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Abstract: Roller bearing plays a significant role in industrial sectors. To improve the ability of
roller bearing fault diagnosis under multi-rotating situation, this paper proposes a novel roller
bearing fault characteristic: the Amplitude Modulation (AM) based correntropy extracted from
the Intrinsic Mode Functions (IMFs), which are decomposed by Fast Ensemble Empirical mode
decomposition (FEEMD) and employ Least Square Support Vector Machine (LSSVM) to implement
intelligent fault identification. Firstly, the roller bearing vibration acceleration signal is decomposed
by FEEMD to extract IMFs. Secondly, IMF correntropy matrix (IMFCM) as the fault feature matrix is
calculated from the AM-correntropy model of the primary vibration signal and IMFs. Furthermore,
depending on LSSVM, the fault identification results of the roller bearing are obtained. Through
the bearing identification experiments in stationary rotating conditions, it was verified that IMFCM
generates more stable and higher diagnosis accuracy than conventional fault features such as energy
moment, fuzzy entropy, and spectral kurtosis. Additionally, it proves that IMFCM has more diagnosis
robustness than conventional fault features under cross-mixed roller bearing operating conditions.
The diagnosis accuracy was more than 84% for the cross-mixed operating condition, which is much
higher than the traditional features. In conclusion, it was proven that FEEMD-IMFCM-LSSVM is a
reliable technology for roller bearing fault diagnosis under the constant or multi-positioned operating
conditions, and as such, it possesses potential prospects for a broad application of uses.

Keywords: intrinsic mode function correntropy matrix; fast ensemble empirical mode decomposition;
AM-correntropy; least squares support vector machine; roller bearing; fault diagnosis

1. Introduction

As one of the pivotal mechanized devices, roller bearings constantly rotate in harsh industrial
environments that often feature high temperatures, variable rotational speeds, and big loads; as such,
they have a high breakdown probability [1]. It is difficult to diagnose roller bearing faults because
the fault burst of the roller is strong and because the ambient noise and hectic operating conditions
in which they generally exist; as a result, the condition of the roller bearings may represent hidden
dangers for mechanical and electrical systems. Consequently, it is of great significance to develop
identification techniques for determining the condition of roller bearings in order to ensure the safety
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of the facility and its operations. For this reason, the fault diagnosis of roller bearings has been a
research focus in various related fields.

Currently, pattern recognition is one of the popular roller bearing fault diagnosis approaches
which has constantly been developing from its initial form of distinguishing the condition of roller
bearings by analyzing sound differences. At present, many approaches have been proposed to achieve
successful roller bearing fault diagnosis [2–4]. The current fault diagnosis technical structure includes
two aspects: feature extraction and pattern identification [5]. A good pattern identification method is
admittedly important, but there is no norm to follow in order to ascertain the best pattern identification
parameters. Moreover, in order to fundamentally improve the fault diagnosis ability, it is more
convincing to determine a fault divisible feature, which can be revealed in a variety of forms in order
to show the diagnosis results.

Before extracting the fault features of roller bearings, the state parameter should first be extracted.
Some fault features can be expressed in state parameters, such as the axial temperature and rotor
current. However, these state parameters are similar in that they can only diagnosis the late and
serious faults. In order to find the early faults of the bearings in order to keep the devices safe, some
roller bearing state parameters such as vibration acceleration and ultrasonic waves have been used [6].
In considering that the ultrasonic wave is easy to be interfered by noise, this welcomed extracting
technique currently refers mainly to the measurement of vibration by suitable transducers [7]. However,
it is difficult to extract characteristic information directly from the vibration signal of roller bearings
which are non-stationary, non-linear, and which often feature strong noise interference [8]. The general
way to extract fault features is based on adaptive time frequency transformations. Empirical Mode
Decomposition (EMD), proposed by Huang [9], is a typical adaptive time-frequency decomposed
method which is affected with the mode mixing problem [10]. To solve the problem, Huang has
put forward the detection interrupted method [11], which is a kind of posteriori judgment that has
many limitations. Ensemble Empirical Mode Decomposition (EEMD) is another method to eliminate
the mode mixing problem which has been proposed by Wu in 2009 [12]. This approach adds white
noise data onto the primary signal, applying the uniform distribution character of the white noise
frequency spectrum to make up for the absence of the signal scales. Meanwhile, the characteristic
zero-mean statistic of white noise is employed in order to remove the added noise influence, so that
the decomposed result can be better than the single EMD algorithm. However, many groups of white
noise and many EMD processes increase the computation complexity of EEMD. Furthermore, the
real-time calculation of EEMD may be influenced if the program structure is confused. To improve the
computation efficiency of EEMD, many researchers have tried various approaches [13,14]. Among
all the studies, Wang [15] has analyzed the computing intensity of EMD and EEMD and verified that
the computational complexity depends on the data length. Based on the computational evidence he
has concluded that the EEMD time cost can be shortened as Fast EEMD (FEEMD). The improved
effect of FEEMD has been applied on wind speed forecasting [16]. In terms of Intrinsic Mode Function
(IMF) features, although the combination of EEMD and information theory has been a hot research
topic in recent years [17,18], it pays little attention to the attempt of considering cross correlation
information as fault features. Among the cross correlation measures, Correlation Function (CF) as
a time structure similarity measure has been widely applied in signal processes such as statistical
analyses [19,20] , trait associations [21], and so on. However, CF is limited to reflect two order
moment statistical traits between two signals only, and furthermore, its ability to analyze non-Gaussian
and nonlinear signals cannot avoid severe attenuation [22]. Correntropy, which was advanced by
Santamartía in 2006 [23], is a generalized correlation measure which contains even order moment
statistical information. More detailed correlative information demonstrates that correntropy is more
sensitive and the implementation of the kernel function can be more appropriate means in which
to deal with high dimensional nonlinear signals than CF [24]. Because of these properties, in recent
years, correntropy has been further studied in different subject fields, such as time series modeling [23],
nonlinearity testing [24], feature selection criterion [25], hyper spectral immixing [26], gross error
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detection [27], medical signal processing [28], and so on. To achieve state identification, the Support
Vector Machine (SVM) method has been widely employed in the machine learning community because
of its distinctive generalization ability compared with that of other conventional methods, such as the
neural network method [29]. Built on the foundation of the SVM algorithm, the Least Square Support
Vector Machine (LSSVM) method possesses not only as good of a generalization ability as the general
SVM method, but a better learning ability for small samples than the general SVM method. In addition,
the calculation speed of LSSVM is faster than SVM based on the same identification accuracy [30] That
is why LSSVM is prevalent in many fields related to pattern recognition [31,32].

Therefore, in terms of bearing fault feature extraction, the correlative information between
time-frequency components and primary signals can be potential cachets. To extract the cachets
comprehensively, here we propose the IMF correntropy matrix (IMFCM) which is comprised of four
dimensions which are: fault state class, total number of sample data, data length, and IMF number
in each FEEMD process. The centralized computation of a fault feature set can reflect the unity and
logic of the sample set. The consequences of roller bearing fault identification will be obtained through
LSSVM. In short, the purpose is to verify the performance of FEEMD and the divisibility and robustness
of IMFCM in roller bearing fault diagnosis are better than the existing methods.

This paper contains seven sections. The first part introduces the basis of the study. The second
section presents the research framework. The third part considers the instruction of the algorithms
used to extract the fault features, and contains two subsections: the fast empirical mode decomposition
algorithm and the definition and computation scheme of IMF correntropy matrix. The fourth sections
discusses the application of IMFCM in fault identification, and contains two sub-sections: a brief
overview of the Least Squares Support Vector Machine method and an evaluation of the identification
consequence. The fifth section contains a case study and applicability experiment that considers both a
Stationary Operating Situation and Cross-mixed Operating Situation. The sixth section is a discussion
that analyzes the results of the experiment. The last part is the conclusion which summarizes the
whole research work.

2. The Method Framework

The method framework contains three sub-procedures: the signal process, the feature extraction,
and the state identification. The signal process is composed of a series of processes. In particular,
the vibration acceleration signal is collected regardless of the operating condition of the roller bearings.
The detailed framework for implementing the roller bearing fault diagnosis is shown in Figure 1.
The parameters of s, c, and φ are for the primary vibration signal of roller bearings, the IMF decomposed
from the primary signal, and the AM-correntropy, respectively. k, l, m, and n refer to the number of
fault style, the number of primary signal samples, the length of each sample, and the amount of IMFs
decomposed by a primary sample. The detailed mathematical relationships of the above parameters
will be described in the following sections.



Entropy 2016, 18, 242 4 of 23
Entropy 2016, 18, 242 4 of 23 

 

AM-correntropy 

operator

Vibration accelerate 

signal collection

 Signal pretreatment

 Signal process by 

FEEMD

 IMF Matrix storage 

Fault multi-

identification by 

LSSVM

IMFC1

.

.

.

IMFCi

IMFCn

.

.

.

Feature extractionSignal process

Yes

Yes

Ball fault label
No

No
 normal  label

Outer fault label
Yes

Inner fault label
No

Intelligent identification

 Signal Matrix storage 

11 12 1

22 22

11 1

21 2

22 22

1

1 2

c c c

c c

c c

c c

c c c

k

m

k

n nm

l l lk

 
 
 
 
 
 
 
 
  

1 1 1

1

s s

s s

l l

m

l l

k k m

 
 
 
 
 

Correntropy 

operator

Correlation 

coefficient

11 1

1

l l

n

l l

k kn

 

 

 
 
 
 
 

Output

If not 

normal ?

If not inner 

race fault ?

If not inner 

race fault ?

 

Figure 1. Roller bearing fault diagnosis method based on FEEMD-IMFCM-LSSVM. FEEMD: Fast 

Ensemble Empirical mode decomposition; IMF: Intrinsic Mode Functions; IMFCM: IMF correntropy 

matrix; LSSVM: Least Square Support Vector Machine. 
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Figure 1. Roller bearing fault diagnosis method based on FEEMD-IMFCM-LSSVM. FEEMD: Fast
Ensemble Empirical mode decomposition; IMF: Intrinsic Mode Functions; IMFCM: IMF correntropy
matrix; LSSVM: Least Square Support Vector Machine.

3. Instruction of Algorithms to Extract Fault Feature

3.1. Fast Empirical Mode Decomposition Algorithm

3.1.1. Brief Overview of EMD and EEMD Algorithms

To realize the stationary signal processing, the EMD algorithm separates the wave motion or
tendency into different scales step by step, and then IMFs, a series of signal sequences with different
characteristic scales, will be obtainable. To be an IMF, a sequence should follow two conditions:

1. The number of extreme value points and the number of zero-crossings must either be equal or
differ at most by one in the whole primary signal.

2. At any point, the mean value of the envelope defined by local maxima and the envelope defined
by the local minima is zero. The upper and lower envelopes are of local symmetry about
the timeline.

The IMFs disassembled by EMD that satisfy the above two criterions are all near single frequency
components and almost orthogonal signals [9]. The detailed description of the EMD algorithm
execution process can be referenced in [9].

To prevent a primary single component signal from losing its physical meaning in the IMF sifting
process, the stop norm is added to stop the sifting process. The general stoppage criterion makes
use of standard deviation (SD) [16] as the stop condition. Besides the SD, there are many other
stoppage criteria in applications such as the three parameters rule [33] and energy difference tracking
method [34].

However, a susceptibility to mode mixing is one of the EMD shortcomings, which may reveal the
signal’s characteristic information incorrectly and may generate the crucial influence of the specific
physical background [35].
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To assuage the drawback of mode mixing which is intrinsic in the performance of EMD, EEMD
was proposed by Wu and Huang [12]. To eliminate the intermittency of the primary signal, and then
restrain the generation of mode mixing effectively, it is necessary to add white Gaussian noise with
different amplitudes before each decomposed step, as white Gaussian noise has the statistical property
of uniform distribution in the whole time-frequency domain, making the signal continuity better and
more easily eliminated by superposition. Meanwhile, the statistical mean value of unrelated random
noise has been proved to be zero, so the ensemble mean calculation of the IMFs can almost remove the
interference of white noises. The procedure of EEMD can be depicted as follows [12]:

Add numerically generated white noise δi(t) on the primary signal s(t) as demonstrated in the
following equation, where i means the i-th trail of adding white noise with ne trails, and i = 1, 2, . . . , ne:

si ptq “ s ptq ` δi ptq (1)

Decompose the signal si(t) by EMD algorithm to get several IMFs cij(t) and a residue ri(t), in
which cij(t) is the j-th IMF component of the i-th EMD of si (t) with j = 1, 2, . . . , n, and ri(t) is the i-th
EMD residue.

Step One: Repeat the two aforementioned steps, and add different white noise sequences with
the same root mean square each time.

Step Two: Calculate the ensemble means cj(t) of the corresponding IMFs of the decompositions as
the final IMFs which can be represented by the following equation:

$

’

’

’

&

’

’

’

%

cj ptq “ 1
ne

ne
ř

i“1
cij ptq

r ptq “ 1
ne

ne
ř

i“1
ri ptq

(2)

where cj(t) is the j-th IMF component decomposed from the primary signal using EEMD.

3.1.2. Brief Overview of Fast EEMD

It is obvious that the process of EEMD indicates a more sophisticated signal processing technique
for nonlinear and non-stationary signals than EMD. Hence, EEMD generates more computational
complexity [14].

Practically, Wang [15] has proven that the computing process of EMD and EEMD is not intensive
and tedious. It has been demonstrated that the computational time complexity (CTC) of EMD is no
greater than ns¨ (41¨ n¨m), which is proportional to shifting time ns, IMF dimension n, and signal length
m, and the CTC of EEMD is no greater than NE¨ns¨ (41¨n¨m), which is proportional to the EMD CTC
and ensemble time ne respectively. Generally, getting ne by SD stoppage criterion costs at least 5m CTC.
The fast EEMD (FEEMD) algorithm indicates that the fixed value of ns can perform better than the ns

obtained by other stoppage criteria. Furthermore, it has been summarized by Wu [12,36] that to get
better decomposed results the assignment of ns should generally be 10. Taking ns and ne as constants,
the CTC of FEEMD can be described as T(m) = O(m¨ logm) [15], where n = log2m for EMD is performed
as a dyadic filter bank [36]. Nevertheless, using the SD criterion the CTC of EEMD is no less than
205¨ ne¨m2¨ log2m = O(m2¨ logm). The theoretical curve of the relationship between log10(CTC) and data
length m is shown in Figure 2.
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3.2. Definition and Computation Scheme of IMF Correntropy Matrix

The length of primary signal s(t) is m and the sample amount of primary signal is l, to construct
primary signal matrix s(t)l ˆ m under k-th fault states separately, it generates the sample matrix (SM) of
k ˆ l ˆ m dimensions. Next, after the FEEMD process of each signal si(t), n IMFs are totally generated,
then all the IMFs should be blocked in k ˆ l ˆ n ˆ m IMF matrix (IMFM) to be processed more
efficiently by the computer.

3.2.1. Brief Overview of Correntropy

For determining more reliable fault features, it is worth clarifying the proportion of each IMF
component in the primary signal and the distance of every sampling point in each IMF component that
leaves from the corresponding point in the primary signal. In considering this situation, the minutia is
similarly significant and needs to be examined.

Correntropy is a generalized similarity measure that estimates the probabilistic similarity
between two arbitrary random variables [37]. It is computationally intensive to determine the
correntropy of two-dimensional random variable in a high-dimensional data space. The kernel function
aims to solve the high-dimension problem of computation without specification of the nonlinear
transformation function. Through the kernel function, the obtainment of the linear correlation
information can be implemented in the higher dimensional linear space, which is the projection
of lower dimensional nonlinear space. Correntropy as a continuous function has been deeply analyzed
in the literature [23,24], however the computer can only handle the data discretely. Suppose that X
and Y are two discrete random variables with m sampling points. Generally, the joint probability
function PXY of X and Y is unknown and the sampling point amount m is a finite integer, thus the
correntropy is calculated by the discrete sample estimation instead of the continuous correntropy
model. The equation is as follows.

V̂ pX, Yq “ EXY “
1
m

m
ÿ

i“1

K pxi, yiq (3)

where K is the arbitrary positive definite kernel function which satisfies Mercer’s Conditions [24].
The Gaussian kernel (also called the radial basis function (RBF) kernel) is employed here to calculate
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the correntropy. The sample estimation of correntropy with the Gaussian kernel function is described
as follows:

V̂σ pX, Yq “
1

m
?

2πσ

m
ÿ

i“1

exp
ˆ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xi ´ yi
?

2σ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˙

(4)

The size of the kernel scale parameter σ determines the metric of similarity in the reproducing
kernel Hilbert space (RKHS). Experientially, the kernel scale parameter σ is generated by the Silverman
standard [24]. However, to keep the fixed inner product in RKHS, it needs a fixed σ value which
is determined to be 0.5 for a balanced effect here. Additionally, it is necessary to keep the same
computation for each feature value in order to ensure the fault diagnosis results are meaningful.
It can be observed in Equation (4) that correntropy obeys two rules: symmetry (V(X,Y) = V(Y,X)) and
boundedness (0 < V(X,Y) < 1/

?
2πσ). The correlation information can be revealed by Taylor’s series

expansion of correntropy, which is shown in Equation (5):

Vσ pX, Yq “
1

?
2πσ

8
ÿ

m“0

p´1qm

2mm!
EXY

«

ˆ

x´ y
σ2m

˙2m
ff

(5)

It contains a two order term of self-correlation information while m = 1 and an independent
component analysis correlated term while m = 4. The weighted sum of even order moments
reflects that correntropy includes all even order statistic messages, where a two order term makes
up the major component and the quick attenuation of high order terms follows the addition of σ.
Correntropy is therefore two order statistics with more ascendancy thereby implying more correlation
statistical information, less information redundancy, and better correlation robustness than traditional
correlation approaches.

3.2.2. Derivation of IMF Correntropy Matrix

Being that it is based upon the accumulation of local similarity, correntropy is considered as
a local similarity measurement so that the linear degree of signal is negligible. In addition, each
IMF component in the time domain has independent data distributions with partial similarity with
the primary signal. As such, correntropy can measure the local similarity between IMF and the
primary signal. Hence, it is sensitive to the local shock response. However, linear similarity is another
measurement which contains the global similarity information that correntropy lacks. Adding the
linear correlation coefficient as an AM operator, results in improved correntropy will which is called
IMF-original-signal correntropy (IMFC). Based on the IMFC feature, the different fault styles of roller
bearings can be embodied. Supposing ρ is the correlation coefficient between the primary signal and
the IMF component.

φ “
ρ

?
2mσ

#

m
ÿ

i“1

exp
ˆ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ci ´ si
?

2σ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˙

+

(6)

where φ “ V̂(PF,S). The above part has mentioned that IMFM is k ˆ l ˆ n ˆ m dimensional, thus one
signal’s IMFC estimate φ1 is of 1 ˆ n dimensions. Using Φ = (2mσ)´1¨

ř

exp(´‖H‖¨(2σ2)´1) as the
correntropy operator, where ‖¨ ‖ is the Euclidean norm and H = cnˆm ´ s1ˆm is the input matrix, then
the IMFC vector φ11ˆn can be solved as follows.

φ11ˆn “ Φ ¨ pcnˆm ´ s1ˆmq (7)

In order to reduce the calculation sophistication, it takes the followed equation to normalize φ1 so
that the normalized solution φ can be obtained.

φ1ˆn “
φ11ˆn
řn

i“1 φi
(8)
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To extend Equations (7) and (8) to all the primary signal samples in the whole state set, assuming
∆ = k ˆ l, Ω = ∆ ˆ n, then the calculation process of the Ω-dimensional IMFC matrix (IMFCM) is
described as follows:

φΩ “ Φ ¨Hnm “ Φ ¨

»

—

–

c∆
11 ´ s∆

1 ¨ ¨ ¨ c∆
1m ´ s∆

m
...

. . .
...

c∆
n1 ´ s∆

1 ¨ ¨ ¨ c∆
nm ´ s∆

m

fi

ffi

fl

“

»

—

–

φk
11 ¨ ¨ ¨ φk

1n
...

. . .
...

φk
l1 ¨ ¨ ¨ φk

ln

fi

ffi

fl

(9)

where c∆ and s∆ signify the sample matrix of ckl and skl, and φΩ is the initial IMFCM. Furthermore, to
express the convenience of calculation, it is necessary to partly transpose φΩ. Accordingly, drawing
support of Γ = (k ˆ l)1 ˆ n, φΓ is the final target result of IMFCM.

4. Application of IMFCM in Fault Identification

To implement the fault identification based on IMFCM, the intelligent decision-making algorithm
should be involved in this work. There are many studies of roller bearing fault identification that
draw support from SVM [38]. As the development of SVM, LSSVM has been widely used recently for
its faster calculation ability than SVM. Besides, it is of the same significance to choose an exhaustive
index to evaluate the identification consequence. Here, LSSVM and its output evaluation are briefly
analyzed accordingly.

4.1. Brief Overview on Least Square Support Vector Machine

Based on the structural risk minimization principle, the Support Vector Machine (SVM) method
as one of the machine learning approaches can perform well in the analysis of a small capacity, high
dimensional, and non-stationary sample set. The core idea of SVM is to build up a hyperplane as a
decision surface in order to maximize the isolated edge of sample sets of different types. The linear
discriminant function is used to divide the object samples into two classes. Supposing ω is the weight
vector and x ε R[m,n] owns n samples, each of which has m dimensions.

y “ sgn ppω ¨ xq ` bq (10)

However, nonlinear classification discrimination needs the nonlinear function ϕ(x) to map samples
to high-dimensional linear space, and then the optimal classification hyperplane is constructed in the
high-dimension linear space. Training sample number affects computation speed and the solution
of quadratic programming becomes complex if the training sample number increases. Solving this
problem is one of the merits of LSSVM [39], where equality optimization constraints instead of
inequality constraints are applied. Furthermore, the low computational cost of LSSVM allows it to be
used in a wide variety of applications.

Provided the training set is TR = {(xi, yi), i = 1, 2, . . . , n} (xi ε Rm), then the quadratic programming
can be converted into the following description:

$

’

&

’

%

min
ω,b,ξ

J pω, b, ξq “ 1
2 ωTω` γ

2

n
ř

i“1
ξi

2

s.t. yi
“

ωT ϕ pxiq ` b
‰

“ 1´ ξi

(11)

where J is the objective function, γ is the penalty coefficient whose greater value expresses a more
severe penalty for erroneous classifications, and ξ is a slack variable which solves the problem in
that the largest geometric interval value is negative when the samples can be measured by no means.
Moreover, Equation (11) is a typical quadratic programming case. To simplify the calculation, it is
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necessary to integrate the objective function and constraints into the Lagrange function; the optimal
solution will be generated from this function. As such, the corresponding Lagrange function is:

L pω, b, ξ, αq “ J pω, b, ξq ´
n
ÿ

i“1

αi

!

yi

”

ωT ϕ pxiq ` b
ı

´ 1` ξi

)

(12)

where αi is Lagrange multiplier. The conditions for optimality, similarly to the SVM problem, can be
given by the partial derivatives of L(ω, b, ξ, α) with respect to ω, b, ξi, and αi.

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

BL
Bω “ 0 ñ ω “

n
ř

i“1
αi ϕ pxiq

BL
Bb “ 0 ñ

n
ř

i“1
αi “ 0

BL
Bξi
“ 0 ñ γ´ αi ´ βi “ 0

BL
Bαi
“ 0 ñ yi

“

ωT ϕ pxiq ` b
‰

` ξi ´ 1 “ 0

(13)

To remove ω and ξi by element elimination, the above equations calculating the process can be
described as follows.

»

—

—

—

–

I 0 0 ´ZT

0 0 0 ´yT

0 0 γI ´I
Z y I 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

ω

b
ξ

α

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0
0
0

1n

fi

ffi

ffi

ffi

fl

ñ

«

O yT

y ZZT ` γ´1I

ff«

b
α

ff

“

«

0
1n

ff

(14)

where Z = [ϕ(x1), ϕ(x2), . . . , ϕ(xn)]T, y = [y1, y2, . . . , yn]T, 1n “ r1, 1, . . . , 1sT1ˆN, ξ = [ξ1, ξ2, . . . , ξn],
and α = [α1, α2, . . . , αn]. In addition, the inner product operation of ZZT can be represented by the
Kernel function K(xi, xj) instead which satisfies the Mercer condition. Suppose Ω = ZZT, then

Ωij “ yiyjK
`

xi, xj
˘

(15)

The classification decision function of LSSVM at point xi can be evaluated as

f̂ pxq “ sgn

«

n
ÿ

i“1

αiK pxi, xq ` b

ff

(16)

For multi-class identification, different association strategies of multi SVM operators, such
as one-against-one (OAO), one-against-all (OAA), and directed acyclic graph (DAGSVM), can be
employed to carry out rotating machine fault identifications. A detailed discussion of these approaches
has been described in [40].

4.2. Evaluation of Identification Consequence

Multiple perspectives of evaluation can give an exhaustive examination of algorithm outcomes.
The main appraisal principle is the integration of positive and negative evaluation indicators and local
and global indicators. Here, correct rate (CR, positive and local indicator), misdiagnosis rate (MR,
negative and local indicator), and average-identification rate (AR, positive and global indicator) are
employed as the evaluation indicators. The CR index refers to the proportion of correct recognized
samples out of the total number of tested samples in this category. MR means the proportion of the
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tested samples wrongly divided into this category out of the total number of tested samples of the
other categories, and AR refers to the average accuracy of all categories.

$

’

’

&

’

’

%

θ “ λ
χ ˆ 100%

η “ τ
ζ´χ ˆ 100%

µ “
ψ
υ ˆ 100%

(17)

In which θ is CR, η is MR, µ is AR, and their values all range from 0 to 1. λ is the sample number
recognized correctly among the specific category samples, χ refers to the sum of the tested samples of
the specific category, τ is the sample number of other categories recognized as the specific category,
ζ is the sum of all samples, ψ is the sum of all class identification accuracy, and υ is the number
of categories.

5. Case Study and Applicability Experiment

The objective of the experiment was to inspect if the fault feature IMFCM has superior fault
diagnosis performance than the traditional features, both in abiding operating situations and hybrid
operating situations. The vibration acceleration signal of the roller bearing is collected from the
open source website of Case Western Reserve University whose vibration test platform is shown in
Figure 3 [41]. The type of roller bearing is a deeply grooved ball bearing 6205-2RS JEM SKF whose
outer ring is fixed with no guard. The format of size A ˆ S ˆW is 25 mm ˆ 52 mm ˆ 15 mm, where A,
S, and W represent aperture of inner ring, shaft diameter of outer ring, and width of roller bearing,
respectively. The fault diameters of each fault style of inner ring fault, outer ring fault, and ball fault
are 0.007 inches, 0.014 inches, and 0.021 inches, respectively, and the fault depth corresponding to
each fault diameter is 0.11 inches. The outer ring fault location is 6 o’clock inside. The four fault styles
are {normal, inner ring fault, outer ring fault, ball fault} which are represented by set {I, II, III, IV}.
Experiments were conducted using a 2 HP Reliance Electric Motor, and the acceleration data was
measured at locations near to the motor bearings.
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5.1. The Test of FEEMD Computational Time Complexity

First, we chose one vibration signal sample from each fault style of {I, II, III, IV} to check the
computational time cost and the storage space cost of EMD, EEMD, and FEEMD. Figure 4 shows the
relationship between the data length, IMF number, and the computing time cost of EMD, EEMD, and
FEEMD. It is conceivable that FEEMD combines the advantages of EMD and EEMD, in that it computes
faster than EEMD and weakens the mode mixing effect. The detailed computational time statistics are
presented in Table 1, which shows the quantitative superiority of FEEMD. Figure 5 demonstrates the
IMFs in time domain of EMD, EEMD, and FEEMD in a sample of roller bearing vibration signals for
ball fault. Although the computing time is cut down, the IMFs still performed well compared with
EMD and EEMD.
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Figure 5. View of inner race fault bearing signal IMFs in A group of 0.007 inches fault diameter.
(a) Inner race fault signal IMFs by EMD in A group; (b) Inner race fault signal IMFs by EEMD in
A group; (c) Inner race fault signal IMFs by FEEMD in A group.
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Table 1. Computational time statistics.

Fault Style Algorithm
Length of Data

1000 2000 3000 3900 5000 6000 7000

Normal
EMD 0.344 0.062 0.086 0.141 0.164 0.250 0.297

EEMD 5.909 10.919 21.107 35.923 54.903 84.121 122.927
FEEMD 0.282 0.219 0.438 0.719 1.108 1.546 2.103

Inner Race
Fault

EMD 0.062 0.063 0.141 0.281 0.312 0.641 0.859
EEMD 5.711 11.156 21.363 36.379 56.065 86.945 126.945

FEEMD 0.125 0.25 0.5 0.828 1.282 1.797 2.466

Outer Race
Fault

EMD 0.078 0.422 2.315 3.104 4.55 6.395 12.31
EEMD 5.713 11.416 21.94 37.659 58.495 91.396 134.166

FEEMD 0.094 0.266 0.5 0.844 1.313 1.859 2.5360

Ball Fault
EMD 0.094 0.25 0.484 0.828 1.265 1.813 2.44

EEMD 5.539 10.952 20.96 35.441 54.699 85.544 122.701
FEEMD 0.031 0.046 0.109 0.188 0.344 0.397 0.797

5.2. Stationary Operating Situations

Whatever operating situation the roller bearing is in, the matrix required for calculating the fault
characteristic needs to be emphasized. For IMFCM, the dimensional value Γ: l ˆ k ˆ n needs to
be solved, as well as the length m of each primary signal. Only if these parameters are cleared the
high-dimensional experiment data can be conveniently calculated in blocks.

In this section, the fault diagnosis experiment of a roller bearing in a stationary operating situation
is implemented. The experiment flow chart is provided in Figure 6 and the detailed steps are as follows.
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Step one: data collection. The motor operating speed and load are constant. The roller bearing
vibration data samples are distributed into three groups (A, B, and C) based on different operating
parameters, each of which contains four fault styles of roller bearing expressed by {I, II, III, IV}.
The roller bearing operating parameters are shown in Table 2. The sampling frequency is 12 kHz,
under which 118 data sample sets have been obtained. Each data sample contains 1024 points.
The training data sample number of each fault style is 68, and the testing data sample number is 50.
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Table 2. Operating parameters for the A, B, and C groups.

Operating Parameters A Group B Group C Group

Speed 1750 r/min 1772 r/min 1797 r/min
Load 2HP 1HP 0

From the above information it is obvious that the total testing sample number is l = 200, the fault
style number is k = 4, and the signal length m = 1024. The only parameter still unknown is the IMF
number n for each primary signal.

Step two: time-frequency decomposition of vibration signal. Here, the primary signals of three
groups are decomposed into IMF components by FEEMD. From Figure 5c it is obvious that the last two
IMFs have little wave ingredients so that the meaningful IMFs contains only the first eight components.

Step three: feature extraction. Calculate IMFCM of the roller bearing vibration signal in each
group according to the aforementioned process. To verify the fault diagnosis accuracy of IMFCM,
the IMF energy moment matrix (IMFEMM) [42], IMF fuzzy entropy matrix (IMFFEM) [43], and IMF
spectral kurtosis matrix (IMFSKM) [44] are considered as controlled objects which are extracted in the
same process as the IMFCM, as shown in Figure 6. It is obvious that the features under the fourth
component possess less feature diversity than the first four components in Figure 7 so they naturally
have less contribution to the fault divisibility. Hence, component set {IMF1, IMF2, IMF3, IMF4} is
chosen as the whole fault feature set for the roller bearing. Until now the parameters are all clear by
l ˆ k ˆ n ˆ m = 200 ˆ 4 ˆ 4 ˆ 1024. By using the matrix form, the computation process will be
intelligible and efficient.

Step four: fault identification. LSSVM has been proven to be a well-applied classifier when
σ = 0.5 [40]. Here, the input set is made up of the four dimensions feature vectors acquired from
step three, and the output set is vector [I, II, III, IV] signified [normal, inner ring fault, outer ring
fault, ball fault]. The results of fault identification of the three fault severities are shown in Tables 2–4,
in which CR θ, MR η, and AR µ are applied to evaluate the result quality.
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Table 3. Fault diagnosis result comparison of 0.007 inches fault diameter.

Evaluation Feature
A Group: 1750 r/min & 2HP B Group: 1772 r/min & 1HP C Group: 1797 r/min & 0HP

I II III IV I II III IV I II III IV

θ (%)

CM 100 98 100 94 100 96 100 94 98 90 100 100
EMM 100 100 96 90 100 100 96 98 100 98 100 96
FEM 98 86 100 96 100 100 100 98 100 100 100 94
SKM 100 100 74 70 100 100 76 94 94 92 94 92

η (%)

CM 0 0 0.27 0 0 0 3.33 0 0 0 4 0
EMM 2.67 0 2 0 0 1.33 0.67 0.91 0.67 0 1.33 0
FEM 0 0 6.67 0 0 0 0.67 0 0 0 2 0
SKM 0.67 0 9.33 8.67 1.33 0.67 2 6 0.67 4.67 0 4

µ (%)

CM 98 97.5 97
EMM 96.5 98.5 98.5
FEM 95 99.5 98.5
SKM 86 92.5 93

I is normal state, II is inner ring fault, III is outer ring fault, and IV is ball fault, the same as all the following tables.

5.3. Cross-Mixed Operating Situations

The vibration data is the same as in Section 5.2. The purpose of the cross-mixed operating
condition is to inspect the fault diagnosis robustness for the rotating condition of the IMFCM.

Step one: data extraction. Two hundred continuous samples are selected randomly from each
roller bearing fault style dataset in group A, B, and C, respectively. The first 150 continuous samples of
each fault style are intercepted, respectively, in group A, B, and C which are then mixed as a training
set while another 150 samples from each group are designated as the testing set. As such, the total
training set sample number is 450 with an equally sized testing set sample number. This fashion of
cross-mixed rotating conditions follows the principle of distributing the training and testing dataset
on the average of each group, which is called a Homogeneous Group (HG). Another method chooses
100 continuous samples of each fault style in group A and B both randomly as the training dataset,
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and 100 continuous samples of each fault style in group C as the testing dataset. This mixing fashion
extracts the training dataset and testing dataset from different operating situations, respectively, so that
it is called Biased Group (BG). The roller bearing operating parameter distributions in HG and BG are
shown in Figure 8.

Table 4. Fault diagnosis result comparison of 0.014 inches fault diameter.

Evaluation Feature
A Group: 1750 r/min & 2HP B Group: 1772 r/min & 1HP C Group: 1797 r/min & 0HP

I II III IV I II III IV I II IIII IV

θ(%)

CM 98 98 92 100 100 96 96 100 96 92 94 98
EMM 100 100 98 88 100 98 90 92 100 86 98 88
FEM 100 84 98 98 100 92 98 98 100 96 94 92
SKM 94 78 96 98 100 82 90 98 92 80 82 90

η (%)

CM 0 0 0 4 0 0 0 2.67 0 1.33 0 5.33
EMM 4 0.67 0 0 0.68 2.67 3.33 0 3.33 0.67 0 5.33
FEM 0 0.67 0 6 0 1.33 2.67 0 0 1.33 2 2.67
SKM 0 0.67 0 10.67 0 1.33 2.67 6 2 0 6.67 10

µ (%)

CM 97 98 95
EMM 96.5 95 93
FEM 95 97 95.5
SKM 91.5 92.5 86

Entropy 2016, 18, 242 16 of 23 

 

μ (%) 

CM 97 98 95 
EMM 96.5 95 93 
FEM 95 97 95.5 
SKM 91.5 92.5 86 

5.3. Cross-Mixed Operating Situations 

The vibration data is the same as in Section 5.2. The purpose of the cross-mixed operating 
condition is to inspect the fault diagnosis robustness for the rotating condition of the IMFCM. 

Step one: data extraction. Two hundred continuous samples are selected randomly from each 
roller bearing fault style dataset in group A, B, and C, respectively. The first 150 continuous samples 
of each fault style are intercepted, respectively, in group A, B, and C which are then mixed as a 
training set while another 150 samples from each group are designated as the testing set. As such, 
the total training set sample number is 450 with an equally sized testing set sample number. This 
fashion of cross-mixed rotating conditions follows the principle of distributing the training and 
testing dataset on the average of each group, which is called a Homogeneous Group (HG). Another 
method chooses 100 continuous samples of each fault style in group A and B both randomly as the 
training dataset, and 100 continuous samples of each fault style in group C as the testing dataset. 
This mixing fashion extracts the training dataset and testing dataset from different operating 
situations, respectively, so that it is called Biased Group (BG). The roller bearing operating 
parameter distributions in HG and BG are shown in Figure 8. 

 

Figure 8. Rotating speed and load distribution in training and testing sample sets of HG and BG. 

Step two: To execute FEEMD, feature extraction, and intelligent identification processes in turn. 
The procedure is the same as steps two and three provided in Section 5.2. 

Step three: To compare the test performances and explain the consequences. 

6. Discussion 

From Figure 4 and Table 1, it can be concluded intuitively that the calculation time cost of 
FEEMD is the least of the three algorithms. Furthermore, FEEMD can obtain a constant number of 
IMF so that it shows stable decomposition process. Additionally, the results of FEEMD are as good 
as those of EEMD, to which it is compared in Figure 5. 

Analyzing Figure 7, the first four-dimensional CM, EMM, FEM, and SKM are all stable, and 
have obvious diversity among different fault styles. However, the last four-dimensional CM, EMM, 
FEM, and SKM are unstable and own ledivisibility relatively. Hence, it can be concluded 
qualitatively that to obtain accurate fault identification results, the last four-dimensional feature 

0 50
100

150

1000
1200

1400
1600

0

1

2

Sample

HG Training Operating Situation

Bearing Rotating Speed (r/s)

B
ea

ri
ng

 L
oa

d 
(H

P
)

0 50 100 150 200

1000
1100

1200
0

0.5

1

Sample

BG Traing Operating Situation

Bearing Rotating Speed (r/s)

B
ea

ri
ng

 L
oa

d 
(H

P
)

0 50
100 150

1000
1200

1400
1600

0

1

2

Sample

HG Testing Operating Situation

Bearing Rotating Speed (r/s)

B
ea

ri
ng

 L
oa

d 
(H

P
)

0
50

100

1449
1450

1451
1

2

3

BG Testing Operating Situation

Bearing Rotating Speed (r/s) Sample

B
ea

ri
ng

 L
oa

d 
(H

P
)

Figure 8. Rotating speed and load distribution in training and testing sample sets of HG and BG.

Step two: To execute FEEMD, feature extraction, and intelligent identification processes in turn.
The procedure is the same as steps two and three provided in Section 5.2.

Step three: To compare the test performances and explain the consequences.

6. Discussion

From Figure 4 and Table 1, it can be concluded intuitively that the calculation time cost of FEEMD
is the least of the three algorithms. Furthermore, FEEMD can obtain a constant number of IMF so that
it shows stable decomposition process. Additionally, the results of FEEMD are as good as those of
EEMD, to which it is compared in Figure 5.

Analyzing Figure 7, the first four-dimensional CM, EMM, FEM, and SKM are all stable, and have
obvious diversity among different fault styles. However, the last four-dimensional CM, EMM, FEM,
and SKM are unstable and own ledivisibility relatively. Hence, it can be concluded qualitatively that to
obtain accurate fault identification results, the last four-dimensional feature should be moved from the
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feature matrix. Furthermore, Figure 9 shows the quantitative comparison of the four features based on
the samples of the 0.007 inches ball fault data from Group A. The results shown in Figure 9 are the
LSSVM outputs. The identification results in Figure 9 indicate that the diagnosis accuracy of the first
four dimensional feature matrix is higher than the eight dimensional feature matrix. Therefore, it is the
first four dimensional IMFs that perform as the more effective feature matrix. The dimension of the
testing set is 200 ˆ 4 ˆ 4 ˆ 1024.
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Figure 9. Dimension reduction superiority for feature matrixes reflected in classification results of
A Group. (a) IMFCM classification result comparison between eight-IMF and four-IMF; (b) IMF energy
moment matrix (IMFEMM) classification result comparison between eight-IMF and four-IMF; (c) IMF
fuzzy entropy matrix (IMFFEM) classification result comparison between eight-IMF and four-IMF;
(d) IMF spectral kurtosis matrix (IMFSKM) classification result comparison between eight-IMF
and four-IMF.
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The roller bearing fault diagnosis results of the three fault diameters (0.007 inches, 0.014 inches,
and 0.021 inches) are revealed in Tables 3–5. The diagnosis accuracy of SKM were less than CM, EMM,
and FEM as reflected by θ. Corresponding to column “I”, the misdiagnosis rate η of non-normal data
is the key reference for reliability in engineering applications. Through contrasting the four features,
CM and FEM were observed to have a value of zero for η in all the tests of Tables 3–5; as such, CM and
FEM are qualified to measure the reliability of roller bearings. µ reflects the average diagnosis ability.
Having µ values for all the features above 85% means that CM, EMM, FEM, and SKM are capable of
implementing roller bearing fault diagnosis work.

Table 5. Fault diagnosis result comparison of 0.021 inches fault diameter.

Evaluation Feature
A Group: 1750 r/min & 2HP B Group: 1772 r/min & 1HP C Group: 1797 r/min & 0HP

I II III IV I II III IV I I III IV

θ (%)

CM 100 90 100 98 100 94 98 86 98 96 100 88
EMM 98 100 100 100 100 100 100 92 92 98 100 96
FEM 100 96 100 100 100 96 100 84 100 100 100 96
SKM 98 76 100 98 98 92 100 98 86 78 96 82

η (%)

CM 0 0 4 0 0 1.33 6 0 0 0 6 0
EMM 0 0 0.67 0 0 0 2.67 0 0 0 4.67 0
FEM 0 0 1.33 0 0 0 6.67 0 0 0 1.33 0
SKM 0 0.67 1.33 7.33 0 10 2.67 1.33 4.67 1.33 3.33 10

µ (%)

CM 97 94.5 95.5
EMM 99.5 98 96.5
FEM 93 95 99
SKM 91.5 89.5 85.5

To summarize what is mentioned above, under the stationary operation condition, CM as the fault
feature has almost the same diagnosis ability with EMM and FEM, and is better than SKM. Meanwhile,
CM can prevent the fault data from misdiagnosing into the normal state, and thus it can provide the
reliability of the application to the roller bearing.

Figures 10 and 11 present the intuitive fault diagnosis results based on LSSVM, and Tables 6–11
show the exhaustive quantified results. In analyzing the results, several conclusions can be discovered.
CM is the only feature that maintains high accuracy of three fault diameter conditions in group HG and
BG. However, the diagnosis accuracy of SKM in each condition is not good enough to implement the
fault identification (i.e., SKM has no qualification to diagnose fault of roller bearings in non-stationary
operating conditions). With the increase of the fault diameter, the fault diagnosis accuracy of each
feature decreases, especially for EMM and FEM. More specifically, CM is sensitive not only to the
light faults but deep faults, while EMM and FEM are exceedingly sensitive to light faults and are
insensitive to deep faults. In terms of BG, it generates lower diagnosis accuracy for EMM and FEM
than HG. This can be explained in that the feature distribution is not balanced in each operating
situation of EMM and FEM. Nevertheless, that phenomenon which is weakened by CM proves that
CM has the robustness for fault identification in various operating situations. Although the AR µ of
CM in Tables 10 and 11 decreased to below 90%, the normal state in each fault diameter condition has
been well recognized, and is better than the other features. This proves that correntropy is sensitive to
shock response.
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Figure 10. Fault identification result of Homogeneous Group (0.014 inches). (a) IMFCM; (b) IMFEMM;
(c) IMFFEM; (d) IMFSKM.
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Figure 11. Fault identification result of Bias group (0.021 inches). (a) IMFCM; (b) IMFEMM; (c) IMFFEM;
(d) IMFSKM.
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Table 6. Fault diagnosis result comparison in Homogeneous Group (0.007 inches).

Feature Index
Homogeneous Group

I II III IV
µ (%)

θ (%) η (%) θ (%) η (%) θ (%) η (%) θ (%) η (%)

CM 99.33 0 97.33 0 100 2.67 95.33 0 98
EMM 100 0.89 99.33 0 98 0.44 96.67 0.67 98.5
FEM 100 0 100 0 99.33 0.44 98.67 0.22 99.5
SKM 97.33 1.11 96 1.78 85 4 82 6.22 90.17

Table 7. Fault diagnosis result comparison in Homogeneous Group (0.014 inches).

Feature Index
Homogeneous Group

I II III IV
µ (%)

θ (%) η (%) θ (%) η (%) θ (%) η (%) θ (%) η (%)

CM 98 0 98 0.89 94.67 0 97.33 3.11 97
EMM 99.33 0 96 4 99.33 0.22 88 0.156 95.67
FEM 100 0 84 4.89 94.67 1.56 84 6 90.67
SKM 97.33 1.56 84 3.11 89.33 1.56 89.33 7.11 90

Table 8. Fault diagnosis result comparison in Homogeneous Group (0.021 inches).

Feature Index
Homogeneous Group

I II III IV
µ (%)

θ (%) η (%) θ (%) η (%) θ (%) η (%) θ (%) η (%)

CM 98.67 0 91.33 3.11 90 3.11 99.33 0.67 94.83
EMM 99.33 0 99.33 0 100 1.33 97.33 0 99
FEM 100 0 99.33 0 100 0.44 99.33 0 99.67
SKM 88.67 1.11 83.33 4 86.67 4 92.67 7.11 87.83

Table 9. Fault diagnosis result comparison in Biased Group (0.007 inches).

Feature Index
Biased Group

I II III IV
µ (%)

θ (%) η (%) θ (%) η (%) θ (%) η (%) θ (%) η (%)

CM 96 0 93 0 100 7.33 89 0 94.5
EMM 100 1.67 99 0.67 96 22.33 28 10 80.75
FEM 42 0 100 19.33 99 8.33 75 0.33 79
SKM 95 15 95 13.33 88 1.67 21 3.67 74.75

Table 10. Fault diagnosis result comparison in Biased Group (0.014 inches).

Feature Index
Biased Group

I II III IV
µ (%)

θ (%) η (%) θ (%) η (%) θ (%) η (%) θ (%) η (%)

CM 97 0 99 3.67 65 0 89 1.3 87.5
EMM 100 4.67 52 6 42 0 73 33.67 66.75
FEM 9 0 39 14.67 47 0 79 60.33 43.75
SKM 3 0 72 12.33 35 73.33 67 54.67 44.25
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Table 11. Fault diagnosis result comparison in Biased Group (0.021 inches).

Feature Index
Biased Group

I II III IV
µ (%)

θ (%) η (%) θ (%) η (%) θ (%) η (%) θ (%) η (%)

CM 100 0 76 0.67 100 20.33 61 0 84.25
EMM 99 0 0 0 100 35.33 95 0 73.5
FEM 10 0 0 0 100 63.67 99 0 52.25
SKM 0 0 89 3.67 97 7 81 33.67 66.75

All in all, the results verify that CM is the only feature that possesses both the robustness and the
high diagnosis accuracy in a variety of different operating situations.

7. Conclusions

In order to extract the fault feature and recognize the fault pattern of bearing vibration signals,
this paper proposes a novel approach combining the FEEMD, IMFCM, and LSSVM methods.
The analysis results from the simulation signal and the experiment data demonstrate the superiority of
the approach presented by this paper.

Compared with EMD and EEMD, the test result of FEEMD shows the two advantages, namely the
faster computation time and the avoidance of the mode mixing effect. The FEEMD-IMFCM-LSSVM
approach framework is proposed here to achieve roller bearing fault identification both in stationary
and non-stationary operating situations. Bearing rotating speed and load were the changing operating
parameters considered by this paper. The IMFCM was extracted from the IMF component that
was decomposed from the roller bearing vibration signal by FEEMD. Exhaustively, it is through the
AM-correntropy mathematical model of primary vibration signal and IMF components that IMFCM
could be obtained.

Through experiments considering single and cross-mixed operating situations, IMFEMM,
IMFFEM, and IMFSKM were compared in their ability to diagnose roller bearing faults. The compared
diagnosis results verify that IMFCM has the highest fault divisibility and robustness of its operating
state in both single and mixed operating conditions. To be expanded for further consideration, the
identification of roller bearing damage degree has great significance in improving the ability of fault
warnings. In the future, the application of IMFCM could focus on performance degradation detection
and identification of the degree of damage to rotary machines.
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