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Abstract: There are lots of non-equidistant sequences in actual applications due to random sampling,
imperfect sensors, event-triggered phenomena, and so on. A new grey prediction method for
non-equidistant sequences (r-NGM(1,1)) is proposed based on the basic grey model and the developed
fractional-order non-equidistant accumulated generating operation (r-NAGO), and the accumulated
order is extended from the positive to the negative. The whole r-NAGO deletes the randomness
of original sequences in the form of weighted accumulation and improves the exponential law of
accumulated sequences. Furthermore, the Levenberg–Marquardt algorithm is used to optimize
the fractional order. The optimal r-NGM(1,1) can enhance the predicting performance of the
non-equidistant sequences. Results of three practical cases in engineering applications demonstrate
that the proposed r-NGM(1,1) provides the significant predicting performance compared with the
traditional grey model.

Keywords: fractional order; non-equidistant sequence; grey model; accumulated generating
operation; prediction

1. Introduction

Non-equidistant sequences, whose sampling times are taken to be not equally spaced, exist widely
in many applications due to missing data, event-triggered phenomena, imperfect sensors and clocks [1].
Especially, compressive sensing theory and random sampling techniques [2,3] have been developed so
that a number of applications use the non-uniform sampling inherently or by choice. It is important to
predict the development of processes and systems based on non-equidistant sequences.

Grey prediction method is an effective tool for handling an uncertain system with limited data
and partially-known information [4,5]. It has been widely applied to various fields with better
predicting accuracy, including natural science, mechanical engineering, and economic fields. NGM(1,1),
the non-equidistant grey model with first-order differential equation and a single variable, is the
most commonly-used grey prediction model for non-equidistant sequences. In order to improve its
predicting accuracy, matrix analysis [6], trend and potency tracking method [7], and the exponential
trait [8] were employed to reconstruct background values of NGM(1,1). The reciprocal [9] and class
ratio [10] of the original sequence was also modeled with NGM(1,1). The accumulated method [11],
Euler formula [12], and Taylor approximation method [13] were used to estimate parameters of
NGM(1,1). Moreover, non-equidistant grey Verhulst model [14], non-equidistant DGM(2,1) [15], and
non-equidistant grey power model [16] have been proposed for non-equidistant sequences. In the
above grey models, original sequences are mostly transformed into accumulated sequences based
on the first-order accumulated generating operation (1-AGO). However, these accumulated data do
not always follow the grey exponential law completely, so the existing grey model cannot accurately
predict for many actual systems.
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With the development of fractional calculus, it has been demonstrated that calculus equations
with the non-integer/fractional order can describe dynamical behavior of processes and systems with
high accuracy and concise models in various fields [17–19]. According to the definition of fractional
calculus, Wu [20] proposed the fractional-order accumulated generating operation (r-AGO), which
extended the first or positive integer-order into the positive fractional one. Various grey models
with the fractional order accumulation, such as the fractional-order time-lag grey model [21], reverse
accumulative grey model [22], grey discrete power model [23], and non-homogenous discrete grey
model [24], were proposed to improve the predicting accuracy in some fields. Mao [25] developed
another fractional grey model, which was an extension of the basic grey model in that first-order
differential equations were transformed into fractional differential equations. Meng [26] derived
the analytical expression of the fractional order reducing generation operator and verified that this
operator satisfied the commutative and exponential law. However, these fractional-order grey models
are still based on equidistant sequences. More deviations could be yielded if they are used directly to
non-equidistant sequences.

A novel fractional-order non-equidistant accumulated generating operation (r-NAGO) is proposed
for the non-equidistant sequence in this paper, and the accumulated order is extended to the negative
fraction in order to improve the exponential law of the accumulated sequence. Thus, a new grey
prediction method (r-NGM(1,1)) is developed based on r-NAGO and the basic grey model GM(1,1) to
enhance the predicting accuracy for the non-equidistant sequence. Some practical cases are employed
to compare the predicting accuracy of the proposed r-NGM(1,1) with the traditional non-equidistant
grey model (NGM(1,1)).

The work procedure is shown as follows. Section 2 reviews the basic theories about r-AGO
and NGM(1,1). Then, r-NAGO and r-NGM(1,1) for the non-equidistant sequence is developed in
Section 3. Moreover, three practical cases are illustrated to validate the proposed r-NGM(1,1) in
Section 4. Section 5 analyzes further its applicability and sampled intervals. Finally, conclusions and
future works are presented in Section 6.

2. Basic Theories

A grey system is one in that some information is known and some unknown [4,5]. In actual
applications, many systems can be considered as grey systems because there are always some
uncertainties. The partially-known information contains a certain governing relation, though it
is too complex or chaotic. The main task of grey system theory is to extract the realistic governing
relation of the system from the partially known data. The accumulated generating operation usually
smoothes the randomness of the original sequence. Then grey model is used to describe the inherent
functional relations with differential equations. GM(1,1), a grey model with a first-order differential
equation and a single variable, is the most commonly-used grey prediction model. The estimated
sequence is calculated by the grey model and the original sequence can be reverted to describe systemic
behavior using an inverse accumulated generating operation. Grey system theory has become an
effective method to solve uncertainty systems with less sample size and poor information.

2.1. r-AGO

Assuming that Xp0q “
!

xp0qp1q, xp0qp2q, ..., xp0qpmq
)

is the original nonnegative sequence, when the

first-order accumulated generating operation (1-AGO) is applied on Xp0q, its first-order accumulated
sequence Xp1q “

!

xp1qp1q, xp1qp2q, ..., xp1qpmq
)

could be obtained as:

#

xp1qp1q “ xp0qp1q
xp1qpkq “ xp1qpk´ 1q ` xp0qpkq pk “ 2, 3, ...mq

(1)
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Equation (1) can be expressed with the matrix as:

Xp1q “ Xp0qD (2)

where D is the first-order accumulated matrix:

D “

»

—

—

—

—

–

1 1 ... 1
0 1 ... 1
...

...
0 0 ... 1

fi

ffi

ffi

ffi

ffi

fl

(3)

So the k-th value in Xp1q is:

xp1qpkq “
k
ÿ

i“1

xp0qpiq (4)

The corresponding second-order and M-order accumulated sequences are:

Xp2q “ Xp1qD “ Xp0qD2 (5)

XpMq “ Xp0qDM (6)

The M-order accumulated matrix DM is equal to the M-th power of D when M is the positive
integer. Their values in DM can be written as:

pdMqik “

$

’

&

’

%

1 pk “ iq
MpM`1q...pM`k´i´1q

pk´iq! pk ą iq

0 pk ă iq

(7)

Thus, the k-th accumulated data in XpMq is:

xpMqpkq “
k
ÿ

i“1

pdMqikxp0qpiq (8)

Wu [14] extended the positive integer-order accumulated generating operation into any positive
fractional one based on the concepts of fractional calculus. Thus, the fractional-order accumulated
sequence Xprq “

!

xprqp1q, xprqp2q, ..., xprqpmq
)

can be written as:

Xprq “ Xp0qDr (9)

where r is the accumulated order. It can be called as the fractional order when r is set as the fractional
number. According to Equation (7), pd rqik can be obtained as the follows when k ą i:

pd rqik “
rpr` 1q...pr` k´ i´ 1q

pk´ iq!
(10)

Based on the Gamma function Γ [26], pd rqik can be written as:

pd rqik “
Γpr` k´ iq

ΓprqΓ pk´ i` 1q
(11)

where r is the positive fraction and integer, r ą 0. More precisely, it can be obtained that k´ i` 1 ď 0
and 1{Γ pk´ i` 1q “ 0 when k ă i, so pd rqik “ 0, and pd rqik “ 1 when k “ i according to Equation (11).
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Then the k-th accumulated data in Xprq is:

xprqpkq “
k
ÿ

i“1

pd rqikxp0qpiq (12)

Equation (12) is equal to Equation (4) when r = 1. The original sequence Xp0q is accumulated to
construct Xp rq in the weighted form according to Equation (12). Decreasing r can reduce the weight of
previous data and put more emphasis on new data, and the weight of the i-th original data Xp0qpiq
varied with k in the k-th accumulated data Xprqpkq.

2.2. The Traditional NGM(1,1)

Assume that Xp0q “
!

xp0qpt1q, xp0qpt2q, ..., xp0qptmq
)

is the original sequence, where xp0qptkq denotes
the datum at time tk. If all time intervals, ∆tk “ tk ´ tk´1 (k = 2, 3, . . . , m), are not equal to the constant,
Xp0q is called the non-equidistant sequence.

Based on the first-order non-equidistant accumulated generating operation (1-NAGO) [8], its
corresponding accumulated sequence Xp1q can be obtained:

xp1qptkq “ xp1qptk´1q ` xp0qptkq∆tk (13)

The grey differential equation of NGM(1,1) and its whitening equation is defined, respectively:

dxp1q

dt
` axp1q “ b (14)

xp0qptkq ` azp1qptkq “ b (15)

where zp1qptkq is the background value, a and b are parameters that can be estimated using the least
square method:

´

a b
¯T
“

´

BT B
¯´1

BTY (16)

with:

B “

»

—

—

—

–

´zp1qpt2q 1
´zp1qpt3q 1
...
´zp1qptmq 1

fi

ffi

ffi

ffi

fl

, Y “

»

—

—

—

–

xp0qpt2q

xp0qpt3q

...
xp0qptmq

fi

ffi

ffi

ffi

fl

Then the solution of Equation (15) at time tk is:

x̂p1qptkq “
”

xp0qpt1q ´ b{a
ı

e´aptk´t1q ` b{a (17)

The estimated sequence X̂p0q of the original sequence Xp0q can be obtained using the first-order
inverse accumulated generating operation [8]:

x̂p0qptkq “
x̂p1qptkq ´ x̂p1qptk´1q

∆tk
“

1´ ea∆tk

∆tk

”

xp0qpt1q ´ b{a
ı

e´aptk´t1q (18)

where x̂p0qpt1q “ xp0qpt1q.

3. The Proposed r-NGM(1,1)

3.1. r-NAGO

The difference between 1-AGO and r-AGO could be found according to Equations (4) and (12).
Each value in Xp1q is equal to the sum of original data with the same weight of 1, while one in Xprq
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is equal to the sum of original data with various weights of the accumulated matrix D r, as shown in
Figure 1. The weight of the i-th original data xp0qpiq shows a certain tendency with the k-th accumulated
data xprqpkq. The closer i reaches k, the more the weight of xp0qpiq. Increasing i can reduce the weight of
previous values and pay more attention to last values. The weight of the original sequence is a key
contributing factor in the accumulated process of the non-equidistant sequence.

Compared Equation (13) with Equation (1), the first-order accumulated data of the non-equidistant
sequence are the sum of the original data multiplied by their time distances, while one of the equidistant
sequence is the simple sum of the original data. Time distance ∆tk is another important factor in
1-NAGO, which is used as the linear weight of each original datum. Therefore, the time distance ∆tk
and accumulated matrix D r should be considered introducing into the r-NAGO. Moreover, the time
in the non-equidistant sequence needs to be re-sampled due to the discrete form of the accumulated
matrix Dr, as shown in Equation (11).
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Figure 1. Weights of the original data in AGO: (a) 1-AGO; and (b) r-AGO (r = 0.5, k = 9).

For a non-equidistant non-negative sequence Xp0q, its time sequence is tt1, t2, ..., tmu. Given the
sampled interval T, tk can be expressed as follows:

tk “ t1 ` pnk ´ 1qT (19)

where nk is the positive integer. Thus, the corresponding time sequence is expressed as tn1, n2, ..., nmu

and the time distance is rewritten as:
#

∆nk “ nk ´ nk´1 pk “ 2, 3, ..., mq
∆n1 “ 1

(20)

and the original sequence is expressed as Xp0q “
!

xp0qpn1q, xp0qpn2q, ..., xp0qpnmq
)

.

According to the above analysis, the accumulated data xprqpnkq at the time nk should be the
weighted sum of the original data from xp0qpn1q to xp0qpnkq, and the weight of xp0qpniq is equal to the
sum of the values related to the time distance ∆ni in accumulated matrix D r. Therefore, r-NAGO is
expressed as follows:

xprqpnkq “

k
ÿ

i“1

wikxp0qpniq (21)

where wik denotes the weight of xp0qpniqwhen calculating xprqpnkq. It could be defined as follows:

wik “

∆ni´1
ÿ

j“0

Γpr` nk ´ ni ` jq
ΓprqΓ pnk ´ ni ` j` 1q

(22)
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3.2. Negative Fractional Order

After the estimated accumulated sequence X̂prq is obtained according to grey model, X̂p0q is
calculated by the inverse accumulative generating operation:

X̂p0q “ pX̂prqq p´rq “ X̂prqD p´rq (23)

According to Equation (10), pd´rqik can be obtained:

pd´rqik “
´rp´r`1q...p´r´1`k´iq

pk´iq!

“
p´1qk´irpr´1q...pr`1´k`iq

pk´iq!

“
p´1qk´iΓpr`1q

Γpk´i`1qΓpr´k`i`1q

(24)

where r > 0. 1{Γ pk´ i` 1q “ 0 if k ă i, or 1{Γ pr´ k` i` 1q “ 0 if k´ i ą r` 1, then pd´rqik is equal
to 0. The main application of the inverse accumulated generating operation is to revert to the original
sequence from the estimated accumulated one.

In traditional grey models, the inherent functional relations of original sequences are deduced
through the accumulated generating operation, where the accumulated order is usually positive.
However, some actual systems are the increasing processes and the observed data follow potentially
approximate exponential rules. Their original sequences are probably exponential incremental
sequences, and change rates of some original sequences could even exceed one of exponential functions.
Thus, the effectiveness of their accumulated sequences based on the positive accumulated order need
to be checked.

Compared Equation (11) with Equation (24), all values in the accumulated matrix D r are positive
when r > 0, while some values are negative when r < 0, shown in Figure 2. The accumulated sequence
Xprq with r > 0 increase further their change rates and undermine the grey exponential character in
above cases. If the fractional order is negative, their change rates could decrease and follow one of
the exponential functions. Thus, a negative fractional order accumulated operation is introduced
in this paper. The optimal accumulated sequences are obtained to follow the exponential function
better, which could improve the modeling and predicting performance of grey model. The whole
accumulated order includes negative and positive numbers.
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Figure 2. Weights of the original data in r-AGO: (a) r = 0.3, k = 9; and (b) r = ´0.3, k = 9.

According to Equations (11) and (24), the element pd rqik in the whole r-AGO is defined as follows:

pd rqik “

$

’

’

&

’

’

%

Γpr`k´iq
ΓprqΓpk´i`1q pk ě i, r ą 0q

0 pk ă iq
p´1qk´iΓp1´rq

Γpk´i`1qΓpi`1´k´rq pk ě i, r ď 0q

(25)
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For r = 0, pd rqik “ 1 if k “ i, otherwise pd rqik “ 0 according to Equation (25). Thus, the weight wik
in the whole r-NAGO for the non-equidistant sequence is equal to:

wik “

$

’

’

’

’

&

’

’

’

’

%

∆ni´1
ř

j“0

Γpr`nk´ni`jq
ΓprqΓpnk´ni`j`1q pr ą 0q

∆ni´1
ř

j“0

p´1qnk´ni Γp1´rq
Γp1´r´nk`ni´jqΓpnk´ni`j`1q pr ď 0q

(26)

3.3. r-NGM(1,1)

According to the grey exponential law in grey system theory, the non-equidistant grey model of
the r-order accumulated sequence Xprq could be established as the first-order differential equation. It is
defined as:

dxprq

dt
` axprq “ b (27)

Its whitening equation is:

xprqpnkq ´ xprqpnk´1q

nk ´ nk´1
` azprqpnkq “ b (28)

where the background value zprqpnkq is:

zprqpnkq “
”

xprqpnkq ` xprqpnk´1q
ı

{2 (29)

Equation (28) is equal to the traditional NGM(1,1) when r = 1. The accumulated sequence Xprq is
substituted into Equation (28) as follows:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

xprqpn2q´xprqpn1q
n2´n1

` azprqpn2q “ b

xprqpn3q´xprqpn2q
n3´n2

` azprqpn3q “ b

...

xprqpnmq´xprqpnm´1q
nm´nm´1

` azprqpnmq “ b

(30)

The coefficients a and b could be estimated based on Equation (16), but the matrix B and Y have to
be defined as:

B “

»

—

—

—

–

´zprqpn2q 1
´zprqpn3q 1
...
´zprqpnmq 1

fi

ffi

ffi

ffi

fl

, Y “

»

—

—

—

–

pzprqpn2q ´ zprqpn1qq{∆n2

pzprqpn3q ´ zprqpn2qq{∆n3

...
pzprqpnmq ´ zprqpnm´1qq{∆nm

fi

ffi

ffi

ffi

fl

Then the solution of Equation (28) should be:

x̂prqpnkq “

„

xp0qpn1q ´
b
a



e´apnk´n1q `
b
a

(31)

In order to reduce the effect of the initial condition, Equation (31) could be rewritten as:

xprqpkq “ ce´apnk´n1q ` d (32)

The lease square estimation of parameters c and d satisfies:

´

c d
¯T
“ pGTGq

´1
GT H (33)
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with:

G “

»

—

—

—

–

e´apn2´n1q 1
e´apn3´n1q 1
...
e´apnm´n1q 1

fi

ffi

ffi

ffi

fl

, H “

»

—

—

—

–

xprqpn2q

xprqpn3q

...
xprqpnmq

fi

ffi

ffi

ffi

fl

After the estimated accumulated sequence X̂prq is calculated through Equation (32), the estimated
values of original sequence X̂p0q could be obtained using r-order inverse accumulated generating
operation as follows:

x̂p0qpnk, rq “

«

x̂prqpnkq ´

k´1
ÿ

i“1

wik x̂p0qpniq

ff

{wkk (34)

where x̂p0qpn1, rq “ xp0qpn1q. x̂p0qpnk, rq is expressed as the estimated value of the original sequence,
where the fractional order is equal to r.

3.4. Optimization of the Accumulated Order

The coefficients a, b, c, and d of r-NGM(1,1) in Equation (34) are estimated according to the least
square method, but the accumulated order r is expressed as the non-linear function in r-NGM(1,1)
and determined comprehensively according to the modeling and predicting accuracy [27]. It could be
optimized by means of various methods, such as nonlinear programming and intelligent optimization
algorithm. In this paper, the Levenberg–Marquardt algorithm [28] is used to optimize the accumulated
order r in r-NGM(1,1).

The Levenberg–Marquardt algorithm is an iterative non-linear least square optimization, whose
objective function is to minimize the residual vector constructed with the real values and respective
estimated values:

min
m
ÿ

i“1

´

x̂p0qpni, rrKsq ´ xp0qpniq
¯2
` µprrKs ´ rrK´1sq

2
(35)

where K is the iterative number, µ is the dumping parameter to affect both the direction and size of the
step. µ is divided by a fixed factor if a step is accepted, and it is appropriately multiplied by a factor if
a step is rejected.

The accumulated order r is updated at each iteration according to the hereafter expression:

rrK`1s “ rrKs ´
´

JT J ` µ
¯´1

JTE (36)

where J is the Jacobian matrix and E is the residual vector. They can be obtained as:

J
´

x̂p0q, rrKs
¯

“

»

—

—

—

—

—

—

—

–

x̂p0qpn1,rrKsq´x̂p0qpn1,rrK´1sq

rrKs´rrK´1s

x̂p0qpn2,rrKsq´x̂p0qpn2,rrK´1sq

rrKs´rrK´1s

...

x̂p0qpnm ,rrKsq´x̂p0qpnm ,rrK´1sq

rrKs´rrK´1s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(37)

E “

»

—

—

—

—

—

–

x̂p0qpn1, rrKsq ´ xp0qpn1q

x̂p0qpn2, rrKsq ´ xp0qpn2q

...

x̂p0qpnm, rrKsq ´ xp0qpnmq

fi

ffi

ffi

ffi

ffi

ffi

fl

(38)
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There are two terminal criteria in the optimal procedure, including the maximum iteration and
the convergence threshold. The procedure stops when the number of iterations reaches the maximum
iteration or the gradient of the objective function falls below the convergence threshold.

Thus, the whole procedure of the optimal r-NGM(1,1) is described in Figure 3.
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3.5. Statistical Indicators

The estimated and original sequence is compared in order to demonstrate the modeling and
predicting accuracy of the proposed method. Two statistical indicators, including the absolute percent
deviation (APD) and root mean square error (RMSE), are used to analyze the accuracy of the proposed
model. Their definitions are given below:

APD “
1
s

s
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

xp0qpnkq ´ x̂p0qpnkq

xp0qpnkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 100% (39)

RMSE “

g

f

f

e

1
s

s
ÿ

k“1

`

xp0qpnkq ´ x̂p0qpnkq
˘2

(40)

where s is the number of the modeling or predicting data.

4. Computational Cases

Three practical cases are employed to test the accuracy of the proposed r-NGM(1,1) compared
with the traditional NGM(1,1). These non-equidistant sequences are monotonic decreasing, monotonic
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inceasing, and oscillating, respectively. The maximum iteration is set as 200, the threshold of the
gradient is 10´6, and the factor of is 0.1 in the optimization of the fractional order.

4.1. Case 1

Data comes from [8], which are the experimental data on the fatigue strength (σ´1, MPa) of
titanium alloy with different temperatures (Te, ˝C) under the action of a symmetrical cyclic load,
shown in Table 1. It is the monotonic decreasing non-equidistant sequence. All data are used to
construct different grey models. The sampling interval is set as T = 10 in r-NGM(1,1). Actual and
estimated values of several grey models are presented in Tables 1 and 2.

Table 1. Results of different grey models in Case 1.

k tk nk X(0)
X̂p0q

NGM(1,1) ´0.017-NGM(1,1) 0.995-NGM(1,1) Ref. [8] Ref. [9] Ref. [29]

1 100 1 560.00 560.00 560.00 560.00 560.00 560.00 562.87
2 130 4 557.54 557.21 556.79 555.37 554.82 557.73 551.39
3 170 8 536.10 538.35 537.87 538.57 536.49 538.73 535.23
4 210 12 516.10 517.55 517.25 518.14 516.28 517.82 518.06
5 240 15 505.60 500.01 501.95 500.52 499.20 500.21 504.47
6 270 18 486.10 485.45 486.99 485.74 485.02 485.58 490.25
7 310 22 467.40 469.02 467.74 468.97 469.01 469.04 470.24
8 340 25 453.80 453.11 454.01 452.70 453.49 453.08 454.41
9 380 29 436.40 437.78 436.47 436.95 438.52 437.65 432.14

Table 2. Statistical results in Case 1.

Grey Model
Modeling Data

RMSE APD (%)

NGM(1,1) 2.34 0.35
´0.017-NGM(1,1) 1.55 0.22
0.995-NGM(1,1) 2.37 0.38

Ref. [8] 2.67 0.37
Ref. [9] 2.34 0.35
Ref. [29] 3.31 0.55

When the fractional order is limited to be positive, 0.995 is the best accumulated order, which
means that 0.995-NGM(1,1) yields the lowest RMSE and APD for this case. When the fractional order
is not limited, ´0.017-NGM(1,1) provides better performance with APD of 0.22% and RMSE of 1.55,
which indicates the reasonable modeling accuracy.

Some modified methods of the traditional NGM(1,1) were proposed to model the fatigue strength
data [8,9,29]. The exponential trait and integral [8] was employed to determine the background
value so that APD and RMSE were 0.37% and 2.67. Zou [9] put forward the NGM(1,1) based on the
reciprocal accumulated generating operation, whose APD and RMSE were 2.34 and 0.35%, respectively.
The step-by-step optimum new information method [29] was used to establish NGM(1,1). In this
circumstance, its RMSE and APD were 3.31 and 0.55%.

It can be seen that APD obtained using ´0.007-NGM(1,1) is less than the traditional NGM(1,1)
and three modified NGM(1,1) models [8,9,29]. The proposed r-NGM(1,1) could give an appropriate
modeling accuracy for the increasing non-equidistant sequence.

4.2. Case 2

The original sequence is from [30], which is a monotonic increasing non-equidistant sequence.
Four data are used to construct different grey models and the fifth datum is predicted. The sampling
interval is set as T = 1 in r-NGM(1,1), i.e.,
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The background value of the traditional NGM(1,1) is the mean of two adjacent accumulated data,
i.e., zp1qpkq “

´

xp1qpkq ` xp1qpk´ 1q
¯

{2, while the background value of NGM(1,1) in [30] is set as the

accumulated values, i.e., zp1qpkq “ xp1qpkq. Results of different non-equidistant grey models are listed
in Tables 3 and 4.

Table 3. Results of different grey models in Case 2.

k tk nk X(0)
X̂p0q

´0.13-NGM(1,1) 0.93-NGM(1,1) NGM(1,1) Ref. [30]

1 50 1 0.7660 0.7660 0.7660 0.7660 0.7660
2 55 6 0.8192 0.8192 0.8198 0.8311 0.8361
3 65 16 0.9063 0.9062 0.9055 0.8871 0.8949
4 80 31 0.9848 0.9848 0.9852 0.9890 0.9908
5 86 37 0.9976 1.0050 1.0360 1.0826 1.0320

Table 4. Statistical results in Case 2.

Grey Model
Modeling Data Predicting Data

RMSE APD (%) RMSE APD (%)

´0.13-NGM(1,1) 0.0001 0.002 0.007 0.75
0.93-NGM(1,1) 0.001 0.068 0.068 3.85

NGM(1,1) 0.013 1.33 0.085 8.52
Ref. [30] 0.011 1.31 0.034 3.45

As can be seen from Table 4, the optimal accumulated order is 0.93 in r-NGM(1,1) when r > 0.
The modeling RMSE and APD of 0.93-NGM(1,1) are 0.001 and 0.068% less than that of the traditional
NGM(1,1). When r is not limited, the modeling and predicting errors of the ´0.13-NGM(1,1) are
lowest among these grey models. It gives better performance compared with other grey models.
The proposed r-NGM(1,1) could provide the satisfactory modeling and predicting accuracy for the
increasing non-equidistant sequences.

4.3. Case 3

The original sequence is collected from [31], which is the strapdown inertial measurement unit.
It is an oscillating non-equidistant sequence. Nine data are used to construct different grey models
and the tenth datum is predicted. The sampling interval is set as T = 1 in r-NGM(1,1). The modeling
and predicting values of different grey models are presented in Tables 5 and 6.

Table 5. Results of different grey models in Case 3.

k tk nk X(0)
X̂p0q

NGM(1,1) 1.01-NGM(1,1) ´0.01-NGM(1,1)

1 February 2007 1 2.214517 2.214517 2.214517 2.214517
2 May 2007 4 2.209514 2.191818 2.206821 2.205258
3 August 2007 7 2.180164 2.190058 2.188831 2.190021
4 February 2008 13 2.180396 2.187422 2.180613 2.176111
5 August 2008 19 2.180480 2.183911 2.176442 2.174253
6 November 2008 22 2.180469 2.181282 2.175648 2.175123
7 February 2009 25 2.180391 2.179531 2.175813 2.176498
8 October 2009 33 2.170843 2.176325 2.177042 2.180976
9 April 2010 39 2.180387 2.172250 2.179622 2.184262

10 July 2010 42 2.190126 2.169635 2.181756 2.185791
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Table 6. Statistical results in Case 3.

Model
Modeling Data Predicting Data

RMSE APD (%) RMSE APD (%)

NGM(1,1) 0.008 0.30 0.020 0.94
1.01-NGM(1,1) 0.005 0.18 0.008 0.38

´0.01-NGM(1,1) 0.006 0.27 0.004 0.20

The optimal accumulated order is 1.01 in r-NGM(1,1) when r is limited to the positive numbers,
whose predicting APD and RMSE are 0.38% and 0.008, respectively. ´0.01-NGM(1,1) is the best
modeling and predicting performance without restriction of the fractional order. Its predicting APD
and RMSE are 0.20% and 0.004.

Moreover, the non-equidistant sequence is adjusted to equidistant one by means of cubic
spline interpolation and built the grey model GM(1,1) in [31]. The predicting value of the tenth
datum was 2.179121, whose relative error was 0.5% higher than that of ´0.01-NGM(1,1) and
1.01-NGM(1,1). The proposed r-NGM(1,1) can greatly improve the modeling and predicting accuracy
of non-equidistant sequences.

5. Discussion

5.1. Applicability of the Proposed Method

The proposed r-NGM(1,1) in this paper is based on the non-equidistant accumulated generating
operation and the basic grey model, GM(1,1), thus, its suitable range and condition is the same as
GM(1,1). Firstly the number of the original sequence is more than four in r-NGM(1,1). The second
condition is that the r-NGM(1,1) can only be used in positive sequences according to the condition of
GM(1,1), but there exist some negative values in the actual applications, especially the accumulated
values could be negative when the fractional order is negative. Thus, it is necessary to find a positive
value, which is added to the sequence and used to convert into a non-negative sequence. Finally, the
original and accumulated sequence should satisfy the quasi-smooth and quasi-exponential checking
conditions in conducting the r-NGM(1,1). In case these sequences do not satisfy these conditions,
another positive value is added to the sequence and the formed sequence can pass the checking
conditions. How to select these two positive values needs to depend on the case analysis.

5.2. The Sampled Interval

The coefficients a, b, c, and d of r-NGM(1,1) in Equation (34) are estimated according to the least
square method, and the fractional order r is optimized through the Levenberg–Marquardt algorithm
in this paper. However, the sampled interval T is given to meet the requirements that every value in a
new time sequence is a positive integer according to Equation (19). Different sampled intervals are set
to analyze their influences on the modeling and predicting performances of the r-NGM(1,1). Results of
three cases are listed in Table 7 under different sampled intervals. Each set of parameters is run five
times. The modeling and predicting performances are the most accurate result and the running time is
the average one of the five-time runs.

APD and RMSE of the modeling and predicting data are very similar in three cases when the
sampled intervals decrease from 10 to 0.01. The optimal fractional orders r are the same in Case 2 and
Case 3, while they are different in Case 1, which shows that the sequence in Case 1 is more sensitive to
the fractional order. Moreover, the maximal time nm and running time increase dramatically when the
sampled interval decreases. The sampled intervals affect the modeling and predicting performance of
r-NGM(1,1) less, so the main factor to select the sampled interval is the running time.
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Table 7. Results of different sampled intervals in three cases.

- T nm Running Time (s) r
Modeling Data Predicting Data

RMSE APD (%) RMSE APD (%)

Case 1
10 29 1.3 ´0.017 1.55 0.22 - -
1 281 5.9 ´0.007 1.52 0.20 - -

0.1 2801 275.6 ´0.004 1.48 0.21 - -

Case 2
1 37 2.9 ´0.13 0.0001 0.01 0.008 0.75

0.1 361 5.4 ´0.13 0.0005 0.05 0.008 0.84
0.01 3601 148.7 ´0.13 0.0006 0.05 0.008 0.85

Case 3
1 42 1.5 ´0.01 0.007 0.27 0.004 0.20

0.1 411 4.6 ´0.01 0.007 0.28 0.001 0.04
0.01 4101 338.8 ´0.01 0.008 0.28 0.001 0.03

5.3. Comparison with Other Method

An artificial neural network (ANN) [32] is employed to compare with the proposed r-NGM(1,1)
in this paper. Figure 4 shows errors ∆x between the original and estimated values obtained by two
models, and their comparison results are listed in Table 8. A three-layered ANN is used to predict the
non-equidistant sequences, consisting of an input layer, hidden layer, and output layer. The number
of neurons in the hidden layer is chosen empirically by adjusting the number of neurons until the
effective number of parameters reaches a constant value.
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Table 8. Comparison results of different models.

- Case 1 Case 2 Case 3

r-NGM(1,1)

r ´0.017 ´0.13 ´0.01

Modeling data
RMSE 1.5531 0.0001 0.0064

APD (%) 0.2159 0.0037 0.2744

Predicting data
RMSE - 0.0074 0.0043

APD (%) - 0.7418 0.1979

ANN

Number of hidden nodes 2 2 4

Modeling data
RMSE 1.3495 0 0.0006

APD (%) 0.1868 0 0.0252

Predicting data
RMSE - 0.0042 0.0025

APD (%) - 0.4210 0.1146

As shown in Figure 4 and Table 8, the RMSE and APD of the ANN is smaller than one of the
proposed r-NGM(1,1), which indicates less deviation between the estimated and original values for
the ANN. A greater number of neurons in the hidden layer in the ANN could provide more accurate
prediction, but significantly increase the model complexity. The proposed grey model is simpler than
the neural network under the same modeling and predicting performance. Compared with the ANN,
the proposed r-NGM(1,1) gives better performance with satisfactory accuracy and concise explicit
models for non-equidistant sequences.

6. Conclusions and Future Work

A novel fractional-order non-equidistant grey model, r-NGM(1,1), is proposed to deal with the
predicting problem of non-equidistant sequences. The fractional-order non-equidistant accumulated
generating operation is developed to extend the application of grey models with fractional order
accumulation. Some cases have been carried out to evaluate the proposed r-NGM(1,1) in comparison
with the traditional NGM(1,1). Results show that the proposed r-NGM(1,1) remarkably increases the
modeling and predicting accuracy of non-equidistant sequence.

The proposed r-NGM(1,1) is constructed through the partially-known information, so it is not
more suitable for the systems with the distinct inherent mechanism, and it is difficult to obtain more
accuracy for the long-term prediction due to the limitation of time effect. Moreover, the effectiveness
of the proposed r-NGM(1,1) is only validated based on some practical cases in this paper. More cases
and applications are employed to validate the modeling and predicting performance of r-NGM(1,1).
It is important to give the theoretical analysis of r-NAGO and r-NGM(1,1), which will be carried out
in the next work. The proposed r-NGM(1,1) in this paper is still based on first-order grey differential
equations with r-AGO, so it is necessary to further discuss its relationship with the fractional-order
grey differential equations with 1-AGO or fractional-order ones with r-AGO.

As a future work, optimal initial values and background values should be considered to further
improve the modeling and predicting performance of r-NGM(1,1), and an effective optimization
technique is developed to derive the global optimal solutions of the fractional order and coefficients in
r-NGM(1,1) due to the nonlinear objective function shown in Equation (35). Meanwhile, the proposed
r-NAGO is introduced into other non-equidistant grey models, such as the discrete grey model, grey
Verhulst model, and grey power model.
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Abbreviations

The following abbreviations are used in this manuscript:

AGO Accumulated generating operation
1-AGO First-order accumulated generating operation
r-AGO Fractional-order accumulated generating operation
1-NAGO First-order non-equidistant accumulated generating operation
r-NAGO Fractional-order non-equidistant accumulated generating operation
GM(1,1) Grey model with first-order differential equation and a single variable
NGM(1,1) Non-equidistant grey model with first-order differential equation and

single variable
r-NGM(1,1) Fractional-order non-equidistant grey model with 1-order differential equation

and single variable
APD Absolute percent deviation
RMSE Root mean square error
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