
entropy

Article

A Simulation-Based Study on Bayesian Estimators for
the Skew Brownian Motion
Manuel Barahona 1,2, Laura Rifo 1,*, Maritza Sepúlveda 3 and Soledad Torres 4

1 Institute of Mathematics and Statistics, University of Campinas, Rua Sergio Buarque de Holanda 651,
13083-859 Campinas, Brazil; mpereira@ubiobio.cl

2 Facultad de Ciencias, Universidad del Bío-Bío, Av Collao 1202, casilla 5C Concepción, Chile
3 Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Universidad de

Valparaíso, Av. Gran Bretaña 1111, 2360102 Valparaíso, Chile; maritza.sepulveda@uv.cl
4 Centre for Research and Modeling of Random Phenomena—Valparaíso (CIMFAV), Facultad de Ingeniería,

Universidad de Valparaíso, General Cruz 222, 2362905 Valparaíso, Chile; soledad.torres@uv.cl
* Correspondence: laurarifo@ime.unicamp.br; Tel.: +55-19-3521-6052; Fax: +55-19-3289-5766

Academic Editors: Julio Stern and Adriano Polpo
Received: 22 May 2016; Accepted: 22 June 2016; Published: 28 June 2016

Abstract: In analyzing a temporal data set from a continuous variable, diffusion processes can be
suitable under certain conditions, depending on the distribution of increments. We are interested in
processes where a semi-permeable barrier splits the state space, producing a skewed diffusion that can
have different rates on each side. In this work, the asymptotic behavior of some Bayesian inferences
for this class of processes is discussed and validated through simulations. As an application, we model
the location of South American sea lions (Otaria flavescens) on the coast of Calbuco, southern Chile,
which can be used to understand how the foraging behavior of apex predators varies temporally
and spatially.
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1. Introduction

For some problems involving time series from continuous variates, considering semi-permeable
barriers allows us to construct more accurate models for the phenomenon studied. For instance,
in finance we could consider psychological barriers involving asset prices which lead to different
decision making procedures on each side of the barrier.

We propose here a model capturing that feature in terms of local times, giving rise to the so-called
skew Brownian motion (sBm).

The sBm has attracted interest within other facts due to its relationship with diffusions with
discontinuous coefficients or related to media with semi-permeable barriers. It states the first example
of the solution of a stochastic differential equation having the local time of the solution as the drift [1].

Recently, several papers have considered the sBm in modeling or in simulation issues, as well
as in some optimization problems. See the review by Lejay [2] for references on the subject, and for
a survey on the various possible constructions and applications of the sBm.

In this paper, we are interested in the statistical estimation of the skewness parameter when we
observe a trajectory of the process at an equally spaced time grid.

From the statistical point of view, this problem represents an intermediate analysis between the
classical problem of drift estimation in a diffusion [3,4], and the estimation of the variance of a diffusion,
see [5,6] and references therein, where the probability measures generated by the trajectories are
singular for different values of the parameter.
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As far as we know, there are few works about the estimation of this parameter. In [7], the authors
assume that the sBm is reflected at levels 0 and 1 to ensure ergodicity, and in [8], the maximum
likelihood estimator is constructed and its asymptotic behavior analyzed, under the null hypothesis of
the sBm being the standard Brownian motion. Under general hypotheses, however, the problem is not
analytically handled and has not been studied yet.

In this paper, we present a simulation-based analysis on the asymptotic behavior of the Bayes
estimators for the skewness parameter, showing that their consistency is supported. The methodology
is applied to the trajectory that South American sea lions (SASL, Otaria flavescens) follow during their
foraging trips, understood as the feeding trips at sea alternating with visits to colonies in order to rest
and for lactating females to nurse pups ([9]), on the coast of southern Chile.

The paper is organized as follows. Section 2 provides the model settings and the basic definitions.
Section 3 presents a simulation-based analysis on the asymptotic behavior of the mean, mode and
quantiles of the posterior distribution. Numerical approximations and real data analysis are exemplified
in Section 4. Finally, in Section 5, some aspects of the results obtained are discussed.

2. Model Formulation

2.1. Skew Brownian Motion

Consider the following stochastic differential equation (SDE), for a process X ∈ R, of the form

Xt = x + σBt + θ lx
t , (1)

where x ∈ R, (Bt)t≥0 is a standard Brownian motion, and lt is the local time of the unique strong
solution X at 0.

Given T > 0 fixed, for any interval I ⊂ [0, T], define

l(I, A) := λ({s ∈ I; Xs ∈ A}), A ⊂ R,

where λ is the Lebesgue measure on R+, and l(I, ·) denotes the occupation measure on R of X during
the time interval I. If l(I, ·) is absolutely continuous with respect to the Lebesgue measure λ on R,
we denote its Radon–Nikodym derivative by

l(I, x) =
dl(I, ·)

dλ
,

and we call l(I, x) the occupation density of X at level x during the time interval I. We write
lt(A) = l([0, t], A) and lt(x) = l([0, t], x) for the occupation measure and for the density (local
time), respectively.

An equivalent alternative for the definition of the local time lx = {lx
t : 0 ≤ t ≤ +∞} at level

zero of the (unknown) solution X of the Equation (1), departing from x, is given by the following limit,

lx
t = lim

ε→0

1
2ε

∫ t

0
1(−ε,ε)(Xs)ds.

Recall that a strong solution X of a stochastic differential equation driven by (1) on a given
probability space (Ω,F ,P), with respect to the fixed Brownian motion B and independent initial
condition x over this probability space, is a stochastic process (Xt, t ≥ 0) satisfying:

1. X is adapted to the filtration (Ft), where Ft := σ(Bs, 0 ≤ s ≤ t);
2. X is a continuous process;
3. P(X0 = x) = 1;
4. with probability one, we have Xt = x + σBt + θ lx

t , ∀t ≥ 0.
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Then, the skew Brownian motion (sBm), X = {Xt : 0 ≤ t ≤ +∞}, can be defined as the strong
solution of the stochastic differential Equation (1), where B = {Bt : 0 ≤ t ≤ +∞} is a standard
Brownian motion defined on a given probability space.

For the study of the strong uniqueness of the solution of stochastic differential equations and local
times (see [10]), and [2] for a comprehensive survey on the sBm and the SDE involving the local time.

In Equation (1), the initial condition is x ≥ 0 (the case x < 0 is analogous), σ is associated to the
volatility parameter, and θ ∈ [−1, 1] is the skewness parameter.

2.2. Transition Probabilities

Consider the SBm X with parameter θ ∈ [−1, 1] defined in Equation (1), for t ∈ [0, T], and the
sampling scheme denoted by Xi := Xi ∆, i = 0, . . . , n, and ∆ = T/n. As shown in [11], the transition
density of X, shown in Figure 1, is given by

q(t, x, y | θ, σ2) = φtσ2(y− x) + sgn(y)θφtσ2(|x|+ |y|), (2)

where

φtσ2(x) =
1√

2πtσ
exp

(
− x2

2tσ2

)
is the density of a Gaussian random variable with variance tσ2 and mean 0, and sgn(x) = 1 if x > 0,
sgn(x) = −1 if x < 0 and sgn(x) = 0 if x = 0.

−3 −2 −1 0 1 2 3

(a)

−2 −1 0 1 2 3 4

(b)

−1 0 1 2 3 4 5

(c)

0 1 2 3 4 5 6

(d)

Figure 1. Transition kernel q(t, x, y | θ, σ2), with t = 1, σ2 = 1, considering θ = 0.8 and: (a) x = 0.1;
(b) x = 1; (c) x = 2; (d) x = 2.5.

We can rewrite the transitions between states as

q(t, x, y | θ, σ2) =

{
φtσ2(y− x) + θ φtσ2(y + x) if y > 0

φtσ2(y− x) (1− θ) otherwise
, (3a)

when x > 0,

q(t, x, y | θ, σ2) =

{
φtσ2(y− x)− θ φtσ2(y + x) if y ≤ 0

φtσ2(y− x) (1 + θ) otherwise
, (3b)
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when x < 0, and, when x = 0,

q(t, 0, y | θ, σ2) =


1
2

φtσ2(y) (1− θ) if y ≤ 0

1
2

φtσ2(y) (1 + θ) otherwise
. (3c)

Observe, from the transition kernel, that the parameter θ has a strong influence on the trajectory
when it passes close to the origin. Indeed, for a fixed amount of time t, when x is far enough from the
origin, the second term is nearly zero. In this case, the trajectory is practically driven by a Brownian
motion, almost without influence from θ. On the other hand, when a trajectory approaches the origin
from positive values, say, if θ < 0 the trajectory is pushed across the boundary to negative values,
and if θ > 0, it has a higher probability to be reflected and remain with a positive value.

In the extreme case θ = 1, the solution to Equation (1) is the reflected Brownian motion above the
origin, and when θ = −1, it is the reflected Brownian motion under the origin as soon as the trajectory
becomes negative. The case θ = 0 corresponds to the standard Brownian motion.

2.3. Exiting Times

Let us consider τx = inf{t > 0 : Xt = x}, the first hitting time of the point x ∈ R. Let J = (a, b) be
any open interval such that the exiting probability Px(τ{a,b} < ∞) equals 1, for any x ∈ J. Then there
exists a continuous, strictly increasing function S(x) on R , such that

Px(τa < τb) =
S(b)− S(x)
S(b)− S(a)

, x ∈ J .

The function S is called the scale function of the process. For more details, refer to [12], for instance.
For the sBm, the scale function is given by

S(x) =

{
α−1x if x ≥ 0

(1− α)−1x otherwise
,

where α = (1 + θ)/2, as in [2]. This implies that, if a = −b < 0 < b,

P0(τ−b < τb) = 1− α = (1− θ)/2 .

Observe that this value does not depend on b, but only on θ: if θ = 0, P0(τ−b < τb) = 1/2;
if θ > 0, P0(τ−b < τb) < 1/2; and, if θ < 0, P0(τ−b < τb) > 1/2, for every b > 0. In other words,
if θ < 0, once the particle reaches the barrier, it is pushed downwards with a probability (1− α) greater
than half; and if θ > 0, the particle is pushed upwards with probability α greater than half.

From the point of view of the inference procedure, given an observed trajectory, for those data
close enough to the barrier, the proportions of them at each side of the barrier are linear functions of θ.
This property can guide us to define an appropriate prior distribution for this parameter, as we discuss
in the next section.

3. Bayesian Inference

3.1. Likelihood and Prior Settings

For the model (1), let us consider the parametric space Ω = {ω = (θ, σ2) ∈ R2 : σ2 > 0,
−1 ≤ θ ≤ 1}.
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For a given sample d = (x1, . . . , xn), of the observed process at times (t1, . . . , tn), the likelihood
function for ω ∈ Ω, after observing d, is given by

ld(ω) =
n−1

∏
i=1

q(τi, xi, xi+1 | θ, σ2) ,

with q as in (3), and τi = ti+1 − ti. To ease the notation, let ai = ai(σ
2) = φτiσ

2(xi+1 − xi) and
bi = bi(σ

2) = φτiσ
2(xi + xi+1).

With this notation, the likelihood of (θ, σ2) is proportional to

ld(ω) ∝

(
∏

i
ai(σ

2)

)
(1 + θ)n−+(1− θ)n+− ∏

xj>0
xj+1>0

(
1 +

bj(σ
2)

aj(σ2)
θ

)
∏

xj<0
xj+1<0

(
1−

bj(σ
2)

aj(σ2)
θ

)
, (4)

where n−+ is the number of crossings from the negative to the positive side, n+−, the number of
crossings from the positive to the negative side, and bj/aj = exp{−2xjxj+1/(τjσ

2)} < 1.
Observe that, for each step crossing the barrier, if xi ≤ 0 and xi+1 > 0, then q(τi, xi, xi+1 | θ, σ2) ∝

(1 + θ) ai. Conversely, if xi ≥ 0 and xi+1 < 0, then q(τi, xi, xi+1 | θ, σ2) ∝ (1− θ) ai. When the first
happens, θ = −1 becomes a root of the likelihood, and when the latter case happens, θ = 1 becomes
a root.

On the other hand, for each two consecutive positive or negative steps, q(τj, xj, xj+1 | θ, σ2),
as a linear function in θ, has a root, ±aj/bj, outside the interval [−1, 1], with maximum in θ = 1 if
xj > 0, and in θ = −1, otherwise. This implies, for instance, that if we observe a positive trajectory
without crossings, the maximum likelihood estimate for θ is 1, giving more evidence for a reflected
Brownian motion, as already pointed out in [8] (Lemma 1).

Suppose now we have prior information about the skewness and the volatility, and let us denote
by f (ω) the prior density for ω quantifying that information. By Bayes’s theorem, the posterior density
for ω, given the data d, is determined by the relation f (ω | d) ∝ f (ω)ld(ω).

By the previous remarks, if we assume prior symmetry around θ = 0, the posterior symmetry
for θ basically depends on the polynomial factors defined by the steps performed at each side of the
barrier. If, for instance, a trajectory with at least two crossings has more steps at the positive side than
at the negative one, then the posterior distribution is skewed to the left, giving more mass probability
to θ > 0.

Also, when a trajectory has no crossings, if xi > 0, for all i, then the posterior distribution is
skewed to the left, with a modal value in θ = 1, and, conversely, if xi < 0, for all i, then the posterior
distribution is skewed to the right, with a modal value in θ = −1.

In this work, we will consider that, a priori, θ and σ2 are independent random variables. For the
inverse of the variance we adopt a Gamma distribution, G(αs, βs), mainly because of the first product
in the likelihood expression (4), so we can obtain a kind of conjugacy for 1/σ2. On the other hand,
from the interpretation of θ as a linear function of a proportion given in Section 2.3 and again for
obtaining a partial conjugacy for θ, we adopt for θ a Beta distribution in [−1, 1] with hyperparameters
αt, βt. With this, the prior density is

f (θ, σ2) ∝ (1 + θ)αt−1(1− θ)βt−1
(

1
σ2

)αs+1
exp

(
− βs

σ2

)
1Ω(θ, σ2) ,
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and, consequently, the posterior density can be expressed by

f (θ, σ2 | d) ∝
(

1
σ2

)αs+1+n/2
exp

{
− 1

σ2

(
βs + ∑

i

1
2τi

(xi+1 − xi)
2

)}
(1 + θ)n−+(1− θ)n+−

× ∏
xj>0

xj+1>0

(
1 +

bj(σ
2)

aj(σ2)
θ

)
∏

xj<0
xj+1<0

(
1−

bj(σ
2)

aj(σ2)
θ

)
.

The last two factors show the dependency between θ and σ2, given by the updated information
after observing d, as stronger the more the trajectory remains near the barrier. As the trajectory moves
away from the barrier, those factors converge exponentially to one.

3.2. Hypotheses Testing

One interesting hypothesis for this model is given by the subset Ω0 = {ω = (θ, σ2) ∈ Ω : θ = 0},
corresponding to the pure Brownian motion.

Observe that this is a precise hypothesis, that is, it is a sub-manifold of Ω with dimension verifying
dim(Ω0) < dim(Ω). For any absolutely continuous posterior distribution, the posterior probability of
a precise hypothesis is zero. As a test criterion for sharp hypothesis, the Full Bayesian Significance Test
(FBST) deals with the posterior probability of a region defined by the hypothesis and the level surfaces
of the posterior density f (ω | d).

Given a hypothesis Ω0, let us define the tangential set, T0, as

T0 = {ω ∈ Ω : f (ω | d) > f0}, where f0 = sup
Ω0

f (ω | d).

Intuitively, the tangential set to Ω0 considers all points more probable than the most probable
value inside Ω0, according to the posterior law.

The e-value (briefly denoted by ev) for the null hypothesis is an evidence measure defined by

ev(Ω0) = 1−
∫

T0

f (ω | d)dω. (5)

Therefore, if the tangential set has high posterior probability, the evidence in favor of Ω0 is small;
if it has low posterior probability, the evidence against Ω0 is small, see [13].

As observed in [14], by the absolute continuity of the posterior distribution on Ω, there is
a representation of f (ω | d) such that

f0 = lim
ε→0

(sup{ f (ω | d) : ω ∈ V0(ε)}) , (6)

where V0(ε) = {ω ∈ Ω | dist(ω, Ω0) < ε} is a neighborhood of Ω0 related to the euclidean distance
dist(ω, Ω0). This property allows us to obtain f0 without having to elicit a prior density conditional on
the null hypothesis, using the limit (6) instead.

Under a decision theoretical point of view, the e-value defined by (5) allows us to perform
a significance test for the hypothesis H : θ ∈ Ω0. Let us consider a decision space

D = {to reject H(a1), not to reject H(a0)},

and the loss function l : D ×Ω→ R given by

l(a1, θ) = w0(1− 1T0(θ))

l(a0, θ) = w1 + c1T0(θ),
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with w0, w1, c > 0. The value c represents the additional loss of not rejecting H when in fact θ belongs
to T0 and then has posterior density greater than any value in Ω0. According to [15], the decision rule
defined by

“reject H” if and only if e− value <
w1 + c
w0 + c

(7)

minimizes the expected value E(l(a, θ)|d).
We can also measure the evidence for H using the well-known Bayes factor [16]. Let us note

that its determination requires us to define a prior distribution on Ω0, f (θ|Ω0). The sensitivity of
Bayes factors to the choice of such priors is one of the usual criticism of that measure (see [17]). Let B
denote the Bayes factor against the hypothesis H. According to [18], one might adopt the following
decision rule to test H: if 1 < B < 3 there is little evidence against H; if 3 < B < 20, the evidence
against H is positive; if 20 < B < 150, it is strong; and if it is greater than 150, the evidence is
very strong. These categories are though prescriptive, since there is no explicit mention to any loss
function associated to the test.

Finally, we will also compute posterior probabilities, as presented in Section 4, for some regions
of interest.

3.3. Considerations on the Asymptotic Behavior of the Bayesian Posterior

This section presents a simulation-based analysis of the asymptotic behavior of the posterior
distribution of θ, given σ2, as the sample size increases.

In [8], a first step towards a convergence result for the maximum likelihood estimator (MLE) has
been achieved. The authors characterize the limiting distribution under the null hypothesis of the
standard Brownian motion, θ = 0, and the convergence is related to the G-stability (see [6] for the
definition and properties). That kind of convergence is proved to be true there in a neighborhood
of θ = 0, but even in that case it is not a sufficient condition for the consistency of the estimator.
To the best of our knowledge, reference [8] is the only analytical result on the convergence of estimators
for the skewness parameter θ of the sBm.

Also, for the MLE, high-frequency estimation, obtained for a sequence of times {iT/n}i,
is equivalent to long-time estimation, obtained for a sequence of time-steps equal to one. The simulations
we performed consider then increasing times {1, . . . , n} and give support for the consistency of the
posterior distribution when the sample size n increases, as we can see in what follows.

For this discussion, we present the simulated sampling distribution of the posterior mode,
the posterior mean, and the posterior 0.025 and 0.975 quantiles for θ. Those distributions were
obtained by a simulation of 10 thousand trajectories with n steps, for n = 100, 1000 and 10, 000,
for different values of θ ranging from −1 to 1. We consider for the simulations a fixed value of σ2 = 1;
analogous results were obtained for other values of σ2.

Figure 2 represents the sampling distribution for the posterior mode of θ, from trajectories
generated with θ = 0.

Figure 2. Sampling distribution for the posterior mode given ten thousand trajectories with n steps,
n = 100, 1000, 10,000, generated from θ = 0.
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Observe that for a trajectory with n = 100 steps, the sampling distribution of the posterior mode
is trimodal, with modes −1, 0, 1. These extreme modes occur because there is a positive probability
that a trajectory does not hit the origin, giving then evidences for θ = 1 if the trajectory is mostly
positive, and for θ = −1, if it is mostly negative. By symmetry, both cases can happen with the same
probability, as confirmed by the simulations. As n increases, this probability tends to zero, as we can
see in the histograms for n = 1000 and n = 10, 000 steps, where the mass probability around −1 and 1
almost vanishes.

Figure 3 represents the sampling distribution for the posterior mean and the joint sampling
distribution for the posterior quantiles q(0.025) and q(0.975). It is clear that the sampling distribution
for the posterior mean concentrates around θ = 0 as n increases. Also, the range q(0.975)–q(0.025)
diminishes as n increases, showing that the whole posterior distribution concentrates asymptotically.

mean, 100 steps

-1 0 1

mean, 1000 steps

-1 0 1

mean, 10000 steps

-1 0 1

q(0.025)

-1 0 1

-1
0

1

q
 (

0
.9

7
5

)

q(0.025)

-1 0 1

-1
0

1

q
 (

0
.9

7
5

)

q(0.025)

-1 0 1

-1
0

1

q
 (

0
.9

7
5

)

Figure 3. Posterior mean, and quantiles q(0.025) and q(0.975), for trajectories with n steps, n = 100,
1000, 10,000, assuming θ = 0.

The convergence can also be observed in the sampling distribution of the posterior mean for
different values of θ, as shown in Figure 4. There, the horizontal axis represents the nominal values
for θ, from −1 to 1. For each θ, the solid lines represent the 95% central values of the posterior mean,
for a sample of size: (a) n = 100, (b) n = 1000, (c) n = 10, 000 steps. Observe that these intervals
become sharper as n increases.

We must point out that the number of crossings is a relevant statistic for having a more precise
inference on θ. In each graph, the dashed line shows the same interval for the posterior mean,
but considering only those trajectories that have five crossings or more, and the dot-dashed line,
those with 10 crossings or more. The information gained is remarkable for small samples, as we see in
Figure 4, mainly for θ close to 1 or −1.

As seen in Figures 2 and 3, for sample sizes less than 1000, the posterior mode for the skewness
parameter presents a more dispersed sampling distribution than the posterior mean. That makes,
in some sense, the posterior mean a more reliable estimator for θ. On the other hand, both estimators
improve as the number of crossings increases in the sample, and in that sense their consistency is well
supported by simulations, for any value of θ.
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(a) (b) (c)

Figure 4. Sampling interval for the posterior mean of θ, with σ2 = 1, considering θ ∈ [−1, 1] and:
(a) n = 100; (b) n = 1000; (c) n = 10, 000 steps. For each graphic, the solid line represent the 95%
central values of the posterior mean, the dashed line shows the same interval considering only those
trajectories that have five crossings or more, and the dot-dashed line, those with 10 crossings or more.

4. Computation for Data

4.1. Simulated Data

In this section we describe the procedure followed to obtain posterior inferences from one single
trajectory, and the subsequent point estimates and e-value. For illustrative purposes, let us consider
the simulated trajectory of n = 1000 steps from a skew-Brownian motion with parameters σ2 = 1 and
θ = 0.8, represented in Figure 5a.

0 500 1000

−
1

0

(a)

−1.0 −0.5 0.0 0.5 1.0

theta

0.8 0.9 1.0 1.1 1.2

variance theta

v
a
ri

a
n

c
e

−1.0 −0.5 0.0 0.5 1.0

0
.8

1
.0

1
.2

(b)

(c) (d)

trajectory

Figure 5. (a) Simulated skew-Brownian trajectory, with n = 1000 steps, for θ = 0.8 and σ2 = 1.
Note that the trajectory tends to be more positive than negative; (b) Marginal posterior distribution for
θ, with prior distribution for θ: Beta(1,1) in blue, Beta(0.5,0.5) in pink, Beta(5,1) in cyan, Beta(1,5) in
green. The magenta vertical line represents the hypothesis θ = 0; (c) Marginal posterior distribution
for σ2, with prior distribution inverse-Gamma[1,1]; (d) Joint posterior distribution for (θ, σ2), with
prior distribution for θ: Beta(1,1) in blue, Beta(0.5,0.5) in pink, Beta(5,1) in cyan, Beta(1,5) in green. The
magenta vertical line represents the hypothesis θ = 0.
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We have chosen a prior Gamma[1,1] distribution for 1/σ2 and four different Beta prior
distributions for θ, with parameter (αt, βt) equals to (1, 1), (0.5, 0.5), (5, 1), (1, 5). As the posterior
distribution f (ω | d) has a closed analytical form, except for the normalizing constant, we calculated it
in a grid with 141× 40 points for (θ, σ2) in [−1, 1]× [0.8, 1.2]. The posterior distributions corresponding
to each of those priors are represented in Figure 5 in colors blue, pink, cyan and green, respectively.

Let us observe that there is practically no difference among the posterior distributions obtained
from the three first priors. This lack of influence is due to the large number of steps close to the barrier,
giving, as already mentioned, relevant information about θ. Just when we strongly favor θ = −1,
with the Beta(1,5) prior, the difference in the estimates for θ is not unnoticed, as we can see in Table 1.
Even in that last case, the e-value in favor of the hypothesis θ = 0 is insignificant, agreeing also with
the Bayes factor.

Table 1. Posterior estimates for (θ, σ2), for different priors on θ, for the simulated trajectory with
nominal values θ = 0.8 and σ2 = 1. The last two columns show the evidence in favor of the hypothesis
θ = 0, given by the e-value and the Bayes factor.

Prior Distribution Posterior Mode Posterior Mean e-Value Bayes Factor
for θ for (θ, σ2) for (θ, σ2) for θ = 0 against θ = 0

Beta(1,1) (0.74, 1.01) (0.66, 1.02) 0.0029 16.8
Beta(1,5) (0.56, 1.02) (0.49, 1.02) 0.0224 2.55

4.2. Real Data

Seven South American sea lions, SASL, 1 male and 6 females, were captured in July 2009 and
June 2010 on the coast in front of Calbuco (41◦48′ S; 73◦08′ W), southern Chile. SASL were captured
as they approached commercial purse-seine vessels to forage during sardine fishing. Animals were
brought on board the vessel and then transported to shore where they were anesthetized. On land, the
individuals were instrumented with Sea Mammal Research Unit-Satellite Relay Data Logger (SRDL)
GPS tags (University of St. Andrews, Scotland), that were glued to the dorsal pelage. The SRDL-GPS
tags collected data on animal position, diving behavior and water temperature. These data were
processed on board to calculate a series of derived parameters, and then summarized and transmitted
via the ARGOS system.

In this work, we modeled the foraging trip locations of one of these SASL (subject ID 96721),
as an example of a skew trajectory. Several studies on different sea lion species have demonstrated
a fidelity to foraging areas among individuals (e.g., [17–19]), including SASL on the Atlantic coast ([20,21]).
Individual fidelity to foraging areas may allow animals to locate productive foraging grounds on
successive trips, which could be a beneficial strategy as it confers the advantage of reducing overall
travel costs ([18,20]). Based on this, we hypothesized that the SASL will always travel to the same
foraging areas, and thus, within the proposed model, θ should be close to −1.

Most foraging trips of this subject were concentrated between La Sebastiana colony and the inner
waters of Chiloe Island (see Figure 6). As shown in Figure 7a, there exists a physical barrier at latitude
−41.76, which corresponds to the location of the sea lion colony.

As in the simulated example, we consider four different prior distributions for θ, Beta(αt, βt),
with (αt, βt) equals to (1, 1), (0.5, 0.5), (5, 1), (1, 5), represented in Figure 7 in colors blue, pink, cyan
and green, respectively. We also standardized the observed trajectory, dividing all terms by the
standard deviation of the observed differences, and considered a Gamma(1,1) prior distribution for
1/σ2. Posterior estimates are given in Table 2.
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Figure 6. Localization of the foraging area, Calbuco, Chile.
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Figure 7. (a) Latitude of a sea lion trajectory on the coast in front of Calbuco, southern Chile;
(b) Marginal posterior density for the skew parameter θ, with prior distribution for θ: Beta(1,1) in blue,
Beta(0.5,0.5) in pink, Beta(5,1) in cyan, Beta(1,5) in green. The magenta vertical line represents the
hypothesis θ = 0; (c) Marginal posterior distribution for σ2, with prior inverse-Gamma[1,1]; (d) Joint
posterior distribution for (θ, σ2), with prior distribution for θ: Beta(1,1) in blue, Beta(0.5,0.5) in pink,
Beta(5,1) in cyan, Beta(1,5) in green. The magenta vertical line represents the hypothesis θ = 0.
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Table 2. Posterior estimates for (θ, σ2), for different priors on θ, for the SASL observed trajectory.
The last three columns show the evidence in favor of the hypothesis θ = 0, given by the e-value,
the Bayes factor and the posterior probability of θ < 0.

Prior Distribution Posterior Mode Posterior Mean e-Value Bayes Factor P(θ < 0 | d)
for θ for (θ, σ2) for (θ, σ2) for θ = 0 against θ = 0

Beta(1,1) (−0.13, 0.99) (−0.11, 1.00) 0.656 0.394 0.648
Beta(5,1) (0.04, 0.99) (0.04, 1.00) 0.876 0.283 0.424
Beta(1,5) (−0.26, 0.99) (−0.23, 1.00) 0.355 0.404 0.799

The evidence given by the Bayes factor against H is favorable to this hypotheses. However,
considering the decision rule (7) and an uniform prior distribution for θ, we should take the decision
to reject H if and only if

0.656(w0 + c) < w1 + c ⇐⇒ 2
3

w0 < w1 +
1
3

c , approximately.

In other words, if we have for instance w1 ≈ c, and the cost of the error of type II is at least half
the cost of the error of type I, then H is to be rejected.

Also, the probabilities P(θ < 0 | d) > 0.4, for the different priors, indicate that the subject likely
did not always travel to the same foraging area but instead some of their trips were to lower latitudes.
Biologically, at least three different explanations not mutually exclusive could explain why SASL
move to different areas to forage. First, prey aggregations may change location due to variations in
oceanographic features, thus obligating predators to change their foraging areas, see [22]. Second,
individuals usually segregate and change their foraging locations in order to decrease intra-specific
resource competition ([23]). Finally, SASL are considered to be a generalist predator, which means that
they consume different prey species [24]. Thus, if the prey abundance and availability in a determined
foraging area decrease, the subject may display behavioral plasticity and abandon the area and forage
at a different place or look for different prey ([25]).

5. Conclusions

In a model selection problem, some aspects should be taken into account, as theoretical
considerations on the question itself or past experience. The observed sample may provide insights
about the skew Brownian model, mainly if there are a number of crossings through the barrier,
but supplementary considerations are required for choosing the skew Brownian as a proper model for
a specific problem.

From the point of view of the estimation, as seen in Figure 3, for sample sizes less than 1000,
the posterior mode and, in particular, the maximum likelihood estimator for the skewness parameter
present more dispersed sampling distribution than the posterior mean.

That makes, in some sense, the posterior mean a more reliable estimator for θ. On the other
hand, both estimators improve as the number of crossings increases in the sample, and in that sense,
their consistency is well supported by simulations.

A possible generalization of this problem is to consider that, on each side of the barrier, there are
different values for the volatility parameter, σ2

1 and σ2
2 , allowing in that way different dynamics

depending on the barrier. On this extended parametric space, the proposed methodology can be
applied as well. Considering that parametrization, we obtain a precise hypothesis stating that those
diffusions have the equal value to the parameter σ2

1 = σ2
2 , whose evidence can be measured by

the e-value, by instance. Another possible extension consists of considering more than one barrier
and several diffusion processes between them, or, even more, considering a time-dependent barrier,
underlying dynamic models problems.
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The analysis proposed here could be used to model behavioral changes in apex predators, such as
marine mammals. Understanding the foraging behavior of the animals, and how such behavior varies
temporally and spatially may be an indicator of ecosystem events and links shifts in predator and prey
dynamics with environmental variability.
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