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Abstract: In this paper, a new framework for variable detectors is formulated in order to solve
different noise enhanced signal detection optimal problems, where six different disjoint sets of
detector and discrete vector pairs are defined according to the two inequality-constraints on detection
and false-alarm probabilities. Then theorems and algorithms constructed based on the new framework
are presented to search the optimal noise enhanced solutions to maximize the relative improvements
of the detection and the false-alarm probabilities, respectively. Further, the optimal noise enhanced
solution of the maximum overall improvement is obtained based on the new framework and the
relationship among the three maximums is presented. In addition, the sufficient conditions for
improvability or non-improvability under the two certain constraints are given. Finally, numerous
examples are presented to illustrate the theoretical results and the proofs of the main theorems are
given in the Appendix.
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1. Introduction

Noise commonly exists with the useful signal, and more noises in the system often lead to less
channel capacity and worse detectability. People usually try to utilize a series of filters and algorithms to
remove the unnecessary noise. Hence, understanding and mastering the distribution and characteristics
of noise is an essential research topic in traditional signal detection theory. Nevertheless, although it may
seem very counterintuitive, noise does play an active role in many signal processing problems, and the
performance of some nonlinear systems can be enhanced via adding noise under certain conditions [1–27].
The phenomenon that noise benefits system is the so-called stochastic resonance (SR), which was first
proposed by Benzi et al. [1] in 1981 when they studied the periodic recurrence of ice gases. The positive
effects of noise have drawn the attention of researchers in various fields. For example, the effect of SR on
the global stability of complex networks is investigated in [26]. Kohar and Sinha demonstrated how to
utilize noise to make a bistable system behave as a memory device in [27].

In the signal detection problem, researchers commonly care about how to increase the output
signal-to-noise (SNR) [7–11], the mutual information [12,13], or detection probability with a constant
false alarm rate [14–20], or how to decrease the Bayes risk [21,22] or the probability of error [23] by
adding additive noise to the input of system or changing the background noise level. As presented
in [8], the output SNR obtained by adding suitable noise to the input of system is higher than the input
SNR. The research results in [14] indicate that the detection probability of the sign detector can be
increased by adding an appropriate amount of white Gaussian noise.

Depending on the detection metrics, the SR phenomenon for the hypothesis testing or detection
problems are usually investigated according to the Bayesian, Minimax or Neyman–Pearson criteria.
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In [23], the additive noise to optimize the performance of a suboptimal detector is explored according
to Bayesian criterion under uniform cost assignment. It is demonstrated that the optimal noise
to minimize the probability of error is a constant, and the improvability obtained by adding the
constant noise can also be achieved via shifting the decision region without adding any additive noise.
The probability distribution of the optimal additive noise to minimize Bayes risk is investigated in [21]
according to the restricted Bayesian criterion, which can be extended to Bayesian and Minimax criteria
easily. For an M-ary hypothesis testing problem, the optimal noise is determined as a randomization
of at most M mass points.

In [15], a mathematical framework is established to search the optimal noise to maximize the
detection probability based on Neyman–Pearson criterion. This leads to the very significant conclusion
that the optimal noise is determined as the randomization of at most two discrete vectors. In addition,
sufficient conditions whether the detection probability can or cannot be increased are given. However,
from the perspective of Patel [18], the proof of the optimal noise presented in [15] has a little bit
of a drawback. Moreover, the same noise enhanced problem for a fixed detector is researched
through establishing a different mathematical framework in [18], where the optimal noise to maximize
detection probability is also proved as a random signal consisting of no more than two discrete points
and the corresponding probabilities. The researchers in [16] studied the noise enhanced detection
performance for variable detectors according to the Neyman–Pearson criterion based on the results
in [15]. The optimal noise enhanced solution to maximize the detection probability is determined as a
randomization of no more than two detector and constant vector pairs.

Through the comparison and analysis above, it is clear that most researchers have focused on the
maximization of detection probability via additive noise and there are few studies which cover the field
of the minimization of the false-alarm probability. We cannot exclude the possibility that the false-alarm
probability can be decreased by adding noise without deteriorating the original detectability, especially
for the case where the detection probability cannot be increased via adding any noise. For example,
a noise enhanced model which can increase the detection probability and decrease the false-alarm
probability simultaneously by adding noise is first formulated in [25] for a fixed detector. In addition,
the model is solved by a convex combination of the optimal noises for two limited cases, i.e., the
minimization of false-alarm probability and the maximization of detection probability. Nevertheless,
it is obvious that the convex combination is usually not the optimal solution of the maximum overall
improvement of the model. In this paper, we explore the optimal solution to maximize the overall
improvement of detection and false-alarm probabilities directly instead of the convex combination.
In practical applications, though the structure of the detector commonly cannot be replaced in many
cases, some parameters of the detector can be varied to obtain a better performance. Moreover, the
noise enhanced detection problems for a fixed detector can generally be achieved by simplifying the
results for variable detectors directly. Thus, it is necessary to discuss the noise enhanced detection
problems on the premise of variable detectors.

In order to obtain the optimal noise enhanced solution to maximize the overall improvement
of detection and false-alarm probabilities for variable detectors under two inequality-constraints,
we formulate a new framework to define six different disjoint sets of detector and discrete vector
pairs based on the signs of the relative improvements of the detection and the false-alarm probabilities.
Then we explore the optimal noise enhanced solutions for the maximum detection probability and the
minimum false-alarm probability and give the corresponding algorithms in the new framework. Further,
through some derivation, the optimal noise enhanced solution for the maximum overall improvement of
detection and false-alarm probabilities is proved as a randomization of at most two detector and discrete
vector pairs from two different sets, and the relationship among the three maximums is presented.
In addition, the theoretical results for the case of allowing the randomization between detectors can be
applied straightforwardly to the case where the randomization between detectors cannot be allowed.
Namely, the optimization problem for variable detectors is simplified to choose a fixed detector and search
the optimal additive noise when the randomization between detectors cannot be allowed. Actually, the
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maximization of detection probability in this paper is equivalent to the noise enhanced detection problem
for variable detectors studied in [16], which also needs all information of detection and false-alarm
probabilities obtained by every detector and discrete vector pair. Indeed, the new framework subdivides
the one set in [16] into six subintervals. Based on the definition of the six sets, it is obvious that each
detector and discrete vector pair as a component of additive noise is available, partially available, or
unavailable to meet the two constraints. Then the available and partial available pairs can be utilized to
construct the optimal noise enhanced solutions to satisfy different requirements. Namely, the division of
six sets effectively provides the foundation for maximizing the relative improvements of detection and
false-alarm probabilities, and the sum of them.

The main contributions of this paper can be summarized as follows:

‚ Formulation of a new framework, where six different disjoint sets of detector and discrete vector
pairs are defined according to two inequality-constraints.

‚ Algorithms for the noise enhanced solutions to maximize the relative improvements of the
detection and the false-alarm probabilities are given based on the new framework.

‚ Noise enhanced solution of the maximum overall improvability is first provided based on the
new framework and the relationship among the three maximums is explored.

‚ Determination of the sufficient conditions for the improvability and nonimprovability under the
two constraints.

The remainder of this paper is organized as follows: in Section 2, three optimization problems
for a binary hypothesis testing problem for a variable detector are proposed and the six disjoint sets
of detector and discrete vector pairs are defined. In Section 3, the optimal noise enhanced solutions
for the three optimization problem are discussed when the randomization between detectors can or
cannot be allowed and the corresponding algorithms are given. Numerical results are presented in
Section 4 and the conclusions are provided in Section 5.

2. Problem Formulation

Consider a binary hypothesis testing problem as follows:

Hi : pipxq, i “ 0, 1 (1)

where pipxq is the probability density function (pdf) of the observation x under Hi, i “ 0, 1, and x P RK.
For any x, the probability of choosing H1 can be characterized by φpxq and 0 ď φpxq ď 1. Generally, φpxq
is also treated as a decision function of the detector. In order to investigate the possible enhancement
of detectability, a new noise modified observation y is obtained by adding an independent noise v to
the original observation x, i.e., y “ x` v. Correspondingly, the pdf of y under Hi can be expressed by
the convolutions of pipxq and pvpxq as below:

pypy; Hiq “ pipxq ˚ pvpxq “
ż

RK
pipy´ vqpvpvqdv (2)

where ˚ represents the symbol of convolution.
For the same detector, the decision function for y is the same as that for x. Then the detection and

false-alarm probabilities based on the new noise modified observation y are calculated by:

Py
D “

ż

RK
φpyqpypy; H1qdy (3)

Py
FA “

ż

RK
φpyqpypy; H0qdy (4)
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According to the two constraints that Py
D ě β and Py

FA ď α, where β and α represent the lower
limit on the detection probability and the upper limit on the false-alarm probability, respectively, the
following three important definitions are given by:

zd “ Py
D ´ β (5)

z f a “ α´ Py
FA (6)

z “ zd ` z f a (7)

where zd and z f a can be regarded as the relative improvements of the detection and false-alarm
probabilities obtained by adding additive noise, respectively, and z is the sum of zd and z f a.

In many cases, though the structure of the detector cannot be substituted, some parameters of it
can be varied, such as decision threshold. In addition, the whole detector can also be replaced in some
special cases. Instead of a fixed decision function φp¨q, we suppose that there exist a set of candidate
decision functions written as Φ and any φ P Φ can be utilized. Then for any decision function φ` P Φ,
` “ 1, . . . , L, the detection and false-alarm probabilities based on y can be obtained by replacing φ with
φ`, i.e.,:

Py
D,φ`

“

ż

RK
φ`pyqpypy; H1qdy (8)

Py
FA,φ`

“

ż

RK
φ`pyqpypy; H0qdy (9)

When the additive noise is a discrete vector with pdf δpv´ vq, where δ denotes the delta function,
i.e., δpv´ vq “ 1 only if v “ v and δpv´ vq “ 0 otherwise, pypy; Hiq “ pipy´ vq. The corresponding
noise modified detection and false-alarm probabilities can be rewritten as:

Py
D,φ`

pvq “
ż

RK
φ`pyqp1py´ vqdy (10)

Py
FA,φ`

pvq “
ż

RK
φ`pyqp0py´ vqdy (11)

Accordingly, under the constraints of Py
D ě β and Py

FA ď α, the relative improvements of the
detection and false-alarm probabilities corresponding to the additive noise with pdf δpv´ vq can be
written as:

zd
φ`
pvq “ Py

D,φ`
pvq ´ β (12)

z f a
φ`
pvq “ α´ Py

FA,φ`
pvq (13)

Correspondingly:
zφ`
pvq “ zd

φ`
pvq ` z f a

φ`
pvq (14)

In order to make full use of the information gained by the discrete vector v, we define
the following six mutually disjoint sets for each φ` P Φ according to the values of zd

φ`
pvq

and z f a
φ`
pvq denoted by M1,φ`

“ tpφ`, vq|zd
φ`
pvq ą 0, z f a

φ`
pvq ą 0u, M2,φ`

“ tpφ`, vq|zd
φ`
pvq ą 0,z f a

φ`
pvq “ 0u,

M3,φ`
“ tpφ`, vq|zd

φ`
pvq “ 0, z f a

φ`
pvq ą 0u, M4,φ`

“ tpφ`, vq|zd
φ`
pvq ą 0,z f a

φ`
pvq ă 0u, M5,φ`

“ tpφ`, vq|zd
φ`
pvq ă

0, z f a
φ`
pvq ą 0u, M6,φ`

“ tpφ`, vq|zd
φ`
pvq ď 0, z f a

φ`
pvq ď 0u. Further, define Mφ`

“
6
Y

j“1
Mj,φ`

and Mj “
L
Y
`“1

Mj,φ`
,

then M “
L
Y
`“1

Mφ`
“

6
Y

j“1
Mj, where j “ 1, . . . , 6 and ` “ 1, . . . , L.

Accordingly, a framework is formulated by defining the six different sets. As a result, the purpose
of this paper is to investigate the optimal noise enhanced solutions for the maximum zd, z f a and z,
respectively, under the two inequality-constraints based on the new framework. Obviously, whether
the pair of pφ, vq is useful, partially useful or unuseful for the noise enhancement can be determined
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according to the definitions of the six sets. For instance, any detector and discrete pair of M1, M2 and
M3 can meet the two constraints that Py

D ě β and Py
FA ď α, the maximum zd may be obtained by a

suitable detector and discrete pair of M1 or M2, the maximum z f a may be achieved by a detector and
discrete pair of M1 or M3, and the maximum z may be reached by a suitable detector and discrete pair
of M1, M2 or M3. In the following sections, the corresponding theorems and algorithms are provided.

3. The Noise Enhanced Solutions

Let zd
m, z f a

m and zm be the maximum achievable zd, z f a and z, respectively, which are obtained
by adding a discrete vector as additive noise when the randomization between detectors is allowed.
Namely, zd

m “ max
pφ,vqPM

zd
φpvq, z f a

m “ max
pφ,vqPM

z f a
φ pvq and zm “ max

pφ,vqPM
zφpvq. If anyone of zd

m, z f a
m and zm is

less than zero, Py
D ě β and Py

FA ď α cannot be obtained by adding any noise. So this paper is studied

under the conditions that zd
m, z f a

m and zm are greater than zero.
In general, when the randomization between different detectors is allowed, the noise enhanced

solution can be viewed as a randomization of one or more detector and noise pairs with the
corresponding weights. Suppose that the additive noise pdf is for any φ` P Φ, ` “ 1, . . . , L, then
zd, z f a and z can be expressed as:

zd “

L
ÿ

`“1

λ`

ż

RK
Py

D,φ`
pvqpv,φ`

pvqdv´ β “
L

ÿ

`“1

λ`

ż

RK
zd

φ`
pvqpv,φ`

pvqdv (15)

z f a “ α´
L

ÿ

`“1

λ`

ż

RK
Py

FA,φ`
pvqpv,φ`

pvqdv “
L

ÿ

`“1

λ`

ż

RK
z f a

φ`
pvqpv,φ`

pvqdv (16)

z “ zd ` z f a “

ż

RK
rzd

φ`
pvq ` z f a

φ`
pvqspv,φ`

pvqdv “
L

ÿ

`“1

λ`

ż

RK
zφ`
pvqpv,φ`

pvqdv (17)

where 0 ď λ` ď 1 and
L
ř

`“1
λ` “ 1. Generally, the additive noise for any φ` P Φ can be viewed

as a randomization of finite or infinite discrete vectors, i.e., pv,φ`
pvq “

N
ř

κ“1
ηκ,φ`

δpv´ vκ,φ`
q, where

0 ď ηκ,φ`
ď 1 and

N
ř

κ“1
ηκ,φ`

“ 1, and N is a finite or infinite positive integer.

3.1. The Optimal Noise Enhanced Solution to Maximize zd

From Equation (15), zd can be rewritten as:

zd “
L
ř

`“1
λ`

ş

RK zd
φ`
pvq

N
ř

κ“1
ηκ,φ`

δpv´ vκ,φ`
qdv

“
L
ř

i“1

N
ř

k“1
λ`ηκ,φ`

r
RK zd

φ`
pvqδpv´ vκ,φ`

qdv

“
L
ř

`“1

N
ř

κ“1
λ`ηκ,φ`

zd
φ`
pvκ,φ`

q

(18)

Further, zd can also be expressed by:

zd “

6
ÿ

τ“1

6
ÿ

j“1

N
ÿ

κ“1

ττ jκrξτ jκzd
φh
pvτκ,φhq ` p1´ ξτ jκqzd

φl
pvjκ,φl qs (19)
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where pφh, vτκ,φhq P Mτ , pφl , vjκ,φl q P Mj, τ ‰ j,
6

ř

τ“1

6
ř

j“1

N
ř

κ“1
ττ jκ “ 1, 0 ď ττ jκ ď 1, 0 ď ξτ jκ ď 1,

h, l “ 1, . . . , L. Let zd
τ jκ “ ξτ jκzd

φh
pvτκ,φhq ` p1´ ξτ jκqzd

φl
pvjκ,φl q. In other words, zd

τ jκ is obtained by the
randomization of two detector and discrete vector pairs from two different sets, i.e., pφh, vτκ,φhq P Mτ

and pφl , vjκ,φl q P Mj. Then zd “
6

ř

τ“1

6
ř

j“1

N
ř

κ“1
ττ jκzd

τ jκ is the convex combination of multiple zd
τ jκ , which

means that zd can be obtained by the randomization of multiple different randomizations consisting of
two detector and discrete vector pairs pφh, vφhq, pφl , vφl q from two different sets with the corresponding
probabilities. From Equation (18), if there exists at least one detector and discrete vector pair which
belongs to M1, the constraints Py

D ě β and Py
FA ď α can be satisfied by choosing the suitable detector

and adding the discrete vector. Otherwise, according to Equation (19) and the definitions of M1 „ M6,
a randomization of two detector and discrete vector pairs from two different sets may satisfy the two
constraints Py

D ě β and Py
FA ď α.

Let the maximum achievable zd obtained by any noise solution under the two constraints that
Py

D ě β and Py
FA ď α be denoted by zd

opt. Define Qd “ tpφ, vq|v “ arg max
pφ,vqPM

zd
φpvqu be the set of all

detector and discrete vector pairs corresponding to zd
m. Then the following theorem and corollary hold

and the corresponding proofs are presented in Appendix A.

Theorem 1. zd
opt can be achieved by the randomization of at most two detector and discrete vector pairs pφ1, v1q

and pφ2, v2q from two different sets, i.e., pφ1, v1q P Mτ , pφ2, v2q P Mj, τ, j “ 1, . . . , 6 and τ ‰ j.

Corollary 1. (a) If there exists at least one pair pφo, voq of Qd which belongs to M1 Y M2, zd
opt can be

obtained by selecting pφo, voq and zd
opt “ zd

m. (b) When Qd Ă M4, the z f a corresponding to zd
opt is zero.

(c) When Qd Ă M4, zd
opt is obtained by the randomization of pφ1, v1q P M4 and pφ2, v2q from M1, M3

or M5 with the respective probabilities ξ “
´z f a

φ2
pv2q

z f a
φ1
pv1q´z f a

φ2
pv2q

and 1 ´ ξ, or the detector and discrete pair

pφo, voq “ arg max
pφ,vqPM2

zd
φpvq.

Next, we try to search the maximum achievable zd obtained by the randomization of pφ1, v1q P M4

and pφ2, v2q from M1, M3 or M5 when Qd Ă M4. Generally, the corresponding zd and z f a can be
expressed by:

zd “ ξzd
φ1
pv1q ` p1´ ξqzd

φ2
pv2q “

2
ÿ

i“1

ξizd
φi
pviq (20)

z f a “ ξz f a
φ1
pv1q ` p1´ ξqz f a

φ2
pv2q “

2
ÿ

i“1

ξiz
f a
φi
pviq (21)

where ξ1 “ ξ and ξ2 “ 1´ ξ. Under the constraint that Py
FA ď α, the Lagrangian of the optimization

problem of maximizing zd can be formulated as:

Lppφ,v, kq “ zd ` kz f a “

2
ÿ

i“1

λirzd
φi
pviq ` kz f a

φi
pviqs (22)

where pφ,v denotes the distribution of pφ1, v1q and pφ2, v2q. According to the Lagrange duality, we have:

max
pφ,v

zd “ min
kě0

max
pφ,v

Lppφ,v, kq (23)
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So solving the optimal solution to maximize zd is equivalent to finding k ą 0 and pφ,v to make
Equation (23) hold. Let us define an auxiliary function dφpv, kq such that:

dφpv, kq “ zd
φpvq ` k ¨ z f a

φ pvq (24)

Let d1pkq and d2pkq be the respective suprema of dφpv, kq over the sets M4 and M1 YM3 YM5, i.e.,

d1pkq “ sup
pφ,vq

tdφpv, kq : pφ, vq P M4u (25)

d2pkq “ sup
pφ,vq

tdφpv, kq : pφ, vq P M1 YM3 YM5u (26)

Due to z f a
φ pvq ă 0 when pφ, vq P M4, d1pkq is a decreasing function of k. When pφ, vq P M1 Y

M3 Y M5, z f a
φ pvq ą 0, which means d2pkq increases with k. Thus, there exists one k˚ ą 0 such

that d1pk˚q “ d2pk˚q “ d˚, i.e., there are pφ1, v1q P M4 and pφ2, v2q P M1 Y M3 Y M5 such that
dφ1pv1, k˚q “ d1pk˚q “ d2pk˚q “ dφ2pv2, k˚q “ d˚. So the z f a and the zd obtained by the randomization

between pφ1, v1q and pφ2, v2q with the respective probabilities ξ “
´z f a

φ2
pv2q

z f a
φ1
pv1q´z f a

φ2
pv2q

and 1´ ξ can be

calculated by:

z f a “ ξz f a
φ1
pv1q ` p1´ ξqz f a

φ2
pv2q “

´z f a
φ2
pv2q

z f a
φ1
pv1q ´ z f a

φ2
pv2q

z f a
φ1
pv1q `

z f a
φ1
pv1q

z f a
φ1
pv1q ´ z f a

φ2
pv2q

z f a
φ2
pv2q “ 0 (27)

zd “ ξzd
φ1
pv1q ` p1´ ξqzd

φ2
pv2q

“ ξpd˚ ´ k˚z f a
φ1
pv1qq ` p1´ ξqpd˚ ´ k˚z f a

φ2
pv2qq

“ d˚ ´ k˚pξz f a
φ1
pv1q ` p1´ ξqz f a

φ2
pv2qq

“ d˚

(28)

Combined with Equations (27) and (28), the k˚ and the randomization of pφ1, v1q and pφ2, v2q are
the solution of Equation (23), i.e., d˚ is the maximum achievable zd obtained by the randomization
of pφ1, v1q P M4 and pφ2, v2q from M1, M3 or M5 when Qd Ă M4. Based on the analysis above,
Algorithm B1 is provided in Appendix B to search the two detector and discrete vector pairs.

3.2. The Optimal Noise Enhanced Solution to Maximize zfa

In this subsection, the optimal noise enhanced solution to maximize z f a is considered. Let the
maximum achievable z f a obtained by any noise solution under the two constraints that Py

D ě β and

Py
FA ď α be denoted by z f a

opt. Define Q f a “ tpφ, vq|v “ arg max
pφ,vqPM

z f a
φ pvqu. Then the following theorem

and corollary hold and the corresponding proofs are omitted here, which are similar to Theorem 1 and
Corollary 1, respectively.

Theorem 2. z f a
opt can be obtained by the randomization of at most two detector and discrete vector pairs pφ1, v1q

and pφ2, v2q from two different sets, i.e., pφ1, v1q P Mτ , pφ2, v2q P Mj, τ, j “ 1, . . . , 6 and τ ‰ j.

Corollary 2. (a) If there exists at least one pair pφo, voq of Q f a which also belongs to M1 Y M3, z f a
opt can

be achieved by selecting pφo, voq and z f a
opt “ z f a

m . (b) When Q f a Ă M5, the zd corresponding to z f a
opt is

zero. (c) When Q f a Ă M5, z f a
opt is obtained by the randomization of pφ1, v1q from M1, M2 or M4 and

pφ2, v2q P M5 with the respective probabilities η “
´zd

φ2
pv2q

zd
φ1
pv1q´zd

φ2
pv2q

and 1´ η, or the detector and discrete pair

pφo, voq “ arg max
pφ,vqPM3

z f a
φ pvq.
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Then we focus on the maximum z f a obtained by the randomization of pφ1, v1q from M1, M2 or
M4 and pφ2, v2q P M2 with respective probabilities η and 1´ η when Q f a Ă M5. The corresponding zd

and z f a can be expressed by:

zd “ ηzd
φ1
pv1q ` p1´ ηqzd

φ2
pv2q “

2
ÿ

i“1

ηizd
φi
pviq (29)

z f a “ ηz f a
φ1
pv1q ` p1´ ηqz f a

φ2
pv2q “

2
ÿ

i“1

ηiz
f a
φi
pviq (30)

where η1 “ η and η2 “ 1´ η. Under the constraint of Py
D ě β, the Lagrangian of the maximization of

z f a is:

Lppφ,v, tq “ z f a ` tzd “

2
ÿ

i“1

ηirz
f a
φi
pviq ` tzd

φi
pviqs (31)

The Lagrange duality suggests that:

max
pφ,v

z f a “ min
kě0

max
pφ,v

Lppφ,v, tq (32)

In order to solve Equation (32), let us define an auxiliary function fφpv, tq such that:

fφpv, tq “ z f a
φ pvq ` t ¨ zd

φpvq (33)

Suppose that f1ptq and f2ptq are the respective suprema of fφpv, tq over the sets M1 Y M2 Y M4

and M5, i.e.,
f1ptq “ sup

pφ,vq
t fφpv, tq : pφ, vq P M1 YM2 YM4u (34)

f2ptq “ sup
pφ,vq

t fφpv, tq : pφ, vq P M5u (35)

When pφ, vq P M1 Y M2 Y M4, zd
φpvq ą 0 and then f1ptq increases with t. Since zd

φpvq ă 0 when
pφ, vq P M5, f2ptq decreases with t. So there exists a t˚ ą 0 such that f1pt˚q “ f2pt˚q “ f ˚. Namely,
there exist pφ1, v1q P M1 Y M2 Y M4 and pφ2, v2q P M5 such that fφ1pv1, t˚q “ f1pt˚q “ f2pt˚q “
fφ2pv2, t˚q “ f ˚. The zd and the z f a obtained by the randomization between pφ1, v1q and pφ2, v2q with

the respective probabilities η “
´zd

φ2
pv2q

zd
φ1
pv1q´zd

φ2
pv2q

and 1´ η can be calculated by:

zd “ ηzd
φ1
pv1q ` p1´ ηqzd

φ2
pv2q “

´zd
φ2
pv2q

zd
φ1
pv1q ´ zd

φ2
pv2q

zd
φ1
pv1q `

zd
φ1
pv1q

zd
φ1
pv1q ´ zd

φ2
pv2q

zd
φ2
pv2q “ 0 (36)

z f a “ ηz f a
φ1
pv1q ` p1´ ηqz f a

φ2
pv2q

“ ηp f ˚ ´ t˚zd
φ1
pv1qq ` p1´ ηqp f ˚ ´ t˚zd

φ2
pv2qq

“ f ˚ ´ t˚pηzd
φ1
pv1q ` p1´ ηqzd

φ2
pv2qq

“ f ˚

(37)

From Equations (36) and (37), the t˚ and the randomization of pφ1, v1q and pφ2, v2q are the solution
of Equation (32), i.e., f ˚ is the maximum achievable z f a obtained by the randomization of pφ1, v1q from
M1, M2 or M4 and pφ2, v2q P M5 when Q f a Ă M5. According to the derivation above, Algorithm B2
presented in Appendix B can be utilized to search the corresponding detector and discrete vector pairs.
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3.3. The Optimal Noise Enhanced Solution to Maximize z

Let zopt represent the maximum achievable z under the two constraints that Py
D ě β and Py

FA ď α.
Define Qz “ tpφ, vq|v “ arg max

pφ,vqPM
zφpvqu. Next, the optimal noise enhanced solution to maximize z is

explored in this subsection, the related theorem and corollary are provided as below.

Theorem 3. zopt can be obtained by the randomization of at most two detector and discrete vector pairs pφ1, v1q

and pφ2, v2q from two different sets such that pφ1, v1q P Mτ , pφ2, v2q P Mj and τ ‰ j. The proof of Theorem 3
is also similar to Theorem 1 and omitted here.

Corollary 3. (a) If there exists at least one pair pφo, voq of Qz belongs to M1 Y M2 Y M3, the maximum z
can be realized by choosing pφo, voq and zopt “ zm. (b) If Qz Ă M4 Y M5, zopt “ maxpzd

opt, z f a
optq. (c) If

Qz XM4 ‰ ∅ and Qz XM5 ‰ ∅, we have zd
opt “ z f a

opt “ zopt “ zm. The proofs are provided in Appendix A.

Especially, when Qz Ă M4 Y M5, we can select the two pairs pφ1, v1q and pφ2, v2q directly,
according to the analysis above and the properties of M1 „ M5, to form an available noise enhanced
solution to make the value of z as greater as possible.

If Qz Ă M4, then we can let pφ1, v1q P Qz and pφ2, v2q P M1 Y M3 Y M5. Since zφ1pv1q ě zφ2pv2q,

the maximum z is achieved when λ “ λ2 “
´z f a

φ2
pv2q

z f a
φ1
pv1q´z f a

φ2
pv2q

. The greater the value of λ, the

greater the value of z. So pφ1, v1q and pφ2, v2q can be selected as pφ1, v1q “ arg max
pφ,vqPQz

z f a
φ pvq and

pφ2, v2q “ arg max
pφ,vqPT1

z f a
φ pvq, where T1 “ tpφ, vq|pφ, vq “ arg max

pφ,vqPM1YM3YM5
zφpvqu.

Similarly, when Qz Ă M5, let pφ2, v2q “ arg min
pφ,vqPQz

zd
φpvq and pφ1, v1q “ arg min

pφ,vqPT2
zd

φpvq, where

T2 “ tpφ, vq|pφ, vq “ arg max
pφ,vqPM1YM2YM4

zφpvqu.

3.4. Sufficient Conditions for Py
D ě β and Py

FA ď α

In this section, according to the analysis from Section 3.1 to Section 3.3 and the properties of the
six sets, the sufficient conditions which can or cannot satisfy the two constraints Py

D ě β and Py
FA ď α

are determined as below.

Theorem 4. (a) If M1 Y M2 Y M3 ‰ ∅, any pair pφ, vq P M1 Y M2 Y M3 can meet Py
D ě β and Py

FA ď α;
(b) When M1 YM2 YM3 “ ∅, if there exist pφ1, v1q P M4 and pφ2, v2q P M5 such that:

|z f a
φ1
pv1q| ¨ |zd

φ2
pv2q| ă |zd

φ1
pv1q| ¨ |z

f a
φ2
pv2q| (38)

then Py
D ě β and Py

FA ď α can be realized by the randomization of pφ1, v1q and pφ2, v2q, otherwise there exists
no noise enhanced solution to make Py

D ě β and Py
FA ď αhold. The proofs are presented in Appendix A.

When no randomization between detectors is allowed, only one detector can be selected to utilize.
Suppose that the selected detector is φo, the conclusions for the case of allowing randomization between
detectors can be applied to the case of nonrandomization between detectors straightforwardly by
replacing Mj with Mj,φo and φ1 “ φ2 “ φo, where j “ 1, . . . , 6.

4. Numerical Results

In this section, a binary hypothesis-testing problem is considered to verify the theoretical results
explored in the previous sections. The binary hypotheses are given by:

#

H0 : xris “ ωris
H1 : xris “ A`ωris

(39)
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where i “ 0, . . . , K´ 1, A ą 0 is a known constant, and ωris are independent identically distributed
(i.i.d.) symmetric Gaussian mixture noise samples such that:

pωpωq “
1
2

γpω;´µ, σ2q `
1
2

γpω; µ, σ2q (40)

where γpω; µ, σ2q “ p1{
?

2πσ2qexpp´pω´ µq2{2σ2q. The test statistic of a suboptimal detector is
shown as:

Tpxq “
1
K

K´1
ÿ

i“0

p
1
2
`

1
2

sgnpxrisqq “
1
K

K´1
ÿ

i“0

pSpxrisqq
H1
ą

ă
H0

γ (41)

where Sptq “ 1
2 `

1
2 sgnptq “

#

1, t ą 0
0, t ă 0

. From Equation (41), the test result in this case is obtained

through twice decision. Firstly, use the sign detector Sp¨q to determine the sign of each observation
component xris. Secondly, compute the proportion of the positive observation components in the
observation vector and then compare it with the decision threshold γ to obtain the final result.

Let K “ 2, then the detector shown in Equation (41) can be substituted by two decision
thresholds γ “ 1 and γ “ 0.5, the corresponding decision function are φ1 and φ2, respectively.
When γ “ 1, the detector chooses H1 only if xr0s ą 0 and xr1s ą 0 at the same time. When
γ “ 0.5, the detector chooses H1 if xr0s ą 0 or xr1s ą 0. Assume v “ pv1, v2q

T be a discrete
vector without any constraints. Then the detection and false-alarm probabilities of the sign detector
Sp¨q choosing the noise modified observation component yris “ xris ` vris ą 0, i “ 0, 1, can
be calculated by P1,spvrisq “

r8
´8

Spyrisqp1pyris ´ vrisqdyris “ 1
2 Qp´vris´µ´A

σ q ` 1
2 Qp´vris`µ´A

σ q and

P0,spvrisq “
r8
´8

Spyrisqp0pyris ´ vrisqdyris “ 1
2 Qp´vris´µ

σ q ` 1
2 Qp´vris`µ

σ q, where vr0s “ v1, vr1s “ v2

and Qpxq “
r`8

x p1{
?

2πqexpp´t2{2qdt. Further, the detection and false-alarm probabilities of y for φ1

are computed as Py
D,φ1

pvq “ P1,spv1qP1,spv2q and Py
FA,φ1

pvq “ P0,spv1qP0,spv2q, respectively. The detection

and false-alarm probabilities of y for φ2 can be expressed by Py
D,φ2

pvq “ 1´ p1´ P1,spv1qqp1´ P1,spv2qq

and Py
FA,φ2

pvq “ 1 ´ p1 ´ P0,spv1qqp1 ´ P0,spv2qq. Correspondingly, zd
φi
pvq “ Py

D,φi
pvq ´ β and

z f a
φi
pvq “ α´ Py

FA,φi
, i “ 1, 2.

Let µ “ 3 and A “ 1. Under the two constraints that Py
FA ď α and Py

D ě β, for any σ, we can
determine the six sets Mj,φi , j “ 1, . . . , 6, for φ1 and φ2 according to the definitions of the six sets and the

values of zd
φi
pvq and z f a

φi
pvq, respectively. Naturally, the six sets obtained by allowing the randomization

between φ1 and φ2 can be determined by Mj “ Mj,φ1 YMj,φ2 , j “ 1, . . . , 6. Afterwards, we can search
the maximum zd, z f a, z and the corresponding noise enhanced solutions according to the algorithm
provided in Section 3.

Figure 1 illustrates that the maximum achievable zd, z f a and z for φ1, φ2 and the case of allowing
the randomization between φ1 and φ2 for different values of σ when α “ 0.3 and β “ 0.7. The zd plotted
in Figure 1a is actually the relative improvement of the maximum achievable detection probability
Py

D,opt compared to β “ 0.7 under the constraint Py
FA ď α “ 0.3, i.e., zd “ Py

D,opt ´ β. Hence, Py
FA ď α

and Py
D ě β can be realized only when zd ě 0. As shown in Figure 1a, zd ă 0 when σ increases to a

certain extent, which means the feasible range of σ for the noise enhanced phenomenon is limited.
When σ is close to 0, the maximum achievable zd for φ1 is 0.3, which equals to that for the case of
allowing the randomization between detectors, and the corresponding Py

D,opt is close to 1 while the

maximum Py
D for φ2 can only reach 0.9. With the increase of σ, zd for φ1, φ2 and the case of allowing

the randomization between them gradually decrease. When, σ ą 0.34 the maximum achievable zd for
φ1 is lower than that for the case of allowing the randomization between detectors. The maximum
achievable zd “ 0 for φ1 and φ2 when σ “ 0.63, and the maximum Py

D for φ2 is gradually greater than
that for φ1 when σ ą 0.63. In particular, for the case where the randomization between detectors is
allowed, the maximum achievable zd decreases to 0 when σ “ 0.71. Consequently, for σ P r0.63, 0.71s,
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the noise enhanced phenomenon, under the constraints Py
FA ď α and Py

D ě β, can still happen through
allowing the randomization between φ1 and φ2, which is on account of the fusion of Mj,φ1 and Mj,φ2 ,
j “ 1, . . . , 6, providing more available noise enhanced solutions.

Entropy 2016, 18, 213 11 of 22 

 

randomization between 1  and 2 , which is on account of the fusion of 
1,jM   and 

2,jM  , 

1, ,6j   , providing more available noise enhanced solutions. 

 
(a) (b) (c) 

Figure 1. The maximum achievable dz , faz  and z  for 1 , 2  and the case of allowing the 
randomization between 1  and 2  for different values of   when 0.3   and 0.7   Plotted 

in (a), (b) and (c), respectively. 

The faz  depicted in Figure 1b is actually the relative improvement of the minimum achievable 
false-alarm probability ,

y
FA optP  compared to 0.3   under the constraint that 0.7y

FAP   , i.e., 

,
fa y

FA optz P  . Similarly, there exists noise enhanced solution to meet the two constraints y
FAP    

and y
DP   only if 0faz  . When   approaches to 0, the maximum faz  for 2  is equal to that 

for the case of allowing the randomization between 1  and 2 , the corresponding minimum y
FAP  is 

close to 0 while the minimum y
FAP  for 1  can only reach 0.1. From Figure 1b, as   increases, the 

maximum achievable faz  for 1 , 2  and the case of allowing the randomization between them 
gradually decrease. The maximum achievable faz  for 1  and 2  are lower than zero when 

0.63  , while faz  obtained in the case of allowing the randomization between 1  and 2  is still 
greater than zero for 0.63 0.71  . In other words, for 0.63 0.71  , compared to the 
nonrandomization case where the noise enhanced phenomenon cannot happen, y

FAP    and 
y
DP   can still be realized by allowing the randomization between 1  and 2 . 

From Figure 1a,b, it is clear that under the constraints 0.3y
FAP   and 0.7y

DP  , the maximum 
achievable y

DP  for 1  is greater than that for 2  and the minimum achievable y
FAP  for 2  is 

smaller than that for 1  when 0.63  . In such case, we can choose 1  for a greater y
DP  or select 

2  for a smaller y
FAP  when the randomization between detectors cannot be allowed. As illustrated 

in Figure 1c, the maximum z  for 1  is equal to that for 2 . When   is close to 0, the maximum 
z  for the case of allowing the randomization can reach 0.35 , which is greater than the 
corresponding maximum dz  and faz . Obviously, there exists 1( , ) M v  to obtain the maximum 

( )z v  in the whole M . As   increases, the number of the elements in the set 1M  decreases. 
When 0.33  , 4 5zQ M M  , then the maximum z  obtained in the case of allowing the 
randomization is equal to the maximum dz  or faz  according to Corollary 3, i.e., max( , )d fa

opt opt optz z z . 

As a comparison, Figures 2 and 3 show the maximum achievable dz , faz  and z  for 1 , 2  
and the case of allowing the randomization between them for different values of   when 0.3  , 

0.6   and 0.2  , 0.7  , respectively. Compared Figures 1a and 2a, both of them plot the dz  
corresponding to the maximum y

DP  under the constraint 0.3y
FAP  . So the dz  in the two figures 

indicate the same change trend. In Figure 2b, the maximum faz  obtained for the case of allowing 
randomization between detectors equals to that for 2  when 0.59  . Compared to Figure 1b, 
when   is close to 0, the minimum y

FAP  in Figure 2b for 2  still maintains zero, while the 
minimum y

FAP  for 1  decreases from 0.1 to 0.05 as the corresponding faz  increases from 0.2 to 

Figure 1. The maximum achievable zd, z f a and z for φ1, φ2 and the case of allowing the randomization
between φ1 and φ2 for different values of σ when α “ 0.3 and β “ 0.7 Plotted in (a), (b) and
(c), respectively.

The z f a depicted in Figure 1b is actually the relative improvement of the minimum achievable
false-alarm probability Py

FA,opt compared to α “ 0.3 under the constraint that Py
FA ě β “ 0.7, i.e.,

z f a “ α´ Py
FA,opt. Similarly, there exists noise enhanced solution to meet the two constraints Py

FA ď α

and Py
D ě β only if z f a ě 0. When σ approaches to 0, the maximum z f a for φ2 is equal to that for the

case of allowing the randomization between φ1 and φ2, the corresponding minimum Py
FA is close to

0 while the minimum Py
FA for φ1 can only reach 0.1. From Figure 1b, as σ increases, the maximum

achievable z f a for φ1, φ2 and the case of allowing the randomization between them gradually decrease.
The maximum achievable z f a for φ1 and φ2 are lower than zero when σ ą 0.63, while z f a obtained in
the case of allowing the randomization between φ1 and φ2 is still greater than zero for 0.63 ď σ ď 0.71.
In other words, for 0.63 ď σ ď 0.71, compared to the nonrandomization case where the noise enhanced
phenomenon cannot happen, Py

FA ď α and Py
D ě β can still be realized by allowing the randomization

between φ1 and φ2.
From Figure 1a,b, it is clear that under the constraints Py

FA ď 0.3 and Py
D ě 0.7, the maximum

achievable Py
D for φ1 is greater than that for φ2 and the minimum achievable Py

FA for φ2 is smaller than
that for φ1 when σ ď 0.63. In such case, we can choose φ1 for a greater Py

D or select φ2 for a smaller
Py

FA when the randomization between detectors cannot be allowed. As illustrated in Figure 1c, the
maximum z for φ1 is equal to that for φ2. When σ is close to 0, the maximum z for the case of allowing
the randomization can reach 0.35, which is greater than the corresponding maximum zd and z f a.
Obviously, there exists pφ, vq P M1 to obtain the maximum zφpvq in the whole M. As σ increases, the
number of the elements in the set M1 decreases. When σ ą 0.33, Qz Ă M4 YM5, then the maximum z
obtained in the case of allowing the randomization is equal to the maximum zd or z f a according to
Corollary 3, i.e., zopt “ maxpzd

opt, z f a
optq.

As a comparison, Figures 2 and 3 show the maximum achievable zd, z f a and z for φ1, φ2 and the
case of allowing the randomization between them for different values of σ when α “ 0.3, β “ 0.6 and
α “ 0.2, β “ 0.7, respectively. Compared Figures 1a and 2a, both of them plot the zd corresponding
to the maximum Py

D under the constraint Py
FA ď 0.3. So the zd in the two figures indicate the same

change trend. In Figure 2b, the maximum z f a obtained for the case of allowing randomization between
detectors equals to that for φ2 when σ ă 0.59. Compared to Figure 1b, when σ is close to 0, the
minimum Py

FA in Figure 2b for φ2 still maintains zero, while the minimum Py
FA for φ1 decreases from

0.1 to 0.05 as the corresponding z f a increases from 0.2 to 0.25. Further, compared the minimum Py
FA for

φ2 when β “ 0.7 and β “ 0.6, they are equal when σ ă 0.20 and then the latter one is gradually greater
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than the former one as σ increases, which is consistent with the description as shown in Figures 1b
and 2b. From the definition of zd

φpvq, i.e., zd
φpvq “ Py

D,φpvq ´ β, with the decrease of β, the value of zd
φpvq

increases and some zd
φpvq may change from negative to positive. In other words, the decrease of β

changes the distribution of the detector and discrete pair pφ, vq in M1 „ M6. For any σ, some pφ, vq
belonged to M6 for β “ 0.7 are reallocated to the set M2 or M4 when β decreases to 0.6. In addition,
some pφ, vq P M5 when β “ 0.7 may belong to M1 or M3 when β “ 0.6. Further, these new elements in
M1 „ M5 can be utilized to construct more available noise enhanced solutions to obtain a superior
false-alarm probability. However, we need to note that behind the improvement of Py

FA is the decrease
of the corresponding Py

D.
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Figure 3. The maximum achievable zd, z f a and z for φ1, φ2 and the case of allowing the randomization
between φ1 and φ2 for different values of σ when α “ 0.2 and β “ 0.7 Plotted in (a), (b) and
(c), respectively.

Compared Figures 1 and 3, as α decreases from 0.3 to 0.2, some z f a
φ pvqwill change from positive to

negative, i.e., the distribution of pφ, vq changes. Consequently, for any σ, there may be some pφ, vq P M1

change to M2 and M4, pφ, vq P M2 change to M4, or pφ, vq P M3 Y M5 change to M6. As shown
in Figure 3a, when σ closes to 0, the maximum available zd for φ1, φ2 and the case of allowing the
randomization between them are 0.2, 0.15 and 0.25, and the corresponding maximum Py

D can reach
0.9, 0.85 and 0.95, respectively. As σ increases, the maximum zd for φ1, φ2 and the case of allowing the
randomization decrease, where the maximum zd decreases fastest for φ1 and slowest for φ2. Further,
the maximum achievable Py

D for φ2 is greater than that for φ1 when σ ą 0.32 and the difference between
the maximum zd for φ2 and the case of allowing the randomization are smaller and smaller with the
increase of σ. Compared Figures 3b and 1b, both of them plot the z f a corresponding to the minimum
Py

FA under the constraint Py
D ě 0.7. Especially, Qz Ă M4 Y M5 for any σ, i.e., zopt “ maxpzd

opt, z f a
optq
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according to Corollary 3. In addition, compared with Figure 1, under the two constraints that Py
FA ď α

and Py
D ě β, the feasible ranges of σ for φ1, φ2 and the case of allowing the randomization between

them become smaller.
In conclusion, as σ decreases, the values of zd, z f a and z increase. This is mainly on account of

the noise enhanced phenomenon generally occurs when the observation has multimodal pdf and the
multimodal structure is more obvious for a smaller σ [21]. In order to investigate the simulation results
of Figures 1–3 further, Tables 1–3 present the optimal noise enhanced solutions to maximize zd, z f a and
z for φ1, φ2 and the case of allowing the randomization, respectively, for different σ when α “ 0.3 and
β “ 0.7.

Table 1. The optimal additive noises to maximize zd, z f a and z for various values of σ for φ1 when
α “ 0.3 and β “ 0.7.

σ
maxzd maxz f a maxz

v1/v2/λ v1/v2/λ v1/v2/λ

0.01 [2.5, 2.5]/-/1 [2.5, 2.5]/[´3.75, 2.5]/0.4 [2.5, 2.5]/-/1
0.2 [2.7, 2.75]/-/1 [2.5, 2.5]/[2.7, ´3.5]/0.4088 [2.55, 2.5]/-/1
0.4 [2.5, 2.5]/[´3.5, 2.75]/0.9794 [2.5, 2.5]/[´3.5, 2.75]/0.5684 [2.5, 2.5]/[´3.5, 2.75]/0.9794

0.65 - - -

Table 2. The optimal additive noises to maximize zd, z f a and z for various values of σ for φ2 when
α “ 0.3 and β “ 0.7.

σ
maxzd maxz f a maxz

v1/v2/λ v1/v2/λ v1/v2/λ

0.01 [´5.75, 2.75]/[´3.5, ´3.25]/0.6 [´3.75, ´3.75]/-/1 [´3.7, ´3.75]/-/1
0.2 [2.55, 2.5]/[2.7, ´3.5]/0.4088 [´3.7, ´3.75]/-/1 [´3.55, ´3.5]/-/1
0.4 [´3.75, 2.5]/[´3.5, ´3.5]/0.4316 [´3.75, 2.5]/[´3.5, ´3.5]/0.0206 [´3.75, 2.5]/[´3.5, ´3.5]/0.0206

0.65 - - -

Table 3. The optimal additive noises to maximize zd, z f a and z for various values of σ for the case of
allowing the randomization between φ1 and φ2 when α “ 0.3 and β “ 0.7.

σ
maxzd maxz f a maxz

pφ, v1q/-/λ pφ, v1q/pφ, v2q/λ pφ, v1q/pφ, v2q/λ

0.01 pφ1, [2.3, 2.75])/-/1 -/pφ2, [´3.35, ´3.25])/1 pφ1, [2.3, 2.75])/-/1

0.2 pφ1, [2.75, 2.75])/
pφ1,[2.7, 2.75])/0.4770

pφ2, [´3.7, ´3.75])/
pφ2,[´3.75, ´3.75])/0.5230 -/pφ2, [´3.55, ´3.5])/1

0.4 pφ1, [2.6, 2.5])/
pφ2,[´3.6, ´3.5])/0.9141

pφ1, [2.6, 2.5])/
pφ2,[´3.6, ´3.5])/0.0859

pφ1, [2.6, 2.5])/
pφ2, [´3.6, ´3.5])/(0.0859, 0.9141)

0.65 pφ1, [2.65, 2.75])/
pφ2, [´3.65, ´3.75])/0.5437

pφ1,[2.65, 2.75])/
pφ2,[´3.65, ´3.75])/0.4563

pφ1, [2.65, 2.75])/
pφ2, [´3.65, ´3.75])/(0.4563, 0.5437)

It is worthy to note that the optimal noise enhanced solutions to maximize zd, z f a and z,
respectively, are not unique in many cases. Moreover, due to the property of the detector, the noise
modified detectability for φi, i “ 1, 2, obtained by adding v “ pv1, v2q

T is the same with that achieved
via adding v “ pv2, v1q

T . As a demonstration, for each σ, there only lists one noise enhanced solution
for the maximum zd, as well as the maximum z f a and z. As shown in Tables 1–3, the optimal noise
enhanced solutions to maximize zd, z f a and z, respectively, are the randomization of at most two
detector and discrete vector pairs pφ1, v1q and pφ2, v2q from two different sets, which are consistent
with Theorems 1–3.
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Next, the noise enhanced solution for φ1 is taken as an example to illustrate firstly. When
σ “ 0.01, the maximum zd

φ1
pvq obtained by pφ1, vq P M1,φ1 is equal to the maximum zd

φ1
pvq obtained

by pφ1, vq P Mφ1 .Through some calculations, v “ r2.5, 2.5s P M1,φ1 is one of the discrete vectors
to maximize zd

φ1
pvq, so v “ r2.5, 2.5s is the optimal noise to maximize zd for φ1 when α “ 0.3 and

β “ 0.7. At the same time, the zφ1pvq obtained by v “ r2.5, 2.5s is also the maximum zφ1pvq for φ1, thus

v “ r2.5, 2.5s is the optimal noise to maximize z for φ1. Besides, the maximum z f a
φ1
pvq obtained from

M1,φ1 and M3,φ1 are smaller than the maximum z f a
φ1
pvq for φ1, then the maximum z f a under the two

constraints Py
FA ď 0.3 and Py

D ě 0.7 is obtained by the randomization of v1 “ r2.5, 2.5s from M1,φ1 and
v2 “ r´3.75, 2.5s from M5,φ1 with probabilities 0.4 and 0.6, respectively. The case of σ “ 0.2 is similar
with the case of σ “ 0.01.

When σ “ 0.4, both M2,φ1 and M3,φ1 are null, and the maximum zd
φ1
pvq, z f a

φ1
pvq and zφ1pvq for φ1

cannot be obtained by the discrete vector from M1,φ1 . Based on Theorems 1–3, the maximum zd, z f a

and z can be achieved by the randomization of two detector and discrete vector pairs from M4,φ1 and
M5,φ1 . Further, the noise enhanced solutions for the maximum zd and z f a have the same additive noise
components, i.e., v1 and v2, but with different probabilities. Moreover, according to Corollary 3(b),
zopt “ maxpzd

opt, z f a
optq. When the randomization between φ1 and φ1 is allowed, the zφ1pv1q obtained

by pφ1, v1 “ r2.6, 2.5sq P M4 is equal to the zφ2pv2q obtained by pφ2, v2 “ r´3.6,´3.5sq P M5, and it
is the maximum zφpvq obtained in M. According to Corollary 3(c), the maximum zd, z f a and z can
be obtained by the randomization of pφ1, v1q and pφ2, v2qwith different probabilities. Especially, the
probability λ of pφ1, v1q for the maximum zd or z f a is unique, while the probability λ of pφ1, v1q for the
maximum z can be chosen in a certain interval. When σ “ 0.65, no noise enhanced solution exists to
meet the two constraints for the nonrandomization case in Tables 1 and 2, while there still exist noise
enhanced solutions to improve the detectability under the same constraints by allowing randomization
between φ1 and φ2 shown in Table 3 and the corresponding solutions are also obtained according to
Corollary 3(c).

In order to discuss the effect of the decision threshold γ on the detection and false-alarm
probabilities, the proposed noise enhanced method is operated on different values of γ. Further, the
relationships between the maximum achievable detection probability and β, the minimum achievable
false-alarm probability and α are explored for different γ. The different results of the original detector
and the noise enhanced detector for different γ are given in Figures 4–6.
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Figure 4 gives the original detection and false-alarm probabilities for different γ when K “ 20.
From Figure 4, we can see that both the original detection and false-alarm probabilities decrease with
the increase of γ and the value of the original detection probability is close to that of the original
false-alarm probability for any γ. In other words, a better detection probability is obtained for a
smaller γ and a lower false-alarm probability is achieved for a greater γ. Figure 5 plots the maximum
achievable Py

D obtained by adding noise as a function of α for γ “ 0.05, 0.25, 0.5, 0.75 and 0.95, and
the case of allowing the randomization between thresholds, when µ “ 3, A “ 1, σ “ 1 and K “ 20.
Compared Figure 5 with Figure 4, the detection probabilities for γ “ 0.95 and 0.75 can be increased
significantly by adding suitable additive noises with a lower false-alarm probability. Figure 6 presents
the minimum achievable Py

FA obtained by adding noise as a function of β for γ “ 0.05, 0.25, 0.5, 0.75
and 0.95, and the case of allowing the randomization between thresholds, when µ “ 3, A “ 1, σ “ 1
and K “ 20. Comparing Figure 6 with Figure 4, the false-alarm probabilities for γ “ 0.05, 0.25 and 0. 5
can be decreased significantly by adding suitable additive noises with a higher detection probability.
From Figures 5 and 6, different detection performance can be realized by adding noise. As shown in
Figures 5 and 6, for the cases of α P p0.055, 0.725q and β P p0.405, 0.975q, the detector of γ “ 0.5 shows
the worst performance compared to others. Thus, in such cases, γ “ 0.5 is not a suitable threshold.
From Figures 5 and 6, different detection performance can be realized by adding noises. Namely,
various noise enhanced solutions can be provided with our method to satisfy different performance
requirements. As a result, for any decision threshold γ, we can determine whether the performance of
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the detector can be improved or not, and search a noise enhanced solution to realize the improvement
according to the method proposed in this paper.

It is worthy to note that there is no limit on the detector in the method proposed in this manuscript.
Furthermore, it only depends on detector itself whether the detection performance of the detector
can or cannot be improved by adding noise. The algorithms proposed in this paper not only provide
ways to prove the improvability or nonimprovability, but also analyze how to search the optimal noise
enhanced solutions. For any detector, no matter an optimal Neyman–Pearson (Bayesian, Minimax)
detector or other suboptimal detector, we first calculate all information of pPD,φ`

pvq, PFA,φ`
pvqq obtained

by every detector and discrete vector pair pφ`, vq. Then, we divide each pair pφ`, vq into six sets
according to the values of zd

φ`
pvq and z f a

φ`
pvq, where zd

φ`
pvq “ Py

D,φ`
pvq ´ β and z f a

φ`
pvq “ α´ Py

FA,φ`
pvq.

If there exist detector and discrete vector pairs to satisfy the sufficient conditions as given in Section 3.4,
noise enhanced solutions to maximize zd, z f a and z can be obtained according to Section 3.1, Section 3.2,
and Section 3.3, respectively, on the premise that Py

D ě β and Py
FA ď α. Otherwise, no noise enhanced

solution exists to satisfy Py
D ě β and Py

FA ď α simultaneously.

5. Conclusions

In this paper, a framework consisting of six mutually disjoint sets is established according to two
inequality-constraints on detection and false-alarm probabilities. The maximization of zd, z f a and z
are searched based on the framework. Theorems 1–3 give the forms of the optimal noise enhanced
solutions to maximize zd, z f a and z. The calculations of maximum zd, z f a and z are presented in
Corollaries 1, 2 and 3, respectively. Especially, the maximum z is equal to the maximum zd or z f a under
certain conditions according to Corollary 3. Furthermore, sufficient conditions for Py

D ě β and Py
FA ď α

are given in Theorem 4.
Compared with the method proposed in [16], which only focuses on the maximization of zd with

a constant false-alarm rate (CFAR), both methods require all the information of pPD,φ`
pvq, PFA,φ`

pvqq
obtained by every detector and discrete vector pair pφ`, vq, and our method may use the information
more effectively to realize the overall improved performance or decrease the false alarm probability
due to the division of six sets.

Furthermore, the theoretical results in this paper can be extended to a broad class of noise
enhanced optimal problems subject to two inequality constraints, such as the minimization of Bayes
risk under the constraint on condition risk about the binary hypothesis testing problem, and the
minimization of linear combinations of error probabilities under constraints on type I and II error
probabilities as discussed in [28].

Acknowledgments: This research is supported by the Fundamental Research Funds for the Central Universities
(Grant No. CDJZR11160003 and No. 106112015CDJZR165510) and the National Natural Science Foundation of
China (Grant No. 41404027, No. 61471072, No. 61301224, No. 61103212, No. 61471073 and No. 61108086).

Author Contributions: Shujun Liu raised the idea of the new framework to solve different noise enhanced signal
detection optimal problems. Ting Yang and Shujun Liu contributed to the drafting of the manuscript, interpretation
of the results, some experimental design and checked the manuscript. Mingchun Tang and Kui Zhang designed
the experiment of the maximum achievable Py

D and Py
FA for different cases. Ting Yang and Xinzheng Zhang

contributed to the proofs of the theories developed in this paper. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

A.1. Proofs of Theorems and Corollaries

Theorem A1. zd
opt can be achieved by the randomization of at most two detector and discrete vector pairs

pφ1, v1q and pφ2, v2q from two different sets, i.e., pφ1, v1q P Mτ , pφ2, v2q P Mj, τ, j “ 1, . . . , 6 and τ ‰ j.
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Proof. Combining Equation (19) and the definitions of M1 „ M6, if there exists a randomization
of two detector and discrete vector pairs from two different sets to make Py

D ě β and Py
FA ď α hold,

the two constraints of Py
D ě β and Py

FA ď α can be satisfied by the randomization consisting of one
or more randomization consisting of two detector and discrete vector pairs from two different sets
with corresponding probabilities. Otherwise, no noise enhanced solution exists to meet Py

D ě β and
Py

FA ď α.
Obviously, under the two constraints that Py

D ě β and Py
FA ď α, the zd obtained by any

randomization of detector and discrete vector pairs cannot be greater than the maximum zd obtained
by a randomization of two detector and discrete vector pairs pφ1, v1q and pφ2, v2qwith probabilities ξ

and 1´ ξ from two different sets, respectively, where 0 ď ξ ď 1. Especially, ξ “ 0 and ξ “ 1 represent
the case where the maximum zd under the two constraints is obtained by one pair of detector and
discrete vector. Namely, under the two constraints that Py

D ě β and Py
FA ď α, the maximum zd can be

obtained by the randomization of at most two detector and discrete vector pairs from two different sets. ˝

Corollary A1. (a) If there exists at least one pair pφo, voq of Qd which belongs to M1 Y M2, zd
opt can

be obtained by selecting pφo, voq and zd
opt “ zd

m. (b) When Qd Ă M4, the z f a corresponding to zd
opt is

zero. (c) When Qd Ă M4, zd
opt is obtained by the randomization of pφ1, v1q P M4 and pφ2, v2q from M1,

M3 or M5 with the respective probabilities ξ “
´z f a

φ2
pv2q

z f a
φ1
pv1q´z f a

φ2
pv2q

and 1´ ξ, or the detector and discrete pair

pφo, voq “ arg max
pφ,vqPM2

zd
φpvq.

Proof.

Part (a): According to the definition of Qd, the zd obtained by each pair pφ, vq P Qd is equal to zd
m. Since

zd
m ą 0, the pφ, vq of Qd can only come from M1, M2 or M4. If there exists at least one pair pφo, voq of

Qd which belongs to M1 YM2, it is obvious that zd
opt “ zd

m can be obtained by choosing pφo, voq.

Part (b): The contradiction method is used here. When Qd Ă M4, suppose that the z f a corresponding
to zd

opt is greater than zero and denoted by z f a
1 ą 0. From the definition of Qd, for any pair pφd, vdq P Qd,

we have z f a
φd
pvdq ă 0 and zd

φd
pvdq “ zd

m ą zd
opt as zd

m is defined without the two constraints that Py
D ě β

and Py
FA ď α. Then the z f a and the zd, which are obtained by the randomization of pφd, vdq and the

optimal noise enhanced solution for zd
opt with probabilities ξ “

´z f a
1

z f a
φd
pvdq´z f a

1

and 1´ ξ, respectively, can

be calculated as follows,

z f a “ ξz f a
φd
pvdq ` p1´ ξqz f a

1 “
´z f a

1

z f a
φd
pvdq ´ z f a

1

z f a
φd
pvdq `

z f a
φd
pvdq

z f a
φd
pvdq ´ z f a

1

z f a
1 “ 0 (A1)

zd “ ξzd
φd
pvdq ` p1´ ξqzd

opt “
´z f a

1

z f a
φd
pvdq ´ z f a

1

zd
m `

z f a
φd
pvdq

z f a
φd
pvdq ´ z f a

1

zd
opt ą zd

opt (A2)

because zd
m ą zd

opt. Obviously, zd ą zd
opt is in conflict with the definition of zd

opt. So the z f a corresponding
to zd

opt is zero when Qd Ă M4.

Part (c): Firstly, according to Theorem 1, zd
opt is obtained by the randomization of at most two detector

and discrete pairs from two different sets. Secondly, according to the conclusion (a) of Corollary 1, the
z f a corresponding to zd

opt is zero. Then combined the definitions of M1 „ M6, z f a “ 0 can only be
realized by a detector and discrete pair from M2 or a randomization of pφ1, v1q from M4 and pφ2, v2q

from M1, M3 or M5 with the respective probabilities ξ and 1´ ξ, and vice versa. Further, z f a “ 0

means that z f a “ ξz f a
φ1
pv1q ` p1´ ξqz f a

φ2
pv2q “ 0, i.e., ξ “

´z f a
φ2
pv2q

z f a
φ1
pv1q´z f a

φ2
pv2q

. If the maximum zd obtained by
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the above randomization is greater than the maximum zd obtained by pφ, vq from M2, the optimal noise
enhanced solution to maximize zd is the corresponding randomization. Otherwise, the optimal noise
enhanced solution to maximize zd is the detector and discrete vector pair pφo, voq “ arg max

pφ,vqPM2
zd

φpvq. ˝

Corollary A3. (a) If there exists at least one pair pφo, voq of Qz belongs to M1 Y M2 Y M3, the maximum
z can be realized by choosing pφo, voq and zopt “ zm. (b) If Qz Ă M4 Y M5, zopt “ maxpzd

opt, z f a
optq. (c) If

Qz XM4 ‰ ∅ and Qz XM5 ‰ ∅, we have zd
opt “ z f a

opt “ zopt “ zm.

Proof.

Part (a): According to the definition of Qz, the z obtained by each pair pφ, vq P Qz is equal to zm. Since
zm ą 0, the pφ, vq of Qz can come from M1 „ M5. If there exists at least one pair pφo, voq of Qz which
belongs to M1 YM2 YM3, it is obvious that zopt “ zm can be achieved by choosing pφo, voq.

Part (b): When Qz Ă M4 Y M5, the maximum z is obtained by the randomization of pφ1, v1q and
pφ2, v2qwith probabilities λ and 1´ λ, so:

z “ λzφ1pv1q ` p1´ λqzφ2pv2q (A3)

In order to satisfy the two constraints that Py
D ě β and Py

FA ď α, pφ1, v1q and pφ2, v2q need to meet
the following inequalities:

zd “ λzd
φ1
pv1q ` p1´ λqzd

φ2
pv2q ě 0 (A4)

z f a “ λz f a
φ1
pv1q ` p1´ λqz f a

φ2
pv2q ě 0 (A5)

Accordingly, λ “ λ1 “
´zd

φ2
pv2q

zd
φ1
pv1q´zd

φ2
pv2q

when zd “ 0 and λ “ λ2 “
´z f a

φ2
pv2q

z f a
φ1
pv1q´z f a

φ2
pv2q

when z f a “ 0.

Since Qz Ă M4 YM5, there is at least one pair of pφ1, v1q and pφ2, v2qwhich belongs to M4 YM5.
If pφ2, v2q can be selected only from M1, M3 or M5.

When pφ1, v1q P M4 and pφ2, v2q P M1 Y M3, the randomization is available if and only if
zφ1pv1q ě zφ2pv2q. From the definitions of M1 and M3, Equation (A4) holds for any 0 ď λ ď 1,
and Equation (A5) holds only for 0 ď λ ď λ2. So the maximum z is obtained when λ “ λ2 as
zφ1pv1q ě zφ2pv2q.

When pφ1, v1q P M4 and pφ2, v2q P M5, Equations (A4) and (A5) can hold at the same time if
and only if λ1 ă λ2. If zφ1pv1q ě zφ2pv2q, z gets the maximum when λ “ λ2, otherwise z reaches the
maximum when λ “ λ1.

When pφ1, v1q P M1 YM2 and pφ2, v2q P M5, suppose zφ1pv1q ď zφ2pv2q, based on the definitions
about M1 and M2, Equation (A4) holds for λ1 ď λ ď 1 and Equation (A5) holds for any 0 ď λ ď 1.
So the maximum z is reached when λ “ λ1.

If Qz Ă M4 or Qz X M4 ‰ ∅, zm ă zd
m and Qd Ă M4. According to Corollary 1, zd

opt is obtained

when λ “ λ2 and the corresponding z f a “ 0. If Qz Ă M5 or Qz X M5 ‰ ∅, zm ă z f a
m and Q f a Ă M5.

According to Corollary 2, z f a
opt is obtained when λ “ λ1 and the corresponding zd equals to zero, i.e.,

zd “ 0. As a result, the maximum z is equal to the maximum zd or z f a, i.e., zopt “ maxpzd
opt, z f a

optq.

Part (c): When Qz XM4 ‰ ∅ and Qz XM5 ‰ ∅, let pφ1, v1q P Qz XM4 and pφ2, v2q P Qz XM5. Then
we have zφ1pv1q “ zφ2pv2q “ zm. As zm ą 0, |zd

φ1
pv1q| ą |z f a

φ1
pv1q| and |zd

φ2
pv2q| ă |z f a

φ2
pv2q|. It is

obvious that λ1 ă λ2 through some simple calculations, which means that Py
D ě β and Py

FA ď α

can be satisfied by the randomization of pφ1, v1q and pφ2, v2qwith the respective probabilities λ and
1´ λ, where λ P rλ1, λ2s. Accordingly, we always have zopt “ λzφ1pv1q ` p1´ λqzφ2pv2q “ zm for any
λ P rλ1, λ2s. Furthermore, zd and z f a reach the maximum when λ “ λ2 and λ “ λ1, respectively, and
zd

opt “ z f a
opt “ zopt “ zm. ˝
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Theorem 4. (a) If M1 Y M2 Y M3 ‰ ∅, any pair pφ, vq P M1 Y M2 Y M3 can meet Py
D ě β and Py

FA ď α;
(b) When M1 YM2 YM3 “ ∅, if there exist pφ1, v1q P M4 and pφ2, v2q P M5 such that

|z f a
φ1
pv1q| ¨ |zd

φ2
pv2q| ă |zd

φ1
pv1q| ¨ |z

f a
φ2
pv2q| (A6)

Then Py
D ě β and Py

FA ď α can be realized by the randomization of pφ1, v1q and pφ2, v2q, otherwise there exists
no noise enhanced solution to make Py

D ě β and Py
FA ď α hold.

Proof.

Part (a): If M1 Y M2 Y M3 ‰ ∅, from the definitions of M1 „ M3, zd
φpvq ě 0 and z f a

φ pvq ě 0 for any

pφ, vq P M1 YM2 YM3. Accordingly, the corresponding Py
D “ β` zd

φpvq ě β and Py
FA “ α´ z f a

φ pvq ď α.

Part (b): When M1YM2YM3 ‰ ∅, if we want to make the Py
D and Py

FA obtained by the randomization
of pφ1, v1q P M4 and pφ2, v2q P M5 meet the two constraints Py

D ě β and Py
FA ď α, the two inequalities

(A3) and (A4) should be satisfied simultaneously. Further, Equations (A3) and (A4) hold if and only if
λ1 ă λ2. Due to zd

φ1
pv1q ą 0 and z f a

φ1
pv1q ă 0 for any pφ1, v1q P M4, zd

φ2
pv2q ă 0 and z f a

φ2
pv2q ą 0 for any

pφ2, v2q P M5, then:

λ1 “
|zd

φ2
pv2q|

|zd
φ1
pv1q| ` |zd

φ2
pv2q|

ă λ2 “
|z f a

φ2
pv2q|

|z f a
φ1
pv1q| ` |z

f a
φ2
pv2q|

(A7)

|zd
φ2
pv2q| ¨ p|z

f a
φ1
pv1q| ` |z

f a
φ2
pv2q|q ă |z

f a
φ2
pv2q| ¨ p|zd

φ1
pv1q| ` |zd

φ2
pv2q|q (A8)

|z f a
φ1
pv1q| ¨ |zd

φ2
pv2q| ă |zd

φ1
pv1q| ¨ |z

f a
φ2
pv2q| (A9)

˝

Appendix B

Algorithm B1. Optimal noise solution to maximize zd.

d1 “ maxtzd
φpvq ` z f a

φ pvq : pφ, vq P M4u; dt “ d1;

d2 “ maxtzd
φpvq ` z f a

φ pvq : pφ, vq P M1 YM3 YM5u; dp “ d2;
while |d2´ d1| ą ε

dc “ pdt` dpq{2; d1 “ dc;
k “ maxtpdc´ zd

φpvqq{z
f a
φ pvq : pφ, vq P M4u;

d2 “ maxtzd
φpvq ` k¨ z f a

φ pvq : pφ, vq P M1 YM3 YM5u;
if d2 ą d1

dp “ minpd2, maxpdt, dpqq;
else
dp “ maxpd2, minpdt, dpqq;
end
dt “ dc;
end
pφ1, v1q “ arg max

pφ,vqPM4

pzd
φpvq ` k¨ z f a

φ pvqq; pφ2, v2q “ arg max
pφ,vqPM1YM3YM5

pzd
φpvq ` k¨ z f a

φ pvqq.

It is noted that the parameter ε in Algorithm B1 is a near-zero positive, which is used to ensure
accuracy of the algorithm.
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Algorithm B2. Optimal noise solution to maximize zfa.

f 1 “ maxtz f a
φ pvq ` zd

φpvq : pφ, vq P M1 YM2 YM4u; f t “ f 1,

f 2 ““ maxtz f a
φ pvq ` zd

φpvq : pφ, vq P M5u; f p “ f 2;
while | f 2´ f 1| ą ε

f c “ p f t` f pq{2; f 1 “ f c;
t “ mintp f c´ z f a

φ pvqq{z
d
φpvq : pφ, vq P M1 YM2 YM4u;

f 2 “ maxtz f a
φ pvq ` t¨ zd

φpvq : pφ, vq P M5u;
if f 2 ą f 1

f p “ minp f 2, maxp f t, f pqq;
else
f p “ maxp f 2, minp f t, f pqq;
end
f t “ f c;
end
pφ1, v1q “ arg max

pφ,vqPM1YM2YM4

pz f a
φ pvq ` t¨ zd

φpvqq; pφ2, v2q “ arg max
pφ,vqPM5

pz f a
φ pvq ` t¨ zd

φpvqq.
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