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Abstract: This work considers the nonlinear scattering theory for three-terminal thermoelectric
devices used for power generation or refrigeration. Such systems are quantum phase-coherent
versions of a thermocouple, and the theory applies to systems in which interactions can be treated
at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field,
including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as
systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency
at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is
exactly the same as previously found for two-terminal devices and can be achieved by three-terminal
systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.
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1. Introduction

Thermodynamics was the great product of nineteenth century physics; it is epitomized by the
concept that there is an upper bound on the efficiency of any thermodynamic machine, known as
the Carnot limit. This concept survived the quantum revolution with little more than a scratch; at
present, few physicists believe that a quantum machine can produce a significant amount of work
at an efficiency exceeding the Carnot limit. Of course, both statistical mechanics and quantum
mechanics exhibit fluctuations, and these fluctuations may violate Carnot’s limit on short timescales.
However, these fluctuations average out on longer timescales, so it is believed that any quantum
machine left running long enough to produce a non-microscopic amount of work will not exceed
the Carnot limit. However, this work will consider the limit where the work output is large enough
that such fluctuation effects are negligible. In this limit it is generally believed that Carnot’s limit is
only achievable for vanishing power output, even if there is no general proof of this. It was recently
observed for two-terminal thermoelectric machines that quantum mechanics imposes a stricter upper
bound on the efficiency at finite power output [1,2]. This upper bound coincides with that of Carnot
at vanishing power output, but decays monotonically as one increases the desired power output.

In recent years, there has been a lot of theoretical [3–20] and experimental [21–23] interest in
three-terminal thermoelectrics (see Figure 1). In particular, it is suggested that chiral three-terminal
thermoelectrics [18–20] could have properties of great interest for efficient power generation. Most of
these three-terminal systems are quantum versions of traditional thermocouples [24–27], since they
have one terminal in contact with a thermal reservoir and two terminals in contact with electronic
reservoirs (see Figure 1). They turn heat flow from the thermal reservoir into electrical power in the
electronic reservoirs, or vice versa. I refer to such three-terminal systems as quantum thermocouples,
since they are too small to be treated with the usual Boltzmann transport theory. There are two
quantum lengthscales which enter into consideration: the electron’s wavelength and its decoherence
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length. In this work, I will be interested in devices in which the whole thermocouple is much smaller
than the decoherence length [9,10,15–19]. Such thermocouples would typically be larger than the
electron wavelength, although they need not be. The crucial point is that electrons flow elastically
(without changing energy or thermalizing) through the central region in Figure 1a. This can also be
a simple phenomenological model of the system in Figure 1c ( see Section 1.4). In these systems,
quantum interference effects can have a crucial effect on the physics. Such phase-coherent transport
effects are not captured by the usual Boltzmann transport theory, but they can be modeled using
Christen and Büttiker’s nonlinear scattering theory [28], in the cases where it is acceptable to treat
electron–electron interactions at the mean-field level. Such three-terminal systems are about the
simplest self-contained quantum machines.
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(a) Three-terminal quantum machine 
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Figure 1. (a) the three-terminal machine (heat-engine or refrigerator) that I consider; the exchange of
electrons with reservoir M carries a heat current, JM, but not an electrical current, IM = 0; (b) a chiral
thermoelectric device reproduced from reference [18]; (c) a system in which photons deliver the heat,
this can be phenomenologically modeled by (a) (see Section 1.4).

Reservoir M is taken to supply heat to the system but not electrical current. Thus, the heat
current into the system from reservoir M (JM) is finite, while the electrical current into the system
from reservoir M obeys

IM = 0 (1)

(see Figure 2). If reservoir L and R are at the same temperature T0, and reservoir M is hotter at
TM > T0, one can use the heat flow JM to drive an electrical current from L to R. If this electrical
current flows against a potential difference, then the system turns heat into electrical power, and so
is acting as a thermodynamic heat-engine. Alternatively, one can make the system act as a refrigerator,
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by applying a bias which drives a current from L to R, and “sucks” heat out of a reservoir M (Peltier
cooling) taking it to a lower temperature than reservoirs L and R, TM < T0.

This work considers arbitrary phase-coherent three-terminal quantum systems that fall in to the
category described by Christen and Buttiker’s nonlinear scattering theory [28]. I find upper bounds
on such a system’s efficiency as a heat-engine or a refrigerator at finite power output. These bounds
coincide with those of two-terminal quantum systems considered in [1,2], irrespective of whether
the three-terminal system’s time-reversal symmetry is broken (by an external magnetic field) or not.
Thus, these bound applies equally to normal and chiral thermoelectrics [18–20].

Thermal 
reservoir

Electronic 
reservoir L

Electronic 
reservoir R

J M

thermoelectric 
contact1

thermoelectric 
contact2

T M

T 0 T 0

electric
current

B-field

Dot

J M

Large island (M)

Figure 2. A sketch of a system for which the voltage-probe model discussed in Section 1.4 is correct.
The role of reservoir M is played by the island which is large enough that any electron entering it
thermalizes at temperature TM before escaping back into the dot. The electro-neutrality of the island
ensures that IM = 0 in the steady-state. However, the fact the island exchanges heat (in the form of
photons or phonons) with a thermal reservoir means that it can still deliver heat to the three-terminal
system. The island is in a steady-state at temperature TM, for which the heat flow out of the island
due to electrons, JM, equals the heat flow into the island due to photons (or phonons).

1.1. The Carnot Bound

When the system acts as a heat-engine (or energy-harvester [29,30]), the input is the heat current
coming from the thermal reservoir (reservoir M), JM, and the output is the electrical power generated
by the system, Pgen. This power flows into a load attached between reservoirs L and R; this load
could be a motor turning electrical work into mechanical work, or some sort of work storage device.
The heat-engine (eng) efficiency is defined as:

ηeng = Pgen
/

JM. (2)

This never exceeds Carnot’s limit,

ηCarnot
eng = 1− T0/TM, (3)

where we recall that TM > T0. For the refrigerator, the situation is reversed, the load is replaced by a
power supply, and the system absorbs power, Pabs, from that supply. The cooling power output is the
heat current that is “sucked” out of the colder reservoir (reservoir M), JM. Thus, the refrigerator (fri)
efficiency or coefficient of performance (COP) is,

ηfri = JM
/

Pabs. (4)

This never exceeds Carnot’s limit,

ηCarnot
fri = (T0/TM − 1)−1, (5)



Entropy 2016, 18, 208 4 of 22

where we have TM < T0 (which is the opposite of heat-engine). These Carnot limits are the upper
bound on efficiency of heat-engines and refrigerators. It has often been argued that Carnot efficiency
is only achievable at zero cooling power, but no general proof of this claim exists (see Section 1.3).

1.2. Stricter Upper Bound for Two-Terminal Systems

Bekenstein [31,32] and Pendry [33] independently noted that there is an upper bound on the heat
that can flow through a single transverse mode. As a result, the heat that any wave (electron, photon,
etc.) can carry away from reservoir i at temperature Ti through a cross-section carrying N transverse
modes is

Jqb
i =

π2

6h
N k2

BT2
i , (6)

where the number of transverse modes is of the order of the cross-section in units of the wavelength
of the particles carrying the heat. This Bekenstein–Pendry bound was observed experimentally in
point-contacts [34], and was recently verified to high accuracy in quantum Hall edge-states [35].

References [1,2] pointed out that this upper bound on heat flow must place a similar upper
bound on the power generated by a heat-engine (since the efficiency is always finite). Those works
used the nonlinear version of Landauer scattering theory [28] to find this upper bound on the power
generated, which they called the quantum bound (qb), since its originates from the wavelike nature
of electrons in quantum mechanics. It takes the form

Pqb
gen ≡ A0

π2

h
N k2

B
(
TL − TR

)2, (7)

where A0 ' 0.0321. References [1,2] then calculated the upper bound on a heat engine’s efficiency for
given power generation Pgen, and showed that it is a monotonically decaying function of Pgen

/
Pqb

gen.

There is no closed form algebraic expression for this upper bound at arbitrary Pgen
/

Pqb
gen, and it is

given by the solution of a transcendental equation. However, for Pgen
/

Pqb
gen � 1, the maximum

efficiency at power Pgen is

ηeng
(

Pgen
)
= ηCarnot

eng

1− 0.478

√√√√TR
TL

Pgen

Pqb
gen

+O
[

Pgen
/

Pqb
gen

]. (8)

Thus, one can only achieve Carnot efficiency at vanishing power generation, Pgen → 0, although one

comes close to Carnot efficiency for Pgen � Pqb
gen.

In the limit of maximum power generation, Pgen = Pqb
gen, the upper bound on efficiency is

ηeng(Pqb
gen) =

ηCarnot
eng

1 + 0.936(1 + TR/TL)
. (9)

References [1,2] calculated similar expressions for the upper bound on refrigerator efficiency as
a function of cooling power. In this case, the upper bound is found to be half the Bekenstein–Pendry
bound on heat-flow. Again, the maximum efficiency equals that of Carnot for cooling powers
much less than the Bekenstein–Pendry bound and decays monotonically as one increases the desired
cooling power towards its upper limit.

In the naive classical limit of vanishing wavelength compared to system size, one has N → ∞,
and so the quantum bound Pqb

gen and Jqb
i becomes irrelevant (they go to infinity). Thus, in this limit, it

appears that one can achieve Carnot efficiency for any power output. However, quantum mechanics
says that this is not the case, that, for any power output that is a significant fraction of Pqb

gen or Jqb
i ,

the upper bound on efficiency is lower than Carnot efficiency. This efficiency bound was derived
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for two-terminal quantum systems, and here I will show that exactly the same bounds apply to
three-terminal quantum systems.

1.3. Universality of This Bound?—A Brief Literature Review

The upper bound on efficiency at given power has been of some interest recently. Various results
have been derived in various regimes, and the complexity of these calculations means that there is
not yet a consensus about how to compare these results. Here, I attempt such a comparison, taking
the risk that I may have misunderstood some of these complexities.

Many textbooks on thermodynamics give some sort of handwaving argument saying that a
heat-engine exhibiting Carnot efficiency has a vanishing power output, but this is by no means
proven. In the specific context of the Carnot cycle, a step in this direction was made in the the
pedagogical work of Curzon and Ahlborn [36] (although their result was found earlier [37–39]),
which gave a curve for the efficiency as a function of the power of the machine, and discussed in
detail the efficiency at that machine’s maximum power, Pm. In the linear response regime, one can
use Onsager’s non-equilibrium thermodynamics to show that this curve is particularly simple, and
it takes the form [40] η(Pgen) = 1

2 ηCarnot
eng

(
1 +

√
Pgen/Pm

)
(see also references [8–10,41]). This goes

linearly with Pgen when Pgen is small, rather than like a squareroot as in Equation (8). However, a
much bigger difference is that the theory does not give a value for Pm, nor does it give an upper bound
on Pm. As a result, such relations imply that one could get arbitrarily close to Carnot efficiency at any
finite power, Pgen, by building a machine with Pm → ∞. For refrigerators, reference [42] showed
that the entropy production rate goes like the power squared with a prefactor that goes like Lqq

/
L2

ρq,
where Lµν is an Onsager coefficient with µ, ν ∈ ρ(charge), q(heat). However, without a lower bound
on Lqq

/
L2

ρq (which may be power dependent), this does not give us a lower bound on the entropy
production rate at given refrigerator power (such a lower bound would correspond to an upper
bound on efficiency via Equation (56)). I believe that it is quantum mechanics that gives the upper
bounds on Pm (and on lower bound on Lqq

/
L2

ρq), and so it is absent from these classical theories.
The first results that indicated the importance of quantum mechanics were those that used

scattering theory to show that Carnot efficiency required vanishingly narrow transmission functions
in both the linear [43] and nonlinear regimes [44,45] (reference [43] actually used the Boltzmann
transport theory, but every step of their calculation can be recast in terms of scattering theory if
desired). A natural consequence of a vanishingly narrow transmission function is that the proportion
of electrons that transmit through the thermoelectric structure is vanishingly small. This implies that
the power output of such a system is vanishingly small for such a system irrespective of the bias one
chooses. More strictly, this power output vanishes for any finite sized system (i.e., any system with a
finite number of transverse modes). Formally, one can get a finite power in the limit, if one allows the
machine’s cross-section to diverge as one takes the transmission function’s width to zero, but this is
unphysical and is not considered further here.

In the linear-response language, these works tell us that the system whose figure of merit
ZT ≡ GS2T

/
K → ∞ (Carnot efficiency requires ZT → ∞), has Onsager coefficient Lµν whose

magnitude’s vanishes for all µ, ν, while the Seebeck coefficient S ∝ Lρq
/

Lρρ remains finite, and the
Weidemann–Franz ratio K/(GT) ∝

(
LρρLqq − LρqLqρ

)/
L2

ρρ vanishes. Even if one chooses the load
to maximize the power output, giving a power Pm, the fact the transmission function is vanishingly
narrow means that Pm → 0. This was the first indication that one could not take a machine’s Pm to be
independent of its efficiency.

This brings us to the scattering theory calculation in references [1,2], outlined in the previous
section. There, Equation (8) shows that Carnot efficiency is not achievable unless the power output is
vanishing, and that the deviation from Carnot efficiency goes like the squareroot of power. This result
is primarily for fully coherent transport, but reference [2] also considered a relaxation process within
the scatterer as modeled by a fictitious reservoir (in the style of a voltage probe [46–49]) in the
absence of an external magnetic field, and recovered Equation (8) for small Pgen. Thus, a natural
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question is how universal these bounds are. The objective of this work is to show that the bounds in
references [1,2] also applies to those relaxation-free three-terminal systems which can be modeled by
scattering theory.

However, returning to the effect of relaxation in two-terminal systems, reference [50] considered
the linear-response limit of scattering theory with an arbitrary number of fictitious reservoirs
to model more complicated relaxation processes (and with an arbitrary external magnetic field).
They considered maximizing the power for given efficiency and found a bound that was weakest
when the number of fictitious reservoirs goes to infinity. In the limit of small power, their result gives
the maximum efficiency for given power as:

ηeng(P) = ηCarnot
eng ×

(
1− Pgen/(4P0) + · · ·

)
, (10)

where P0 is the same as Pmax
gen , except for a difference in the numerical prefactor. The absence of the

square-root makes this bound much less strict at small Pgen than Equation (8). This hints that it might
be possible to exceed Equation (8) by adding a large amount of relaxation within the scatterer (as
modeled by an infinite number of fictitious reservoirs). However, reference [50] say that their upper
bound may be an over-estimate; they do not prove it is a tight bound by giving an example of a
system that achieves their upper bound. Thus, one cannot yet say for certain whether a system of the
type that they propose can violate the bound in Equation (8) or not. Similarly, nothing is known about
the bound for systems that are not modeled by scattering theory, such as systems exhibiting strong
interaction effects (Coulomb-blockade, Kondo effect, etc). Thus, it remains to be seen how universal
this bound is, even if Equation (8) is obeyed by all the systems for which a tight bound has been
derived to date.

1.4. Examples of Three Terminal Systems: Chiral Thermoelectrics and Quantum Thermocouples

Here, I discuss two examples of systems for which the bounds derived here apply. The first
example is the chiral thermoelectric sketched in Figure 1b, as discussed in references [18–20]. This is a
three-teminal system exposed to such a strong external magnetic field that the electron flow only
occurs via edge-states (all bulk states are localized by the magnetic field). These edge-states are
chiral, which means they circulate in a preferred direction in the scattering region (anticlockwise in
Figure 1b), This is an intriguing situation for a heat-engine in which one wants to generate electrical
power by driving a flow of electrons from reservoir L (at lower chemical potential) to reservoir R (at
higher chemical potential). The B-field alone generates an electron flow directly from L to R without
a corresponding direct electron flow from R to L. Thus, it would seem plausible that one could take
advantage of this, with a suitable choice of Reservoir M and of the central scattering region to achieve
higher efficiencies than in a two-terminal device (where every flow from L to R has a corresponding
flow from R to L). Unfortunately, our general solution for a three-terminal system will show that the
upper bound on efficiency at given power output is independent of the external magnetic field, so it
is the same for chiral or non-chiral systems.

The second example is the quantum thermocouple sketched in Figure 1c. Here, the third
terminal (reservoir M) supplies heat in the form of photons (or phonons). Such systems have been
considered using microscopic models of the photon flow [3–7,11,12,14,20]; however, here I instead
use a phenomenological argument to replace the reservoir of photons sketched in Figure 1c by the
reservoir of electrons sketched in Figure 1a. This is the “voltage probe” model [46–49], in which
inelastic scattering (such as electrons scattering from photons) is modeled by a reservoir of electrons
whose chemical potential is chosen such that that, on average, every electron that escapes the system
into that reservoir is replaced by one coming into the system from that reservoir, so IM = 0. Figure 2
shows a system for which this voltage probe model is correct. The island is large enough that any
electron entering it thermalizes at temperature TM before escaping back into the dot. Since the island
is in a steady-state at temperature TM, the heat flow out of the island due to electrons must equal the
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heat flow into the island due to photons. However, one can also argue phenomenologically that the
same model is a simplified description of the system sketched in Figure 1c. This phenomenological
model treats the exchange of a photon between the dot and reservoir M as the replacement of an
electron in the dot which has the dot’s energy distribution, with an electron which has reservoir M’s
energy distribution. Of course, this is not the most realistic model of electron–photon interactions.
In particular, it assumes that each electron entering from reservoir L or R either escapes into one
of those two reservoirs without any inelastic scattering from the photon-field, or it escapes after
undergoing so many scatterings from the photon-field that it has completely thermalized with the
photon-field. As such, this model does not capture the physics of electrons that undergo one or
two inelastic scatterings from the photon-field before escaping into reservoir L or R. At this simplistic
level of modelling, nothing would change if it were phonons rather than photons coming from
reservoir M. While this voltage probe model has been successfully used to understand the basics
of many inelastic effects in nanostructures, it should not be considered a replacement for a proper
microscopic theory (see e.g., references [51,52] for a discussion of how the voltage probe model fails
to capture aspects of inelastic scattering in ultra-clean nanostructures). One should be cautious about
applying results for a system of the type in Figure 1a to a system of the type in Figure 1c, but it is none
the less a reasonable first step to understanding its physics.

2. Electrical and Heat Currents

Consider a system with a scattering matrix, S(ε), then the transmission matrix for electrons at
energy ε made of elements

Tij(ε) = tr
[
S†

ij(ε)Sij(ε)
]

, (11)

where the trace is over all transverse modes of leads i and j. The electrical current out of reservoir i
is then

Ii = e-
∫ ∞

−∞

dε

h ∑
j

(
Tij(ε)− Ni(ε)δij

)
f j(ε), (12)

where lead i has Ni(ε) modes for particles at energy ε, and the Fermi function in reservoir j is
defined as

f j(ε) =
(
1 + exp

[
(ε− e-Vj)

/
(kBTj)

])−1 . (13)

The heat-current out of reservoir i is

Ji =
∫ ∞

−∞

dε

h
(ε− e-Vi)∑

j

(
Tij(ε)− Ni(ε)δij

)
f j(ε). (14)

The unitarity of S places the following constraints on the transmission functions. Firstly,

Ni(ε) = ∑
j
Tij(ε) = ∑

j
Tji(ε). (15)

Secondly,

0 ≤ Tij(ε) ≤ Nmin
ij , (16)

where for compactness in what follows, one can define

Nmin
ij = min[Ni, Nj] . (17)
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It has been shown [53,54] that any three-termnal system obeying the above theory automatically
satisfies the laws of thermodynamics, if one takes the Clausius definition of entropy for the reservoirs.
This means that the rate of entropy production is −∑i Ji

/
Ti, where the sum is over all reservoirs.

Currents for Three-Terminal Systems

A system with three terminals has a three-by-three transmission matrix, meaning it has nine
transmission functions. However, Equation (15) means that only four of them are independent.
There are many possible choices for these four, and here I choose

TLM(ε), TRM(ε), TLR(ε), and TRL(ε). (18)

The remaining five transmission functions are written in terms of these functions:

TLL(ε) = NL(ε)− TLM(ε)− TLR(ε), (19a)

TRR(ε) = NR(ε)− TRL(ε)− TRM(ε), (19b)

TMM(ε) = NM(ε)− TLM(ε)− TRM(ε), (19c)

TML(ε) = TLM(ε) + TLR(ε)− TRL(ε), (19d)

TMR(ε) = TRM(ε) + TRL(ε)− TLR(ε). (19e)

Given these relations between transmission matrix elements, one can write currents into the
quantum system from reservoirs (L,R,M) as

IL = e-
∫ ∞

−∞

dε

h

(
TLM(ε)

[
fL(ε)− fM(ε)

]
+ TLR(ε)

[
fL(ε)− fR(ε)

])
, (20)

IR = e-
∫ ∞

−∞

dε

h

(
TRM(ε)

[
fR(ε)− fM(ε)

]
+ TRL(ε)

[
fR(ε)− fL(ε)

])
, (21)

IM = −IL − IR. (22)

I chose to measure chemical potentials from that of reservoir M, so VM = 0. Then, the heat
current out of reservoir M is

JM =
∫ ∞

−∞

ε dε

h

([
TLR(ε)− TRL(ε)

] [
fR(ε)− fL(ε)

]
+ TLM(ε)

[
fM(ε)− fL(ε)

]
+ TRM(ε)

[
fM(ε)− fR(ε)

])
. (23)

The power generated is

Pgen = −VL IL −VR IR . (24)

3. Transmission Which Maximizes Heat Engine Efficiency for Given Power Output

Our objective is to find the transmission functions, TLM(ε), TRM(ε), TLR(ε), and TRL(ε), that
maximize the heat-engine efficiency for given power generation, Pgen. This is equivalent to finding
the transmission functions that minimize heat flow out of reservoir M, JM, for given Pgen. To find
these optimal transmission functions one must start with completely arbitrary ε dependences of the
transmission functions. As in references [1,2], one can do this by considering each transmission
function as consisting of an infinite number of slices, each of vanishing width δ. I define τ

(γ)
ij as

the height of the γ-th slice of Tij(ε), which is the slice with energy εγ. One then wants to optimize

the biases of reservoirs L and R (VL and VR) and each τ
(γ)
ij ; this requires finding the value of each of

this infinite number of parameters that minimize JM under the constraints that IM = 0 and that Pgen

is fixed at the value of interest.
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The central ingredients in this optimization are the rate of change of Pgen, IM and JM with

τ
(γ)
ij . Here,

dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

= e-Vi
δ

h
[

f j(εγ)− fi(εγ)
]
, (25)

where
∣∣
V,τ means the derivative is taken for fixed VL, VR and fixed τ

(γ′)
ij for all γ′ 6= γ. Doing the

same for IM and JM, one gets for ij ∈ {LM, RM, LR, RL},

dIM

dτ
(γ)
ij

∣∣∣∣∣
V,τ

=
1
Vi

dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

, (26)

dJM

dτ
(γ)
ij

∣∣∣∣∣
V,τ

=
εγ

e-Vi

dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

. (27)

For a heat-engine, one considers the case where TL = TR = T0 and TM > T0, while
e-VL < 0 < e-VR. The Fermi functions in this case are sketched in Figure 3a. One observes that[

fR(ε)− fL(ε)
]

is positive for all ε , (28)[
fM(ε)− fi(ε)

]
is

{
positive for ε > ε0i ,
negative for ε < ε0i ,

(29)

where we define

ε0i =
e-Vi

1− T0/TM
. (30)

We will take VL, VR such that IM = 0, and

IR = −IL > 0 . (31)

To proceed with the derivation, it is more convenient to assume that one is interested in
minimizing the heat-flow JM for given Pgen and given IM. Only at the end will we take IM = 0 to
arrive at the situation of interest.

0 VReVLe 0R0L
0VRe VLe

0R0L

L f (  )

 f  (  )M
 f (  )R  f (  )R

 f  (  )M L f (  )

(b) Fermi functions for heat engine (c) Fermi functions for refrigerator

LM RM

LR

RL

(a) The four independent 
      transmission functions 

Figure 3. In (a) is a sketch of the four transmission functions which completely determine the system’s
scattering properties, and it is particle conservation that enables us to completely determines the
remaining five transmission and reflection processes from these four (see Equation (19)); In (b) and
(c) are sketches of the Fermi-functions for each reservoir for the case of a heat-engine and refrigerator,
respectively. For the heat-engine, one has TL = TR < TM and e-VL < 0 < e-VR, as discussed in
Section 3. For the refrigerator, one has TL = TR > TM and e-VL > 0 > e-VR, as discussed in Section 7.



Entropy 2016, 18, 208 10 of 22

3.1. Optimizing TRM, TLM, TRL and TLR Independently

One starts with the assumption that the four transmission functions, TRM, TLM, TRL and TLR,
each have a completely arbitrary energy dependence and can be optimized independently. Only in
Section 3.2 do we take into account the relations between these transmission functions imposed by
combining Equation (16) with Equation (19).

To carry out the independent optimization of each of the four transmission functions, let
us define

∂R · · · =
d(· · · )

dVR

∣∣∣∣∣
VL,T

, and ∂L · · · =
d(· · · )

dVL

∣∣∣∣∣
VR,T

, (32)

where |Vi ,T indicates that the derivative is for fixed Vi and fixed transmission functions. Then, for an

inifinitesimal change of τ
(γ)
ij , VL and VR, one has:

δJM =
dJM

dτ
(γ)
ij

∣∣∣∣∣
V,τ

δτ
(γ)
ij + ∂L JMδVL + ∂R JMδVR , (33)

δIM =
dIM

dτ
(γ)
ij

∣∣∣∣∣
V,τ

δτ
(γ)
ij + ∂L IMδVL + ∂R IMδVR , (34)

δPgen =
dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

δτ
(γ)
ij + ∂LPgenδVL + ∂RPgenδVR . (35)

We are interested in fixed Pgen and IM, so we want δIM = δPgen = 0. This means Equations (34)
and (35) form a pair of simultaneous equations, which one solves to get

δVL =

∂R IM

A

dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

−
∂RPgen

A

dIM

dτ
(γ)
ij

∣∣∣∣∣
V,τ

 δτ
(γ)
ij ,

δVR =

−∂L IM

A

dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

+
∂LPgen

A

dIM

dτ
(γ)
ij

∣∣∣∣∣
V,τ

 δτ
(γ)
ij ,

where we define

A = ∂L IM ∂RPgen − ∂R IM ∂LPgen .

We substitute these results for δVL and δVR into Equation (33) and use Equations (26) and (27) to
cast everything in terms of dPgen

/
dτ

(γ)
ij . Then, for ij ∈ {LM, RM, LR, RL},

δJM = δτ
(γ)
ij

[
εγ − ε1i

e-Vi

]
dPgen

dτ
(γ)
ij

∣∣∣∣∣
V,τ

, (36)

where we define ε1i with i ∈ L, R as

ε1i = e-Vi
∂R JM ∂L IM − ∂L JM ∂R IM

A
+ e- ∂L JM ∂RPgen − ∂R JM ∂LPgen

A
. (37)

Thus, using Equation (25), one can conclude that JM shrinks upon increasing τ
(γ)
ij (for fixed Pgen

and fixed IM) if

[εγ − ε1i]
[

f j(εγ)− fi(εγ)
]

< 0 , (38)
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and, otherwise, JM grows upon increasing τ
(γ)
ij . The sign of the difference of Fermi functions is given

by Equations (28) and (29). Hence, JM is reduced for fixed Pgen and fixed IM by:

(a) Increasing TRM(ε) up to Nmin
RM for ε between ε0R and ε1R, while reducing TRM(ε) to zero for all

other ε.
(b) Increasing TLM(ε) up to Nmin

LM for ε between ε0L and ε1L, while reducing TLM(ε) to zero for all
other ε.

(c) Increasing TRL(ε) up to Nmin
RL for ε > ε1R, while reducing TLM(ε) to zero for ε < ε1R.

(d) Increasing TLR(ε) up to Nmin
RL for ε < ε1L, while reducing TLM(ε) to zero for ε > ε1L.

Here, it is Equation (16) that stops us from reducing these functions below zero, or increasing
Tij(ε) beyond Nmin

ij .
While it is hard to guess the form of ε1L and ε1R from their definition in Equation (37),

by inspecting Equations (20) and (21), one sees that a heat-engine should have ε1R > ε0R and ε1L < ε0L

to ensure that both terms contributing to Pgen in Equation (24) are positive. While refrigerators are
not discussed until Section 7, it will shown there that their optimization leads to similar rules to
(a)–(d) above. However, refrigerators must absorb electrical power (negative Pgen), so they will have
ε1R < ε0R and ε1L > ε0L, with Section 7 also showing that ε1R > 0 and ε1L < 0. Thus, one will have
to consider two situations,

heat-engine: ε1L < ε0L < 0 < ε0R < ε1R, (39a)

refrigerator: ε0L < ε1L < 0 < ε1R < ε0R, (39b)

as sketched in Figure 4a,b, respectively.

LR

0R 1R0L1L 0

Transmission 
functions

LM RM RL

N min
LR 

(a) heat-engine

LR

1R 0R1L0L 0

Transmission 
functions

LM RM RL

(b) refrigerator

N min
LM 

N min
RM N min

LR 
N min

LR N min
RM 

N min
LR 

N min
LM 

Constraints

1R 0R1L0L 0

Transmission 
functions

LM RM

(d) refrigerator

N min
RM 

N min
LM 

Constraints

0R 1R0L1L 0

Transmission 
functions

LM RM

(c) heat-engine

N min
LM 

N min
RM 

Figure 4. If one could maximize TRM, TLM, TRL and TLR independently, as discussed in Section 3.1,
one would get the optimal boxcar functions like those in (a) or (b). The height of the boxcar for Tij

is Nmin
ij defined in Equation (17); for concreteness in the sketch, we take NR < NM < NL. Once the

constraints discussed in Section 3.2 are introduced, one gets the boxcar functions in (c) or (d), given
by Equations (43) and (54), respectively.

Problem with the Independent Optimization

The problem with the above solution is that it does not satisfy the constraints imposed by
combining Equation (16) with Equation (19). Specifically, it does not satisfy the constraints

0 ≤ TLM(ε) + TLR(ε)− TRL(ε) ≤ Nmin
ML , (40a)

0 ≤ TRM(ε) + TRL(ε)− TLR(ε) ≤ Nmin
MR . (40b)
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The proposed solution violates the lower bound in Equation (40a) for all ε > ε1R. Similarly, it
violates the lower bound in Equation (40b) for all ε < ε1L. In addition, in the case of a refrigerator
with ε0R > ε1R, as in Figure 4b, then the proposed solution violates the upper bound in Equation (40b)
for all ε1R < ε < ε0R. Similarly, when ε1L > ε0L, the solution also violates the upper bound in
Equation (40a) for all ε0L < ε < ε1L. I will fix this in the case of a heat-engine by explicitly adding
these bounds in the next section, and the case of a refrigerator will be treated in Section 7.

3.2. Optimizing Transmissions While Respecting All Constraints

Here, we consider carrying out the optimization given by the list (a)–(d) in the previous section
within the limits given by the constraints in Equation (40). As we are considering a heat-engine, we
know that the ε0L, ε1L, ε0R and ε1R are ordered as in Equation (39a) (see Figure 4a). The optimization
for ε in the window between ε1L and ε1R is trivial, since there the transmission functions in the above
list (a–d) do not violate the constraints in Equation (16). This leaves us with the less trivial part of the
optimization under the constraints, for ε > ε1R and ε < ε1L.

3.2.1. Optimization for ε > ε1R or ε < ε1L

For ε > ε1R, the independent optimization of the transmission functions required increasing
TRL while decreasing TLM and TLR but doing this comes into conflict with the constraint that
TLR ≥ TRL − TLM due to Equation (40a). Thus, one can do the unconstrained optimization in the
previous section up to the point allowed by the constraint, after which

TLR(ε) = TRL(ε)− TLM(ε) . (41)

We then ask if JM decreases (for fixed power generation) when we increase slice γ of TRL and
TLM by infinitesimal amounts δτ

(γ)
RL and δτ

(γ)
LM , respectively, given that one must also change slice γ of

TLR by δτ
(γ)
LR = δτ

(γ)
RL − δτ

(γ)
LM not to violate the above constraint. With this observation, we find that,

for JM to decrease, we need:

δτ
(γ)
RL (ε1R − ε1L) [ fR(εγ)− fL(εγ)] + δτ

(γ)
LM (εγ − ε1L) [ fM(εγ)− fR(εγ)] < 0. (42)

Since all the brackets in the above expression are positive for εγ > ε0R, we see that to minimize
JM, we should minimize both TRL and TLM. Thus, we conclude that, for ε > ε1R, it is optimal that all
transmission functions are zero.

The situation where ε < ε1L can be treated in the same manner as above, upon interchanging the
labels “L” and “R”. Thus, the optimal situation is when all transmission functions are zero for ε < ε1L.

3.2.2. Conclusion of Optimization with Constraints

Bringing together the results found so far, the transmission functions which maximize the
heat-engine’s efficiency for a given power generation are:

TRL(ε) = TLR(ε) = 0 for all ε, (43a)

TRM(ε) =

{
Nmin

RM for ε0R ≤ ε ≤ ε1R

0 otherwise
, (43b)

TLM(ε) =

{
Nmin

LM for ε1L ≤ ε ≤ ε0L

0 otherwise
, (43c)
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where Nmin
ij is defined in Equation (17). These functions are sketched in Figure 4c. Equation (43a)

means the optimal system has no direct flow of electrons between reservoirs L and R.
Given Equations (19d) and (19e), this means that

TMR(ε) = TRM(ε) & TML(ε) = TLM(ε) for all ε. (43d)

Hence, the optimal three-terminal situation is one that can be thought of as a pair of two-terminal
problems much like those already considered in references [1,2]. To be more explicit, Equation (43)
tells us that the optimal transmission is one that can be split into a problem of optimizing transmission
between M and R through Nmin

RM transverse modes (with TMR(ε) = TRM(ε) at all ε) and another
problem of optimizing transmission between M and L through Nmin

LM transverse modes (with
TML(ε) = TLM(ε) at all ε). These two optimization problems could be treated independently were it
not for the fact they are coupled by the constraint that the electrical currents in the two problems IL

and IR must sum to zero to get Equation (1).

4. Showing the Three-Terminal System Cannot Exceed the Bound for Two-Terminal Systems

Given the previous section’s observation that the optimal transmission for a three-terminal
system is one that can be split into a pair of two-terminal transmission problems, two conclusions
can be drawn.

Firstly, the optimal transmission for a three-terminal system does not require any time-reversal
symmetry breaking of the type generated by an external magnetic field. Thus, the optimal
transmission can be achieved in a system without an external magnetic field. I wish to be clear that
this proof does not mean that magnetic fields may not be helpful in specific situations; for example, a
magnetic field may be helpful in tuning the transmission of a given system to be closer to the optimal
one. However, it does mean that there is no requirement to have a magnetic field; other parameters
(which do not break time-reversal symmetry) can be tuned to bring the system’s transmission to the
optimal one. This is the first main conclusion of this work.

Secondly, it is not hard to show that a three-terminal system cannot exceed the bounds found
in references [1,2] for a pair of two-terminal systems with the same number of transverse modes.
To be more specific, it cannot exceed the bound for a pair of two-terminal systems where one of
the two-terminal systems has Nmin

LM transverse modes and the other has Nmin
RM transverse modes

(see Equation (17)). To prove this bound, it is sufficient to remark that the optimization of the
three-terminal system in Equation (43) is exactly that of the optimization of a pair of two-terminal
systems, with an additional constraint that the electrical currents in the two problems (IL and IR) sum
to zero. This constraint couples the two problems and makes them much harder to resolve. However,
if we simply drop the constraint on IL and IR and perform the optimization, we can be certain that
we are overestimating the efficiency at given power output. Once we drop this constraint, the two
optimization problems become completely decoupled from each other. Thus, we can optimize the
transmission between M and R using the method in references [1,2], and independently optimize
the transmission between M and L using the same method. As a result, an overestimate of the
three-terminal efficiency at given power output is bounded by the maximum two-terminal efficiency
of a pair of two-terminal systems, with this bound being the one found in references [1,2]. This is the
second main conclusion of this work.

5. Achieving the Two-Terminal Bound in a Three-Terminal System

Having found an upper bound on the efficiency at given power output by using a process that
overestimates the efficiency, one can be sure that no three-terminal system can be more efficient than
a pair of optimal two-terminal systems. This makes it natural to ask if any three-terminal system
can be as efficient as this pair of optimal two-terminal systems. To answer this question, I present an
example of a three-terminal system which is as efficient as the pair of optimal two-terminal systems.
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This will be our proof that the upper bound on the efficiency of a three-terminal system coincides
with the upper bound on the efficiency of a pair of two-terminal systems.

To proceed, I take a three-terminal system with Nmin
LM = Nmin

RM . Given Equation (17), this could
be a system with NL = NR, or it could be a system with NM less than both NL and NR, In this
case, one can take a pair of optimal two-terminal solutions from refrences [1,2], in the cases where
e-VR = −e-VL > 0. They have

ε0L = −ε0R & ε1L = −ε1R , (44a)

with

ε0R =
e-VR

1− TR/TM
& ε1R = e-VR

∂R J(R)M

∂RP(R)
gen

, (44b)

where I have written the results of references [1,2] in terms of the notation of this article, with the
derivatives defined in Equation (32). Here, J(i)M is the part of the heat carried out of reservoir M by

electron flow between reservoir M and reservoir i, and P(i)
gen is the part of the total power generated

by that electron flow, so

JM = J(R)M + J(L)M , (45a)

Pgen = P(R)
gen + P(L)

gen . (45b)

Conservation of electrical current gives IM = −IL− IR. As the only dependence on Vi within IM,
JM and Pgen are in Ii, J(i)M and P(i)

gen, respectively, and one has

∂i IM = −∂i Ii , ∂i JM = ∂i J
(i)
M and ∂iPgen = ∂iP

(i)
gen . (46)

With some thought about the symmetries between L and R, one sees that the derivatives have
the following symmetries between L and R,

∂L IM = ∂R IM , (47a)

∂L JM = −∂R JM , (47b)

∂LPgen = −∂RPgen . (47c)

We recall that Equations (44)–(47) are all for an optimal pair of two-terminal systems. We now
take the information in Equations (44)–(47), and verify that they also give an optimal solution of
the three-terminal problem. For this, we note that the definition of ε0R and ε0L are the same in the
two- and three-terminal problems; however, the definition of ε1R and ε1L are different, with that
for three-terminals being Equation (37) and that for two-terminals being Equation (44b). However,
if we now take the symmetry relations in Equation (47), we see that Equation (37) reduces to
Equation (44b). Thus, the solution of the optimization problem for a pair of two-terminal systems
in Equations (44)–(47) is also a solution of the optimization problem for the three-terminal problem.
All currents are the same in the three-terminal system as in the pair of two-terminal systems, so the
efficiency and power output are also the same. Finally, we note that this solution has IL = −IR, so it
satisfies IM = 0 as in Equation (1). Hence, we have shown that an optimal three-terminal system can
be as good as a pair of optimal two-terminal systems. This is the third main conclusion of this work
(after the two in the previous section).

Combining this conclusion with the others, one finds that the upper bound on efficiency
at a given power output is the same for a three-terminal system as for a pair of two terminal
systems. This means that the optimal three-terminal system has no advantage over a pair of optimal
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two-terminal systems; however, it does not tell us in which geometry it is easier to engineer a system
that achieves (or gets close to) that optimum.

6. Route to the Optimal Transmission for Nmin
LM 6= Nmin

RM

One can use the results of the two preceding sections to get a simple over-estimate of the maximal
efficiency at given power generation for a machine with Nmin

LM 6= Nmin
RM . This upper bound is given

by the efficiency of an equivalent three-terminal machine with Nmin
LM = Nmin

RM . Here, I define an
“equivalent” system as one with the same Nmin

LM + Nmin
RM . In the case where NM > NL, NR, this is

the same as saying that, for given NL + NR, an optimal machine with NL 6= NR cannot be better
than an optimal machine with NL = NR. While for NM < NL, NR, all systems have Nmin

LM = Nmin
RM .

However, it is likely that this upper bound for Nmin
LM 6= Nmin

RM is clearly an overestimate, since it is
probably only for Nmin

LM = Nmin
RM that the optimal efficiency with the constraint that IM = 0 is as large

as that without this constraint. This greatly reduces practical interest in optimizing a system with
Nmin

LM 6= Nmin
RM , since optimizing implies a significant amount of control over the system, in which case

it is better to engineer the system to have Nmin
LM = Nmin

RM , and optimize this.
If one wished, one could get a strict upper-bound on efficiency at given power generation for a

system with given Nmin
LM 6= Nmin

RM . However, the optimization procedure for this is heavy, as well of
being of little practical interest. Thus, I do not carry it out here, I simply list the principle steps.

(i) Write explicit results for the currents and power in terms of four parameters ε1L, ε1R, VL and
VR (noting that ε0L and ε0R are given by VL and VR in Equation (30)). Use these to calculate
the derivatives that appear on the right-hand side of Equation (37), getting them as explicit
functions of ε1L, ε1R, VL and VLR. This step is straight-forward and is carried out in Appendix A.

(ii) Substitute these derivatives into the right hand side of Equation (37) for i = L and i = R, and
this gives a pair of transcendental equations for the four parameters ε1L, ε1R, VL and VR. Since
one is interested in IL = −IR, with IL and IR being algebraic functions calculated in step (i)
above (see Appendix A), this gives a third transcendental equation for these four parameters.

(iii) Solve the three simultaneous transcendental equations numerically. As one has four unknown
parameters and only three equations, we will get three parameters in terms of the fourth.
I propose getting ε1L, ε1R, and VL as functions of VR. This involves solving the set of three
simultaneous equations once for each value of VR. This is the heavy part of the calculation,
which one would have to perform numerically. I do not do this here.

(iv) Once one has ε1L, ε1R, and VL as a function of VR, one can get all electrical and heat currents as
a function of VR alone. Since step (iii) was performed numerically, we are forced to do this step
numerically as well. The electrical currents give us the power generated, Pgen, as a function of
the voltage VR, which one must invert (again numerically) to get the voltage as a function of the
power generated, VR(Pgen). One then takes the result for JM as a function of VR and substitute in
VR(Pgen). This will give us JM(Pgen), the optimal (minimum) heat flow out of reservoir M for a
given power generated. Then, the maximal heat-engine efficiency ηeng(Pgen) = Pgen

/
JM(Pgen).

7. Maximum Refrigerator Efficiency for Given Cooling Power

In references [1,2], an upper bound on refrigerator efficiency for given cooling power was
calculated directly for two-terminal devices. The result looked extremely similar to those works’
results for the upper bound on heat-engine efficiency for given power output. It has since become clear
to us how to get the result for refrigerators from the result for heat-engines. The trick it to make the
physically plausible assumption that the upper bound on the cooling power of a refrigerator, JM, is
a monotonic function of the electrical power it absorbs, Pabs. Then, the curve of maximum efficiency
versus cooling power, JM, is the same as the curve of maximum efficiency versus absorbed power Pabs
(upon transforming the horizontal axis from Pabs to JM using the maximal efficiency curve). This is a
great simplification of the problem, as it turns out that finding the refrigerator with maximal efficiency
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at given absorbed power is a rather straightforward extension of the above calculation of the optimal
heat-engine at given power output.

Here, I take this point of view and find the three-terminal refrigerator with maximal efficiency
for given absorbed power by a few straightforward modifications of the heat-engine calculation.
A system absorbing power Pabs is the same as a system generating negative power Pgen = −Pabs.
The crucial modification is that one must maximize JM at given negative Pgen for refrigerators, when
one was minimizing JM at given positive Pgen for heat-engines.

Inspecting the calculation in Section 3, one sees that everything follows through for a refrigerator
with TL = TR = T0, TM < T0, and e-VL > 0 > e-VR. Except that now, one is maximizing JM, and that
now the Fermi functions in this case are those sketched in Figure 3b, obeying:[

fR(ε)− fL(ε)
]

is negative for all ε , (48)[
fM(ε)− fi(ε)

]
is

{
negative for ε > ε0i
positive for ε < ε0i

, (49)

where Equation (30) is more conveniently written as

ε0i =
−e-Vi

T0/TM − 1
. (50)

By a careful comparison with Section 3, one notes that all relevant differences of Fermi functions
in the refrigerator case have the opposite sign from in the heat-engine case. Thus, if a given change
of transmission reduces JM for the heat-engine, then that same change will increase JM for the
refrigerator. Hence, one can conclude that the procedure that optimizes a heat-engine (minimizing
JM for given Pgen and IM) also optimizes a refrigerator (maximizing JM for given Pgen and IM).

The independent optimization of TRM, TLM, TRL and TLR follows exactly as in Section 3.1. As with
the heat-engine, it is difficult to guess the values of ε1R and ε1L from their definition in Equation (37).
However, for maximal refrigeration, one wants both terms in Pgen in Equation (24) to be negative (so
the absorbed power Pabs = −Pgen > 0). By inspection of Equations (20) and (21), we see that this
requires ε1R < ε0R and ε1L > ε0L. Furthermore, one can see that ε1L must be negative. To do this,
one should inspect the terms in Equations (23) and (24) which depend on ε1L. Making ε1L positive
will increase Pabs, while reducing the cooling power JM, which is clearly not a way to maximize the
efficiency, ηfri. A similar argument convinces us that ε1R must be positive. Thus, we are interested in
the case summarized in Equation (39b).

7.1. Optimizing Refrigerator While Respecting All Constraints

As we have ε0L < ε1L < 0 < ε1R < ε0R, the result of independently optimizing the transmission
functions is that shown in Figure 4b. For ε between ε1L and ε1R, no constraints are violated by that
result; thus, the optimal solution remains that all transmission functions are zero in this window.
The optimization for ε > ε0R and ε < ε0L follows the same logic as in Section 3.2.1, except that
now one wants to maximize JM, and the differences of Fermi functions have the opposite signs. One
finds that the system is optimized by having all transmission functions equal to zero for ε > ε0R and
for ε < ε0L.

7.1.1. Optimization for ε between ε0R and ε1R.

For ε in the window ε1R < ε < ε0R, the independent optimization (maximizing TRM and TRL,
while minimizing all other transmissions) violates both the lower bound in Equation (40a) and the
upper bound in Equation (40b). This case must be treated with care. We start by increasing TRM and
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TRL while reducing TLM and TLR, until we reach the limit of the bounds in Equations (40a) and (40b);
this occurs at

TLM(ε) = TRL(ε)− TLR(ε), (51)

TRM(ε) = −TRL(ε) + TLR(ε) + Nmin
MR (ε). (52)

We then ask if JM increases (for fixed Pabs) when we increase slice γ of TRL and TLR by
infinitesimal amounts δτ

(γ)
RL and δτ

(γ)
LR , respectively, given that the above constraint means that

one must also change slice γ of TLM by δτ
(γ)
LM = δτ

(γ)
RL − δτ

(γ)
LM , and change slice γ of TRM by

δτ
(γ)
LM = −δτ

(γ)
RL + δτ

(γ)
LM . With this observation, we find that, for JM to increase, we need:

δτ
(γ)
RL (ε1R − ε1L) [ fM(εγ)− fL(εγ)] + δτ

(γ)
LR (ε1R − ε1L) [ fR(εγ)− fM(εγ)] > 0. (53)

Since all brackets in the above expression are negative for εγ < ε0R, we see that to maximize JM,
we should minimize both TRL and TLR. Thus, the optimum for ε between ε1R and ε0R is that TRM is
maximal (TRM = Nmin

RM ) while the other transmission functions are zero.
The same logic can be applied to the energies ε between ε0L and ε1L, and we conclude that the

optimal there is that TLM is maximal (TLM = Nmin
LM ) while the other transmission functions are zero.

7.1.2. Conclusion of Optimization with Constraints

To summarize, the transmission functions which maximize refrigerator cooling power JM for
given absorbed power Pabs are:

TRL(ε) = TLR(ε) = 0 for all ε, (54a)

TRM(ε) =

{
Nmin

RM for ε1R ≤ ε ≤ ε0R

0 otherwise
, (54b)

TLM(ε) =

{
Nmin

LM for ε0L ≤ ε ≤ ε1L

0 otherwise
, (54c)

where Nmin
ij is defined in Equation (17). These transmission functions are sketched in Figure 4d.

Given these results and Equations (19d) and (19e), we also have

TMR(ε) = TRM(ε) and TML(ε) = TLM(ε) for all ε. (54d)

Every statement made in Sections 4 and 5 about heat-engines has its analogue for refrigerators.
In particular, we have proven that direct transmission between left and right is detrimental to the
efficiency of the refrigerator. Once this left–right transmission is suppressed, the three-terminal
problem for a refrigerator can be thought of as a pair of two-terminal problems of the form in
references [1,2]. The role of chirality is then irrelevant in the refrigerator, by which I mean that the
optimal transmission can be achieved with or without the time-reversal symmetry breaking that an
external magnetic field induces. One can use exactly the same logic as applied to the heat-engine in
Section 4 to say that a three-terminal refrigerator cannot exceed the upper bound on efficiency for
given cooling power given in references [1,2], for a pair of two-terminal thermoelectric refrigerators
(one with Nmin

LM transverse modes and the other with Nmin
RM transverse modes). As in Section 5, this

two-terminal bound can be achieved in a three-terminal refrigerator with Nmin
LM = Nmin

RM .



Entropy 2016, 18, 208 18 of 22

8. Minimal Entropy Production for Given Power Output

Reference [2,55] showed that the efficiency at given power immediately gives the entropy
production at that power. The rate of entropy production of a heat-engine at power output, Pgen, is

Ṡ(Pgen) =
Pgen

TR

(
ηCarnot

eng

ηeng(Pgen)
− 1

)
, (55)

where ηCarnot
eng is given in Equation (3). For a refriegrator at cooling power JL, it is

Ṡ(JL) =
JL
TR

(
1

ηfri(JL)
− 1

ηcarnot
fri

)
, (56)

where ηcarnot
fri is given in Equation (5). It is straight-forward to prove that these formulas apply equally

to the three-terminal systems considered here. Hence, an upper bound on efficiency at given power
output immediately gives a lower bound on the rate of entropy production at that power output.
This means that the results in this work also tell us that the lower bound on entropy production by a
three-terminal system at given power output is the same as the lower bound on two-terminal systems
discussed in reference [2].

9. Conclusions

Scattering theory has been used to find the upper bound on the efficiency of a three-terminal
thermoelectric quantum machine at a given power output. I find that this bound can be achieved
at any external magnetic field, so the bound is the same for chiral thermoelectrics as for those
with no external field. This upper bound on efficiency is identical to that found for two-terminal
thermoelectric systems in references [1,2]. It equals the Carnot efficiency when the power output is
zero, but it decays monotonically for increasing power output, as shown in Figure 2 of reference [2].

It is worth wondering if one can derive the similar bound for the system in Figure 1c with a
microscopic model of the photon (or phonon) exchange, rather than the phenomenological model
used here.

Most real quantum systems also lose heat to the environment (through photon or phonon
exchange), and this can be modeled as a fourth terminal that exchanges heat but not charge with the
system. A similar four-terminal geometry was discussed in reference [56], which showed that such a
system operates in a non-thermal state and so exhibits non-local laws of thermodynamics. It would
be interesting to see how this bound behaves in such a situation, although I doubt that the pedestrian
(brute-force) optimization used in this work will be extendable to more than three-terminals.
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Appendix A. Currents, Powers and Their Derivatives in Terms of ε0i and ε1i

In what follows, it is useful to define two functions,

Gj(ε) ≡
∫ ∞

ε

dε̃

h
f j(ε̃), Fj(ε) ≡

∫ ∞

ε

dε̃

h
ε̃ f j(ε̃). (A1)

The first of these integrals can be evaluated by defining xj = (ε− e-Vj)
/
(kBTj), so

Gj(ε) =
kBTj

h

∫ ∞

xj

dx e−x

1 + e−x =
kBTj

h
ln
[
1 + e−xj

]
. (A2)
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With a shift of integration variable, one finds that

Fj(ε) =
(kBTj)

2

h

∫ ∞

0

dx
(

x + ε0/(kBTj)
)

1 + ex+xj
= εGj(ε)−

(kBTj)
2

h
Li2
(
−e−xj

)
, (A3)

where the dilogarithm function Li2(t) =
∫ ∞

0 dx x (ex/t− 1)−1.
Equations (20)–(22) with Equation (43) give

IL = e- Nmin
LM

(
GM (ε0L)− GM (ε1L) + GL (ε1L)− GL (ε0L)

)
, (A4)

IR = e- Nmin
RM

(
GM (ε1R)− GM (ε0R) + GR (ε0R)− GR (ε1R)

)
, (A5)

with IM = −IL − IR. Remember that ∂R is a derivative with respect to VR for fixed ε0i and ε1i, and the
only VR dependence is in GR(ε); I use Equation (B1) to get

∂R IR =
(e-)2

h
Nmin

RM

(
fR (ε0R)− fR (ε1R)

)
, (A6)

with ∂R IL = 0 and ∂R IM = −∂R IR. Similarly, the only VL dependence is in GL(ε), hence

∂L IL =
(e-)2

h
Nmin

LM [ fL (ε1L)− fL (ε0L)] , (A7)

with ∂L IR = 0 and ∂L IM = −∂L IL. Then, ∂LPgen = −IL −VL∂L IL and ∂RPgen = −IR −VR∂R IR.
The two contributions to the heat-current out of reservoir M, defined above Equation (45a), are

J(L)M = Nmin
LM
(

FM (ε1L)− FM (ε0L)− FL (ε1L) + FL (ε0L)
)
,

J(R)M = Nmin
RM
(

FM (ε0R)− FM (ε1R)− FR (ε0R) + FR (ε1R)
)
.

Using Equation (B2), one gets

∂R JM = e- Nmin
RM

[
GR (ε1R)− GR (ε0R) +

ε1R

h
fR (ε1R)−

ε0R

h
fR (ε0R)

]
, (A8)

∂L JM = e- Nmin
LM

[
GL (ε0L)− GL (ε1L) +

ε0L

h
fL (ε0L)−

ε1L

h
fL (ε1L)

]
. (A9)

Appendix B. Useful Derivatives and Limits

For any function g(x):

d
dVi

∫ ε1

ε0

dε

h
g
(

ε− e-Vi
kBTi

)
= − e-

h
[g(x1)− g(x0)] ,

having defined xα(Vi) = (εα− e-Vi)/(kBTi) for α = 0, 1 and used the fact that Vi only appears in these
limits on the integral. Thus, for Gj(ε) in Equation (A1) one has:

d
dVi

Gj(ε) =
e-

h
f j(ε). (B1)

Similarly for Fj(ε) in Equation (A1), we have

d
dVj

Fj(ε) = kBTj
d

dVj

∫ ∞

ε

dε̃

h

(
ε̃− e-Vj

kBTj

)
f j(ε̃) +

d
dVj

[
e-Vj

∫ ∞

ε

dε̃

h
f j(ε̃)

]
= e-

(
Gj(ε) +

ε

h
f j(ε)

)
. (B2)
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Finally, it is useful to mention the limits of the dilogarithm functions that appear in Fj(ε). The
series expansion of the dilogarithm at small z is Li2(z) = ∑∞

n=1 n−2zn. One can then extract the
behavior at z = −ex for large x using the equality Li2(−ex) + Li2(−e−x) = −π2/6− x2/2. Inserting
the above small z expansion into this gives:

Li2(−ex) = − x2

2
− π2

6
−

∞

∑
n=1

(−1)n

n2 e−nx . (B3)
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