(Y) (40)

for independent uncertain variables X and Y.

7. Estimation of CPEφ

Beirlant et al. [67] presented an overview of differential entropy estimators. Essentially, all
proposals are based on the estimation of a density function f inheriting all typical problems of
nonparametric estimation of a density function. Among others, the problems are biasedness, choice
of a kernel, and optimal choice of the smoothing parameter (cf. [68], p. 215ff.). However, CPEφ is
based on cdf F for which several natural estimators with desirable stochastic properties, derived
from the Theorem of Glivenko and Cantelli (cf. [69], p. 61), exist. For a simple random sample
(X1, ..., Xn), independently distributed random variables with identical distribution function F, the
authors of [8,9] estimated F using the empirical distribution function Fn(x) = 1

n I(Xi ≤ x) for x ∈ R.
Moreover, they showed for the cumulative entropy CE(F) = −

∫
R F(x) ln F(x)dx that the estimator

CE(Fn) is consistent for CE(F) (cf. [8]). In particular, for F being the distribution function of a uniform
distribution, they provided the expected value of the estimator and demonstrated that the estimator is
asymptotically normal. For F being the cdf of an exponential distribution, they additionally derived
the variance of the estimator.

In the following, we generalize the estimation approach of [8] by embedding it into the
well-established theory of L-estimators (cf. [70], p. 55ff.). If φ is differentiable, then CPEφ can
be represented as the covariance between the random variable X and φ′(F(X))− φ′(F(X)):

CPEφ(F) = E
(
X
(
φ′(F(X))− φ′(F(X))

))
. (41)
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An unbiased estimator for this covariance is

CPEφ(Fn) =
1
n

n

∑
i=1

Xi(φ
′(1− Fn(Xi))− φ′(Fn(Xi)))

=
1
n

n

∑
i=1

Xn:i(φ
′(1− Fn(Xn:i))− φ′(Fn(Xn:i)))

=
1
n

n

∑
i=1

(
φ′
(

1− i
n + 1

)
− φ′

(
i

n + 1

))
Xn:i

=
n

∑
i=1

cniXn:i

(42)

where

cni =
1
n

(
φ′
(

1− i
n + 1

)
− φ′

(
i

n + 1

))
, i = 1, 2, . . . , n.

This results in an L-estimator ∑n
i=1 J(i/(n + 1))Xn:i with J(u) = φ′(1− u)− φ′(u), u ∈ (0, 1). By

applying known results for the influence functions of L-estimators (cf. [70]), we get for the influence
function of CPEφ:

IF(x; CPEφ, F) =
∫ 1

0

u
f (F−1(u))

(φ′(1− u)− φ′(u))du

−
∫ 1

F(x)

1
f (F−1(u))

(φ′(1− u)− φ′(u))du. (43)

In particular, the derivative is

dIF(x; CPEφ, F)
dx

= φ′(F(x))− φ′(F(x)), x ∈ R. (44)

This means that the influence function will be completely determined by the antiderivative of
φ′(F(x)). The following examples demonstrate that the influence function of CPEφ can easily be
calculated if the underlying distribution F is logistic. We consider the Shannon, the Gini, and the
α-entropy cases.

Example 2. Beginning with the derivative

dIF(x; CPES, F)
dx

= φ′(F(x))− φ′(F(x)) = ln
(

F(x)
F(x)

)
= x, x ∈ R,

we arrive at
IF(x, CPES, F) =

1
2

x2 + C, x ∈ R.

The influence function is not bounded and proportional to the influence function of the variance, which
implies that variance and CPES have a similar asymptotic and robustness behavior. The integration constant C
has to be determined such that E [IF(x; CPES, F)] = 0 :

C = −1
2

E(X2) = −1
2

π2

3
= −π2

6
.

Example 3. Using the Gini entropy CPEG and the logistic distribution function F we have

dIF(x; CPEG, F)
dx

= φ′(F(x))− φ′(F(x)) = 2(2F(x)− 1)

= 2
ex − 1
ex + 1

= 2 tanh
( x

2

)
, x ∈ R.



Entropy 2016, 18, 248 25 of 45

Integration gives the influence function

IF(x, CPEG, F) = 4 ln
(

cosh
( x

2

))
+ C, x ∈ R.

By applying numerical integration we get C = −1.2741.

Example 4. For φ(u) = u(uα−1 − 1)/(1− α) the derivative of the influence function is given by

dIF(x; CPEα, F)
dx

= φ′(F(x))− φ′F(x) =
α

1− α

1− e(α−1)x

(1 + ex)α−1

=
α

1− α

(
1

(1 + ex)α−1 −
1

(1 + e−x)α−1

)
, x ∈ R.

Integration leads to the influence function

IF(x; CPEα, F) = 2F1(α, α; α + 1;−e−x)
eαx

α

(
1 +

(
e−x + 1
ex + 1

)α)
+

1
α− 1

(
1 + ex + e(α−1)x

(ex + 1)α
− 1

)
,

where

2F1(α, α; α + 1;−e−x) = α
∫ 1

0
tα−1 (1 + te−x)−α dt + C, x ∈ R.

Under certain conditions (cf. [71], p. 143) concerning J, or φ and F, L- estimators are consistent
and asymptotically normal. So, the cumulative paired φ-entropy is

CPEφ(Fn) ∼asy N
(

CPEφ(F),
1
n

A(F, CPEφ)

)
with asymptotic variance

A(F, CPEφ) = Var(IF(X; CPEφ(F), F)) =
∫ ∞

−∞

(∫ 1

F(x)

φ′(1− u)− φ′(u)
f (F−1(u))

du
)2

f (x)dx.

The following examples consider the Shannon and the Gini case for which the condition that is
sufficient to guarantee asymptotic normality can easily be checked. We consider again the cdf F of the
logistic distribution.

Example 5. For the cumulative paired Shannon entropy it holds that

CPES(Fn) ∼asy N
(

CPES(F),
4

45
π4
)

since
A(F, L) = Var(IF(X; CPEφ(F), F)) =

1
4

Var(X2) =
1
4

(
E(X4)− E(X2)

)
=

4
45

π4.

Example 6. In the Gini case we get

CPEG(Fn) ∼asy N (CPEG(F), 2.8405)

since by numerical integration

A(F, L) =
∫ ∞

−∞

(
4 ln

(
cosh

( x
2

))
− 1.2274

)2 e−x

(1 + e−x)2 dx = 2.8405.
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It is known that L-estimators have a remarkable small-sample bias. Following [72], the bias can
be reduced by applying the Jackknife method. It is well-known that asymptotical distributions can be
used to construct approximate confidence intervals as well as that they can be applied for hypothesis
tests in the one- or two-sample case. ([70], p. 116ff.) discussed asymptotic efficient L-estimators
for a parameter of scale θ. Klein et al. [73] examine how the entropy generating function φ will be
determined by the requirement that CPEφ(Fn) has to be asymptotically efficient.

8. Related Concepts

Several statistical concepts are closely related to cumulative paired φ-entropies. These concepts
generalize some results which are known from literature. We begin with the cumulative paired
φ-divergence that was discussed for the first time by [41], who called it “generalized cross entropy”.
Their focus was on uncertain variables, whereas ours is on random variables. The second concept
generalizes mutual information, which is defined for Shannon’s differential entropy, to mutual
φ-information. We consider two random variables X and Y. The task is to decompose CPEφ(Y)
into two kinds of variation such that the so-called external variation measures how much of CPEφ(Y)
can be explained by X. This procedure mimics the well-known decomposition of variance and allows
to define directed measures of dependence for X and Y. The third concept deals with dependence.
More precisely, we introduce a new family of correlation coefficients that measure the strength of a
monotonic relationship between X and Y. Well-known coefficients like the Gini correlation can be
embedded in this approach. The fourth concept treats the problem of linear regression. CPEφ can
serve as general measure of dispersion that has to be minimized to estimate the regression coefficients.
This approach will be identified as a special case of rank-based regression or R regression. Here, the
robustness properties of the rank-based estimator can directly be derived from the entropy generating
function φ . Moreover, asymptotics can be derived from theory of rank-based regression. The last
concept we discuss applies CPEφ to linear rank tests for the difference of scale. Known results,
especially concerning the asymptotics, can be transferred from the theory of linear rank tests to this
new class of tests. In this paper, we only sketch the main results and focus on examples. For a detailed
discussion including proofs we refer to a series of papers by Klein and Mangold ([73–75]) , which are
currently work in progress.

8.1. Cumulative Paired φ-Divergence

Let φ be a concave function defined on [0, ∞] with φ(0) = φ(1) = 0. Additionally, we need
0φ(0/0) = 0. In the literature, φ-divergences are defined for convex functions φ (cf., e.g., [76], p. 5).
Consequently, we consider −φ with φ concave.

The cumulative paired φ-divergence for two random variables is defined as follows.

Definition 4. Let X and Y be two random variables with cdfs FX and FY. Then the cumulative paired
φ-divergence of X and Y is given by

CPDφ(X, Y) = −
∫ ∞

−∞
FY(x)φ

(
FX(x)
FY(x)

)
+ FY(x)φ

(
FX(x)
FY(x)

)
dx. (45)

The following examples introduce cumulative paired φ-divergences for the Shannon, the
α-entropy, the Gini, and the Leik cases:

Example 7.

1. Considering φ(u) = −u ln u, u ∈ [0, ∞), we obtain the cumulative paired Shannon divergence

CPDS(X, Y) =
∫ ∞

−∞
FX(x) ln

(
FX(x)
FY(x)

)
+ FX(x) ln

(
FX(x)
FY(x)

)
dx.
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2. Setting φ(u) = u(uα−1 − 1)/(1− α), u ∈ [0, ∞), leads to the cumulative paired α-divergence

CPDα(X, Y) =
1

α− 1

(∫ ∞

−∞
FX(x)αFY(x)1−α

+FX(x)αFY(x)1−α − 1
)

dx
)

.

3. For α = 2 we receive as a special case the cumulative paired Gini divergence

CPDG(X, Y) =
∫ ∞

−∞

(
FX(x)2

FY(x)
+

FX(x)2

FY(x)
− 1
)

dx

=
∫ ∞

−∞

(FX(x)− FY(x))2

FY(x)FY(x)
dx.

4. The choice φ(u) = 1/2− |u− 1/2|, u ∈ [0, 1], leads to the cumulative paired Leik divergence

CPDL(X, Y) =
∫ ∞

−∞
−FY(x)

(
1
2
−
∣∣∣∣ FX(x)

FY(x)
− 1

2

∣∣∣∣)− FY(x)
(

1
2
−
∣∣∣∣ FX(x)

FY(x)
− 1

2

∣∣∣∣) dx

=
∫ ∞

−∞
−1

2
+

∣∣∣∣FX(x)− 1
2

FY(x)
∣∣∣∣+ ∣∣∣∣12 +

1
2

FY(x)− FX(x)
∣∣∣∣ dx

=
∫ ∞

−∞
−1

2
+

∣∣∣∣FX(x)− 1
2

FY(x)
∣∣∣∣+ ∣∣∣∣FX(x)− 1

2
(1 + FY(x))

∣∣∣∣ dx

CPDS is equivalent to the Anderson-Darling functional (cf. [77]) and has been used by [78] for
a goodness-of-fit test, where FX represents the empirical distribution. Likewise, CPDS serves as a
goodness-of-fit test (cf. [79]).

Further work in this area with similar concepts was done by [80,81], using the notation cumulative
residual Kullback-Leiber (CRKL) information and cumulative Kullback-Leiber (CKL) information.

Based on work from [82–85] a general function φα was discussed by [86]:

φα(u) =


(α− 1− αu + uα)/(α(1− α)) for α 6= 0, 1

−u(ln u− 1)− 1 for α = 1
ln u− u + 1 for α = 0.

Up to a multiplicative constant, φα includes all of the aforementioned examples. In addition, the
Hellinger distance is a special case for α = 1/2 that leads to the cumulative paired Hellinger divergence:

CPDH(X, Y) = 2
∫ ∞

−∞

(√
FX(x)−

√
FY(x)

)2
+

(√
FX(x)−

√
FY(x)

)2
dx.

For a strictly concave function φ, Chen et al. [41] proved that CPEφ(X, Y) ≥ 0 and CPEφ(X, Y) = 0
iff X and Y have identical distributions. Thus, the cumulative paired φ-divergence can be interpreted
as a kind of a distance between distribution functions. As an application, Chen et al. [41] mentioned
the “minimum cross-entropy principle”. They proved that X follows a logistic distribution if CPDS is
minimized, given that Y is exponentially distributed and the variance of X is fixed. If FY is an empirical
distribution and FX has an unknown vector of parameters θ, CPDφ can be minimized to attain a
point estimator for θ (cf. [87]). The large class of goodness-of-fit tests based on CPDφ, discussed by
Jager et al. [86], has already been mentioned.

8.2. Mutual Cumulative φ-Information

Let X and Y again be random variables with cdfs FX, FY, density functions fX, fY, and the
conditional distribution function FY|X . DX and DY denote the supports of X and Y. Then we have
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CPEφ(Y|x) =
∫ ∞

−∞
φ
(

FY|X(y|x)
)

dy +
∫ ∞

−∞
φ
(

1− FY|X(y|x)
)

dy, (46)

which is the variation of Y given X = x. Averaging with respect to x leads to the internal variation

EX(CPEφ(Y|X)) =
∫ ∞

−∞
CPEφ(Y|x) fX(x)dx. (47)

For a concave entropy generating function φ, this internal variation cannot be greater than the
total variation CPEφ(Y). More precisely, it holds:

1. EX
(
CPEφ(Y|X)

)
≤ CPEφ(Y).

2. EX
(
CPEφ(Y|X)

)
= CPEφ(Y) if X and Y are independent.

3. If φ is strictly concave and EX
(
CPEφ(Y|X)

)
= CPEφ(Y), X and Y are independent

random variables.

We consider the non-negative difference

MCPIφ(X, Y) := CPEφ(Y)− EX(CPEφ(Y|X)). (48)

This expression measures the part of the variation of Y that can be explained by the variable
X (= external variation) and shall be named “mutual cumulative paired φ-information” MCPIφ

(cf. Rao et al. [46] using the term “cross entropy”, (p. 3) in [50]). MCPIφ is equivalent to the
transinformation that is defined for Shannon’s differential entropy (cf. [60], p. 20f.). In contrast
to transinformation, MCPIφ is not symmetric, so MCPIφ(X, Y) = MCPIφ(Y, X) is not true in general.

Cumulative paired mutual φ-information is the starting point for two directed measures of
strength of φ-dependence between X and Y, namely “directed (measure) of cumulative paired
φ-dependence”, DCPD. The first one is

DCPD1
φ(X → Y) =

MCPIφ(X, Y)
CPEφ(Y)

and the second one is

DCPD2
φ(X → Y) =

CPEφ(Y)2 − EX(CPEφ(Y|X)2)

CPEφ(Y)2 .

Both expressions measure the relative decrease in variation of Y if X is known. The domain is
[0, 1]. The lower bound 0 is taken if Y and X are independent, while the upper bound 1 corresponds to
EX(CPEφ(Y|X)) = 0. In this case, from φ(u) > 0 for 0 < u < 1 and φ(0) = φ(1) = 0, we can conclude
that the conditional distribution FY|X(y|x) has to be degenerated. Thus, for every x ∈ DX there is
exactly one y∗ ∈ DY with P(Y = y∗|X = x) = 1. Therefore, there is a perfect association between X
and Y. The next example illustrates these concepts and demonstrates the advantage of considering
both types of measures of dependence.

Example 8. Let (X, Y) follow a bivariate standard Gaussian distribution with E(X) = E(Y) = 0,
Var(X) = Var(Y) = 1, and Cov(X, Y) = ρ, −1 < ρ < 1. Note that X and Y follow univariate standard
Gaussian distributions, whereas X + Y follows a univariate Gaussian distribution with mean 0 and variance
2(1 + ρ). Considering this, one can conclude that

F−1
X (u) = F−1

Y (u) = Φ−1(u), F−1
X+Y(u) =

√
2(1 + ρ)Φ−1(u), u ∈ [0, 1].

By plugging this quantile function into the defining equation of the cumulative paired φ-entropy one yields

CPEφ(X + Y) =
√

2(1 + ρ)CPEφ(X) ≤ CPEφ(X) + CPEφ(Y).
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For ρ → −1, the cumulative paired φ-entropy behaves like the variance or the standard deviation.
All measures approach 0 for ρ → −1, such that CPEφ can be used as a measure of risk since the risk can be
completely eliminated in a portfolio with perfectly negative correlated returns of assets. To be more precise, it is
to say that CPEφ rather behaves like the standard deviation than the variance.
For ρ = 0, the variance of the sum equals the sum of the variances, but the standard deviation of the sum is equal
to or smaller than the sum of the individual standard deviations. This is also true for CPEφ.

In case of the bivariate standard Gaussian distribution, Y|x is Gaussian as well with mean ρx and variance
1− ρ2 for x ∈ R and −1 < ρ < 1. Therefore, the quantile function of Y|x is

F−1
Y|x(u) = ρx +

√
1− ρ2Φ−1(u), u ∈ [0, 1].

Using this quantile function, the cumulative paired φ-entropy for the conditional random variable Y|x is

CPEφ(Y|x) =
√

1− ρ2
∫ 1

0
(φ′(1− u)− φ′(u))Φ−1(u)du =

√
1− ρ2CPEφ(Y).

Just like the variance of Y|x, CPEφ does not depend on x in case of a bivariate Gaussian distribution.
This implies that the internal variation is

√
1− ρ2CPEφ(Y), as well.

For ρ→ 1, the bivariate distribution becomes degenerated and the internal variation consequently approaches 0.
The mutual cumulative paired φ-information is given by

MCPIφ(X, Y) = CPEφ(Y)− EY(CPEφ(Y|X)) = (1−
√

1− ρ2)CPEφ(Y).

MCPIφ takes the value 0 if and only if ρ2 = 0, in which case X and Y are independent.
The two measures of directed cumulative φ-dependence for this example are

DCPD1
φ(X → Y) =

MCPIφ(X, Y)
CPEφ(Y)

= 1−
√

1− ρ2

and

DCPD2
φ(X → Y) =

CPEφ(Y)2 − EX(CPEφ(Y|X)2)

CPEφ(Y)2 = ρ2.

ρ completely determines the values for both measures of directed dependence. Provided the upper bound 1 will be
attained, there is a perfect linear relation between Y and X.

As a second example we consider the dependence structure of the Farlie-Gumbel-Morgenstern
copula (FGM copula). For the sake of brevity, we define a copula C as bivariate distribution function
with uniform marginals for two random variables U and V with support [0, 1]. For details concerning
copulas see, e.g., [88].

Example 9. Let

CU,V(u, v) = uv + θu(1− u)v(1− v), u, v ∈ [0, 1], θ ∈ [−1, 1],

be the FGM copula (cf. [88], p. 68). With

CU|V(u|v) =
∂C(u, v)

∂v
= u + θu(1− u)(1− 2v)

it holds for the conditional cumulative φ-entropy of U given V = v that

CPEφ(CU|V) =
∫ 1

0
φ(1− u− θu(1− u)(1− 2v)) + φ(u + θu(1− u)(1− 2v))du.
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To get expressions in closed form we consider the Gini case with φ(u) = u(1− u), u ∈ [0, 1]. After some
simple calculations we have

CPEG(CU|V) =
1
3
− θ2

15
(1− 2v)2, v ∈ [0, 1].

Averaging over the uniform distribution of V leads to the internal variation

E(CPEG(CU|V)) =
1
3
− θ2

45
.

With CPEG(U) = 1/3, the mutual cumulative Gini information and the directed cumulative measure of
Gini dependence are

MCIG(V → U) =
θ2

45
and DCPD1

G(V → U) =
θ2

15
.

It is well-known that only a small range of dependence can be covered by the FGM copula (cf. [88], p. 129).

Hall et al. [89] discussed several methods for estimating a conditional distribution. The results
can be used for estimating the mutual φ-information and the two directed measures of dependence.
This will be the task of future research.

8.3. φ-Correlation

Schechtman et al. [90] introduced Gini correlations of two random variables X and Y with
distribution functions FX and FY as

ΓG(X, Y) =
Cov(X, FY(Y))
Cov(X, FX(X))

and ΓG(Y, X) =
Cov(Y, FX(X))

Cov(Y, FY(Y))
.

The numerator equals 1/4 of the Gini mean difference

∆X = EX1 EX2 [|X1 − X2|],

where the expectation is calculated for two independent and with FX identically distributed random
variables X1 and X2.

Gini’s mean difference coincides with the cumulative paired Gini entropy CPEG(X) in the
following way:

Cov(X, FX(X)) = 4CPEG(X) = 4
∫ ∞

−∞
X(φ′(FX(X))− φ′(FX(X)))dx.

Therefore, in the same way that Gini’s mean difference can be generalized to the Gini correlation,
CPEφ can be generalized to the φ-correlation.

Let X, Y be two random variables and let CPEφ(X), CPEφ(Y) be the corresponding cumulative
paired φ-entropies, then

Γφ(X, Y) =
E(X(φ′(FY(Y))− φ′(FY(Y))))

CPEφ(X)
(49)

and

Γφ(Y, X) =
E(Y(φ′(FX(X))− φ′(FX(X))))

CPEφ(Y)
(50)

are called φ-correlations of X and Y. Since E(φ′(FY(Y)) − φ′(FY(Y))) = 0, the numerator is the
covariance between X and φ′(FY(Y))− φ′(FY(Y)).

The first example verifies that the Gini correlation is a proper special case of the φ-correlation.
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Example 10. The setting φ(u) = u(1− u), u ∈ [0, 1], leads to the Gini correlation, because

E(X(φ′(FY(Y))− φ′(FY(Y)))) = 2E(X(2FY(Y)− 1)) = 4E(X(FY(Y)− 1/2))

= 4E((X− E(X))(FY(Y)− 1/2)) = 4Cov(X, FY(Y))

and

E(X(φ′(FX(X))− φ′(FX(X)))) = 4Cov(X, FX(X)).

The second example considers the new Shannon correlation.

Example 11. Set φ(u) = −u ln u, u ∈ [0, 1], then we get the Shannon correlation

ΓS(X, Y) =
E(X ln(FY(Y)/(1− FY(Y))))

CPES(X)
.

If Y follows a logistic distribution with FY(y) = 1/(1 + e−y), y ∈ R, then ln(FY(y)/FY(y)) = y.
Considering this, we get

ΓS(X, Y) =
E(XY)

CPES(X)
.

From Equation (30) we know that CPES(X) = π/
√

3 if X is logistically distributed. In this specific case
we get

ΓS(X, Y) =
√

3
E(XY)

π
.

In the following example we introduce the α-correlation.

Example 12. For φ(u) = u(uα−1 − 1)/(1− α), u ∈ [0, 1], we get the α-correlation

Γα(X, Y) =
E(X α

1−α (FY(Y)α−1 − FY(Y)α−1))

CPEα(X)
.

For FY(y) = 1/(1 + e−y), y ∈ R, we get

ΓS(X, Y) =
α

(1− α)CPES(X)
E

(
X

((
1

1 + e−Y

)α−1
−
(

1
1 + eY

)α−1
))

.

The authors of [90–92] proved that Gini correlations possess many desirable properties. In the
following we give an overview of all properties which can be transferred to φ-correlations. For proofs
and further details we refer to [75].

We start with the fact that φ-correlations also have a copula representation since for the
covariance holds

Cov(X, FY(Y)) = −
∫ 1

0

∫ 1

0
(C(u, v)− uv)

1
f (F−1

X (u))
(φ′′(1− v) + φ′′(v))dudv.

The following examples demonstrate the copula representation for the Gini and the
Shannon correlation.

Example 13. In the Gini case it is φ′′(u) + φ′′(1− u) = −4. This leads to

Cov(X, FY(Y)) = 4
∫ 1

0

∫ 1

0
(CX,Y(u, v)− uv)

1
fX(F−1

X (u))
dudv.
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Example 14. In the Shannon case, φ′′(u) + φ′′(1− u) = −1/(u(1− u)) such that

Cov
(

X, ln
FY(Y)
FY(Y)

)
=
∫ 1

0

∫ 1

0

CX,Y(u, v)− uv
u(1− u)

1
fX(F−1

X (u))
dudv.

The following basic properties of φ-correlations can easily be checked with the arguments
applied by [90]:

1. Γφ(X, Y) ∈ [−1, 1].
2. Γφ(X, Y) = 1 (−1) if there is a strictly increasing (decreasing) transformation g such that

X = g(Y).
3. If g is monotonic, then Γφ(X, Y) = Γφ(X, g(Y)).
4. If g is affin-linear, then Γφ(X, Y) = Γφ(g(X), Y).
5. If X and Y are independent, then ΓX,Y = Γ(Y, X) = 0.
6. If a + bX and c + dY are exchangeable for some constants a, b, c, d ∈ R with b, d > 0, then

Γφ(X, Y) = Γφ(Y, X).

In the last subsection we have seen that two directed measures of φ-dependence do not rely
on φ if a bivariate Gaussian distribution is considered. The same holds for φ-correlations as will be
demonstrated in the following example.

Example 15. Let (X, Y) be a bivariate standard Gaussian random variable with Pearson correlation coefficient ρ.
Thus, all φ-correlations coincide with ρ as the following consideration shows:

With E(X|y) = ρy it is

Cov(X, φ′(FY(Y))− φ′(FY(Y))) = EYEX|Y(X|Y)(φ′(FY(Y))− φ′(FY(Y)))

= ρEY(Y(φ′(FY(Y))− φ′(FY(Y))))

= ρCPEφ(Y) = ρCPEφ(X).

Dividing this by CPEφ(X) yields the result.

Weighted sums of random variables appear for example in portfolio optimization.
The diversification effect concerns negative correlations between the returns of assets. Thus, the
risk of a portfolio can be significantly smaller than the sum of the individual risks. Now, we analyze
whether cumulative paired φ-entropies can serve as a risk measure as well. Therefore, we have to
examine the diversification effect for CPEφ.

First, we display the total risk CPEφ(Y) as a weighted sum of individual risks. Essentially,
the weights need to be the φ-correlations of the individual returns with the portfolio return:
Let Y = ∑k

i=1 aiXi, then it holds that

CPEφ(Y) =
k

∑
i=1

aiΓφ(Xi, Y)CPEφ(Xi). (51)

For the diversification effect the total risk CPEφ(Y) has to be displayed as a function of the
φ-correlations between Xi and Xj, i, j = 1, 2, . . . , k. A similar result was provided by [92] for the Gini
correlation without proof. Let Y = ∑k

i=1 aiXi and set Diy = Γφ(Xi, Y)− Γφ(Y, Xi), i = 1, 2, . . . , k, then
the following decomposition of the square of CPEφ(Y) holds:

CPEφ(Y)2 − CPEφ(Y)
k

∑
i=1

aiDiyCPEφ(Xi)

=
k

∑
i=1

a2
i CPEφ(Xi)

2 +
k

∑
i=1

k

∑
j 6=i

aiajCPEφ(Xi)CPEφ(Xj)Γφ(Xi, Xj).
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This is similar to the representation for the variance of Y, where Γφ(Xi, Xj) takes the role of the
Pearson correlation and CPEφ(Xi) the role of the standard deviation for i, j = 1, 2, . . . , k.

Schechtman et al. [90] also introduced an estimator for the Gini correlation and derived its
asymptotic distribution. For the proof it is useful to note that the numerator of the Gini correlation can
be represented as a U-statistic. For the general case of the φ-correlation it is necessary to derive the
influence function and to calculate its variance. This will be done in [75].

8.4. φ-Regression

Based on the Gini correlation Olkin et al. [93] considered the traditional ordinary least squares
(OLS) approach in regression analysis

Yi = α + x′i β + εi, i = 1, 2, . . . , n,

where Y is the dependent variable and x is the independent variable. They modified it by minimizing
the covariance between the error term ε in a linear regression model and the ranks of ε with respect to
α and β. Ranks are the sample analogue of the theoretical distribution function Fε, such that the Gini
mean difference Cov(ε, Fε) is the center of this new approach for regression analysis. Olkin et al. [93]
noticed that this approach is already known as “rank based regression” or short “R regression” in
robust statistics. In robust regression analysis the more general optimization criteria Cov(ε, ϕ(Fε))

has been considered, where ϕ denotes a strictly increasing score function (cf. [94], p. 233). The
choice ϕ(u) = 1− 2u leads to the Gini mean difference, which is the scores generating function of
the Wilcoxon scores. The rank based regression approach with general scores generating function
ϕ(u) = φ′(1− u)− φ′(u), u ∈ [0, 1], is equivalent to the generalization of the Gini regression to a
so-called φ-regression based on the criteria function

CPEφ(ε) = Cov(ε, φ′(1− Fε(ε))− φ′(Fε)), (52)

which has to be minimized to obtain α and β. Therefore, cumulative paired φ-entropies are special
cases of the dispersion function that [95,96] proposed as optimization criteria for R regression. More
precisely, R estimation proceeds in two steps. In the first step

dφ(β) = CPEφ(y− Xβ) (53)

has to be minimized with respect to β. Let β̂φ denote this estimator. In the second step α will be
estimated separately by

α̂φ = medi(yi − x′i β̂φ). (54)

The authors of [97,98] gave an overview of recent developments in rank based regression. We
will apply their main results to φ-regression. In [99], the authors showed that the following property
holds for the influence function of β̂φ:

IF(x0, y0; β̂φ, FY,X) = τφ((X′X)/n)−1 (φ′(Fε(y0))− φ′(Fε(y0))
)

x0,

where (x′0, y0) represents an outlier. φ′ determines the influence of an outlier in the dependent variable
on the estimator β̂φ.

The scale parameter τφ is given by

τφ = −
(∫ 1

0
(φ′(1− u)− φ′(u))

f ′ε(F−1
ε (u))

fε(F−1
ε (u))

du

)−1

.
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The influence function shows that β̂φ is asymptotically normal:

β̂φ ∼asy N
(

β, τ2
φ(X′X)−1

)
. (55)

For φ′(1− u)− φ′(u) bounded, Koul et al. [100] proposed a consistent estimator τ̂φ for the scale
parameter τφ. This asymptotic property can again be used to construct approximate confidence limits
for the regression coefficients, to derive a Wald test for the general linear hypothesis, to derive a
goodness-of-fit test, and to define a measure of determination (cf. [97])).

Gini regression corresponds to CPEG(ε, Fε(ε)). In the same way we can derive from CPES(ε, Fε(ε))

the new Shannon regression, from CPEα(ε, Fε(ε)) the α-regression, and from CPEL(ε, Fε(ε))

the Leik regression.
The R package “Rfit” has the option to include individual φ-functions into rank based regression

(cf. [97]). Using this option and the dataset “telephone”, which is available with several outliers in
“Rfit”, we compare the fit of the Shannon regression (α→ 1), the Leik regression, and the α-regression
(for several values of α) with the OLS regression. Figure 3 shows on the left the original data, the
OLS, and the Shannon regression, while on its right side outliers were excluded to get a more detailed
impression of the differences between the φ-regressions.

Figure 3. φ-regression fit for the number of calls in the “telephone” data set.

In comparison with the very sensitive OLS regression all rank based regression techniques behave
similarly. In case of a known error distribution, McKean et al. [98] showed an asymptotically efficient
estimator for τφ. This procedure also determines the entropy generating function φ. In case of an
unknown error distribution but some available information with respect to skewness and leptokurtosis,
a data-driven (adaptive) procedure was proposed by them.

8.5. Two-Sample Rank Test on Dispersion

Based on CPEφ the linear rank statistics

CPEφ(R) =
n

∑
i=1

φ

(
Ri

n + m + 1

)
+ φ

(
1− Ri

n + m + 1

)
(56)
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can be used as a test statistic for alternatives of scale, where R1, R2, . . . , Rn are the ranks of
X1, X2, . . . , Xn in the pooled sample X1, X2, . . . , Xn, Y1, Y2, . . . , Ym. All random variables are assumed
to be independent.

Some of the linear rank statistics which are well-known from the literature are special cases of
Equation (56) as will be shown in the following examples:

Example 16. Let φ(u) = 1/2− |u− 1/2|, u ∈ [0, 1], then we have

CPEL(R) = 2
n

∑
i=1

(
1
2
−
∣∣∣∣ Ri
n + m + 1

− 1
2

∣∣∣∣) .

Ansari et al. [101] suggest the statistic

SAB =
n

∑
i=1

(
1
2
(n + m + 1)−

∣∣∣∣Ri −
1
2
(n + m + 1)

∣∣∣∣) (57)

as a two-sample test for alternatives of scale (cf. [102], p. 104). Apparently, we have
SAB = 1/2(n + m + 1)CPEL(R).

Example 17. Let φ(u) = 1/4− (u− 1/2)2, u ∈ [0, 1]. Consequently, we have

CPEG(R) =
n
2
− 2

n

∑
i=1

(
Ri

n + m + 1
− 1

2

)2
,

which is identical to the test statistic suggested by [103] up to an affine linear relation (cf. [68], p. 149f.). This
test statistic is given by SM = ∑n

i=1(Ri − (n + m + 1)/2)2, thus, the resulting relation is given by

CPEφ(R) =
n
2
− 2(n + m + 1)2SM.

In the following, the scores of the Mood test will be generated by the generating function of CPEG.

Dropping the requirement of concavity of φ, one finds analogies to other well-known test statistics.

Example 18. Let φ(u) = 1/2− 1/2(sign(|u− 1/2| − 1/4) + 1), u ∈ [0, 1], which is not concave on the
interval [0,1], we have

CPEφ(R) = n−
n

∑
i=1

(
sign

(∣∣∣∣ Ri
n + m + 1

− 1
2

∣∣∣∣− 1
4

)
+ 1
)

,

which is identical to the quantile test statistic for alternatives of scale up to an affine linear relation ([102], p. 105).

The asymptotic distribution of linear rank tests based on CPEφ can be derived from the theory
of linear rank test, as discussed in [102]. The asymptotic distribution under the null hypothesis is
needed to be able to make an approximate test decision given a significance level α. The asymptotic
distribution under the alternative hypothesis is needed for an approximate evaluation of the test power
and the choice of the required sample size in order to ensure a given effect size, respectively.

We consider the centered linear rank statistic

CPEφ(R) = CPEφ(R)− 2n
n + m

n+m

∑
i=1

φ

(
i

n + m + 1

)
.

Under the null hypothesis of identical scale parameters and the assumption that

∫ 1

0
(φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ)du > 0,



Entropy 2016, 18, 248 36 of 45

where φ =
∫ 1

0 φ(u)du, the asymptotical distribution of CPEφ(R) is given by

CPEφ(R) ∼asy N
(

0,
2nm

n + m

∫ 1

0

(
φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ

))
(cf. [102], p. 194, Theorem 1 and p. 195, Lemma 1).

The property of asymptotic normality of the Ansari-Bradley test and the Mood test is well-known.
Therefore, we provide a new linear rank test based on cumulative paired Shannon entropy CPES
(so-called “Shannon”-test) in the following example:

Example 19. With φ(u) = −u ln u, u ∈ [0, 1], and φ̄ = 1/4 we have

∫ 1

0

(
φ(u)− φ

)2 du =
∫ 1

0
φ(u)2du− 1

16
=
∫ 1

0
u2(ln u)2du− 1

16
=

2
27
− 1

16
=

5
432

and ∫ 1

0
(φ(u)− φ)(φ(1− u)− φ)du =

∫ 1

0
φ(u)φ(1− u)du− 1

16

=
∫ 1

0
u(1− u) ln u ln(1− u)du− 1

16

=
37− 3π2

108
− 1

16
=

121− 12π2

432
.

Under the null hypothesis of identical scale, the centered linear rank statistic CPES(R) is asymptotically
normal with variance

nm
n + m

63− 6π2

108
.

If the alternative hypothesis H1 for a density function f0 is given by

f (x1, . . . , xn+m; σ) =
n

∏
i=1

1
σ

f0

( xi
σ

) n+m

∏
i=n+1

f0(xi) (58)

for σ > 0 and σ 6= 1, then set

ϕ1(u; f0) = −1− F−1
0 (u)

f ′0(F−1
0 (u))

f0(F−1
0 (u))

and assume I( f0) =
∫ 1

0 ϕ1(u; f0)
2du > 0. If min(n, m) → ∞ and ln σI( f0)mn/(n + m) → b2 with

0 < b2 < ∞, CPEφ(R) is asymptotically normal distributed with mean

− n
n + m

ln σ
mn

n + m

∫ 1

0
φ(u)ϕ1(u; f0) + φ(1− u)ϕ1(u; f0)du

and variance
2nm

n + m

∫ 1

0

(
φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ

)
du.

This result follows immediately from [102], p. 267, Theorem 1, together with the Remark on,
p. 268.

If f0 is a symmetric distribution, ϕ1(u; f0) = ϕ1(1− u; f0), u ∈ [0, 1], holds such that

∫ 1

0
(2φ− φ(u)− φ(1− u))ϕ1(u; f0)du = −2

∫ 1

0
φ(u)ϕ1(u; f0)du.
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This simplifies the variance of the asymptotic normal distribution.

Since the asymptotic normality of the test statistic of the Ansari-Bradley test and the Mood test
under the alternative hypothesis have been examined intensely (cf., e.g., [103,104]), we focus in the
following example on the new Shannon test:

Example 20. Set φ(u) = −u ln u, u ∈ [0, 1] and let f0 be the density function of a standard Gaussian
distribution, such that ϕ1(u; f0) = −1 + Φ−1(u)2 and I1( f0) = 1. As a consequence, we have

−2
∫ 1

0
(−u ln u)(Φ−1(u)2 − 1)du = 0.240,

and ∫ 1

0
(1/2 + u ln u + (1− u) ln(1− u))2 du =

63− 6π2

108
,

where the integrals have been evaluated by numerical integration. Then under the alternative Equation (58):

CPES(R) ∼asy N
(

0.240
n

n + m
ln σ

mn
n + m

,
63− 6π2

108
2nm

n + m

)
.

Hereafter, one can discuss the asymptotic efficiency of linear rank tests based on cumulative
paired φ-entropy. If f0 is the true density and

ρ1 =

∫ 1
0 (φu)ϕ1(u; f0) + φ(1− u)ϕ1(u; f0) du√∫ 1

0 ϕ1(u; f0)2du
∫ 1

0

(
φ(u)− φ)2 + (φ(u)− φ)(φ(1− u)− φ

)
du

,

then ρ2
1 gives the desired asymptotic efficiency (cf. [102], p. 317).

The asymptotic efficiency of the Ansari-Bradley test (and the asymptotic equivalent Siegel-Tukey
test, respectively) and the Mood test have been analyzed by [104–106]. The asymptotic relative
efficiency (ARE) with respect to the traditional F-test for differences in scale for two Gaussian
distributions has been discussed by [103]. This asymptotic relative efficiency between Mood test
and F-test for differences in scale has been derived by [107]. Once more, we focus on the new
Shannon-test.

Example 21. The Klotz test is asymptotically efficient for the Gaussian distribution. With∫ 1
0 (Φ

−1(u)2 − 1)2du = 2,

ρ2
1 =

0.242

(63− 6π2)/108× 2
= 0.823

gives the asymptotic efficiency of the new Shannon test.

Using a distribution that ensures the asymptotic efficiency of the Ansari-Bradley test, we compare
the asymptotic efficiency of the Shannon test to the one of the Ansari-Bradley test.

Example 22. The Ansari-Bradley test statistic SAB is asymptotically efficient for the double log-logistic
distribution with density function f0 (cf. [102], p. 104). The Fisher information is given by

∫ 1

0
ϕ1(u; f0)

2du =
∫ 1

0
(2|2u− 1| − 1)2du = 4

∫ 1

0
(2u− 1)2du− 1 =

1
3

.

Furthermore, we have∫ 1

0
ϕ1(u; f0)(2φ− φ(u)− φ(1− u))du =

∫ 1

0
ϕ1(u; f0)

(
1
2
+ u ln u + (1− u) ln(1− u)

)
du

= 2
∫ 1

0
|2u− 1|(u ln u + (1− u) ln(1− u))du = 0.102,
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such that the asymptotic efficiency of the Shannon-test for f0 is

ρ2
1 =

0.1022

1/3× (63− 2π2)/108
= 0.892.

These two examples show that the Shannon test has a rather good asymptotic efficiency, even if
the underlying distribution has moderate tails similar to the Gaussian distribution or heavy tails like
the double log-logistic distribution. Asymptotic efficient linear rank tests correspond to a distribution
and a scores generating function ϕ1, from which we can derive an entropy generating function φ and a
cumulative paired φ-entropy. This relationship will be further examined in [74].

9. Some Cumulative Paired Entropies for Selected Distribution Functions

In the following, we derive closed form expressions for some cumulative paired φ-entropies.
We mimic the procedure of ([4], p. 326) to some degree. Table 1 of their paper contains multiple
formulas of the differential entropy for the most popular statistical distributions. Several of these
distributions will also be considered in the following. Since cumulative entropies depend on the
distribution function or equivalently on the quantile function, we focus on families of distributions
for which these functions have a closed form expression. Furthermore, we only discuss standardized
random variables since the parameter of scale only has a multiplicative effect on CPEφ and the
parameter of location has no effect. For the standard Gaussian distribution we provide the value
of CPES by numerical integration rounded to two decimal places since the probability function has
no explicit form. For the Gumbel distribution however, there is a closed form expression for the
distribution function – nevertheless, we were unable to establish a closed form of CPES and CPEG.
Therefore, we applied numerical integration in this case as well. In the following, next to the Gamma
function Γ(a) and the Beta function B(a, b), we use

• the incomplete Gamma function

Γ(x; a) =
∫ x

0
ya−1e−ydy for x > 0, a > 0,

• the incomplete Beta function

B(x; a, b) =
∫ x

0
ua−1(1− u)b−1du for 0 < x < 1, a, b > 0,

• and the Digamma function

ψ(a) =
d
da

ln Γ(a), a > 0.

9.1. Uniform Distribution

Let X have the standard uniform distribution. Then we have

CPES(X) =
3
2

, CPEG(X) =
1
3

, CPEL(X) =
1
2

, CPEα(X) =
1

α + 1
.
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9.2. Power Distribution

Let X have the Beta distribution on [0, 1] with parameter α > 0 and b = 1, i.e., density function
fX(x) = axa−1 for x ∈ [0, 1], then we have

CPES(X) =
a

(a + 1)2 + ψ

(
a + 1

a

)
− a + 1

a
ψ

(
a + 2

a

)
+

1
a

ψ(1),

CPEG(X) =
2a

(1 + a)(1 + 2a)
, CPEL(X) =

a
a + 1

(
1−

(
1
2

)1/a
)

,

CPEα(X) =
1

a(1− α)
B
(

1
a

, α + 1
)
− αa

(1− α)(1 + αa)
.

9.3. Triangular Distribution with Parameter c

Let X have a triangular distribution with density function

f (x) =

{
2x/c for 0 < x < c

2(1− x)/(1− c) for c ≤ x < 1.

Then the following holds:

CPES(X) =
π2

6
+ ln 2(1− ln 2),

CPEG(X) =
2
3

(
c2 + (1− c)2

)
− 2

5

(
c3 + (1− c)3

)
,

CPEL(X) =
1
3
(2− c)− 3−

√
2

3
√

2

√
1− c,

CPEα(X) =
1

1− α

(
2

2α + 1

(
cα+1 + (1− c)α+1

)
+
√

cB
(

c;
1
2

, α + 1
)
+
√

1− cB
(

1− c;
1
2

, α + 1
)
− 2
)

.

9.4. Laplace Distribution

Let X follow the Laplace distribution with density function fX(x) = 1/2 exp(−|x|) for x ∈ R,
then we have

CPES(X) =
π2

6
+ ln 2(1− ln 2), CPEG(X) =

3
2

, CPEL(X) = 2,

CPEα(X) =
4

α− 1

(
1
2

)α−1 ( 1
α− 1

− 1
2α

)
.

9.5. Logistic Distribution

Let X follow the logistic distribution with distribution function FX(x) = 1/(1 + exp(−x)) for
x ∈ R, then we have

CPES(X) =
π2

3
, CPEG(X) = 2, CPEL(X) = 4 ln 2,

CPEα =
2

α− 1
(ψ(α)− ψ(1)).
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9.6. Tukey λ Distribution

Let X follow the Tukey λ distribution with quantile function F−1(U) = 1/λ
(
uλ − (1− u)1−λ

)
for 0 ≤ u ≤ 1 and λ > −1. Then the following holds:

CPES(X) =
2

(λ + 1)2

(
1 +

(
1 +

1
λ

)
((λ + 1)ψ(λ + 1)− ψ(λ + 2)− ψ(1))

)
,

CPEG(X) =
4

λ + 1

(
1 +

1
λ

)
,

CPEL(X) = 2

(
1

λ + 1

(
1
2

)λ+1
+ B

(
1
2

; 2, λ

))
,

CPEα(X) = 2
1

1− α

(
λ3 − λα− 2(λ + α)

λ2(λ + 1)(λ + α)
+ B(α + 1, λ)

)
.

9.7. Weibull Distribution

Let X follow the Weibull distribution with distribution function FX(x) = 1− e−xc
for x > 0, c > 0,

then we have

CPES(X) =
1
c

Γ
(

1
c

)(
1 +

∞

∑
i=1

1
i!

((
1
i

)1/c
−
(

1
i + 1

)1/c
))

,

CPEG(X) =
2
c

(
Γ
(

1
c

)
− 1

2
Γ
(

1
2c

))
,

CPEL(X) = 2
(
(ln 2)1/c +

1
c

(
Γ
(

1
c

)
− 2Γ

(
ln 2;

1
c

)))
,

CPEα(X) =
1
c

Γ
(

1
c

)(
1

α1/c +
∞

∑
i=1

(
α

i

)
(−1)ii−1/c

)
.

9.8. Pareto Distribution

Let X follow the Pareto distribution with distribution function FX(x) = 1− x−c for x > 1, c > 1,
then we have

CPES(X) =
1

c− 1
ψ

(
2− 1

c

)
+ ψ

(
1− 1

c

)
− c

c− 1
ψ(1) +

4
c

,

CPEG(X) =
2c

(c− 1)(2c− 1)
,

CPEL(X) = 2
1

c− 1
,

CPEα(X) =
1

1− α

(
c(1− α)

(cα− 1)(c− 1)
− 1

c
B
(

α, 1− 1
c

))
.

9.9. Gaussian Distribution

By means of numerical integration we calculated the following values for the standard
Gaussian distribution:

CPES(X) = 1.806, CPEG(X) = 1.128, CPEL(X) = 1.596.

CPEα for α ∈ [0.5, 3] and the standard Gaussian distribution can be seen in Figure 4.
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Figure 4. CPEα, α ∈ [0.5, 3] for the standard Gaussian and the Student-t distribution.

9.10. Student-t Distribution

By means of numerical integration and for ν = 3 degrees of freedom we calculated the following
values for the Student-t distribution

CPES(X) = 2.947, CPEG(X) = 3.308, CPEL(X) = 2.205.

As can be seen in Figure 4, the heavy tails of the Student-t distribution result in a higher value for
CPEα as compared with the Gaussian distribution.

10. Conclusions

A new kind of entropy has been introduced that generalizes Shannon’s differential entropy.
The main difference to the previous discussion of entropies is the fact that the new entropy is defined
for distribution functions instead of density functions. This paper shows that this definition has a
long tradition in several scientific disciplines like fuzzy set theory, reliability theory, and more recently
in uncertainty theory. With only one exception within all the disciplines, the concepts had been
discussed independently. Along with that, the theory of dispersion measures for ordered categorical
variables refers to measures based on distribution functions, without realizing that implicitly some
sort of entropies are applied. Using the Cauchy–Schwarz inequality, we were able to show the
close relationship between the new kind of entropy named cumulative paired φ-entropy and the
standard deviation. More precisely, the standard deviation yields an upper limit for the new entropy.
Additionally, the Cauchy–Schwarz inequality can be used to derive maximum entropy distributions
provided that there are constraints specifying values of mean and variance. Here, the logistic
distribution takes on the same key role for the cumulative paired Shannon entropy which the Gaussian
distribution takes by maximizing the differential entropy. As a new result we have demonstrated that
Tukey’s λ distribution is a maximum entropy distribution if using the entropy generating function
φ which is known from the Harvda and Charvát entropy. Moreover, some new distributions can
be derived by considering more general constraints. A change in perspective allows to determine
the entropy that will be maximized by a certain distribution if, e.g., mean and variance are known.
In this context the Gaussian distribution gives a simple solution. Since cumulative paired φ-entropy
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and variance are closely related, we have investigated whether the cumulative paired φ-entropy is
a proper measure of scale. We show that it satisfies the axioms which were introduced by Oja for
measures of scale. Several further properties, concerning the behavior under transformations or the
sum of independent random variables, have been proven. Consequently, we have given first insights
on how to estimate the new entropy. In addition, based on cumulative paired φ-entropy we have
introduced new concepts like φ-divergence, mutual φ-information, and φ-correlation. φ-regression
and linear rank tests for scale alternatives were considered as well. Furthermore, formulas have been
derived for some popular distributions with cdf or quantile function in closed form and for certain
cumulative paired φ-entropies.
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